序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
101 低温烧结陶瓷及电子部件 CN02107122.5 2002-03-11 CN1183057C 2005-01-05 大渕武志; 成尾良明; 井出良律
发明提供下述的低温烧结陶瓷,该低温烧结陶瓷可在1000℃以下的低温区中烧结,能降低介电常数εr,能提高质量因数,并且能将裂纹发生率抑制得很低。低温烧结陶瓷含有换算成BaO为10~64重量%的钡成分、换算成SiO2为20~80重量%的成分、换算成Al2O3为0.1~20重量%的成分、换算成B2O3为0.3~1.0重量%的成分、换算成ZnO为0.5~20重量%的锌成分、以及换算成Bi2O3为20重量%以下的铋成分。
102 陶瓷叠层体及其制造方法 CN200310101354.7 2003-10-15 CN1497628A 2004-05-19 本田和义; 高井顺子; 长井淳夫; 村尾正子; 小林惠治
发明提供一种陶瓷叠层体(10),其包括:含有金属元素的多个陶瓷层(12)、以及布置在上述陶瓷层(12)之间的多个金属层(14a、14b)。上述金属层(14a、14b),其主要成分包括从Ni、Cu、Ag和Pd中选择出的至少一种,总含量为50atm%以上,添加剂成分包括上述陶瓷绿板(12)中所包含的上述金属元素中的至少一种,含量为1atm%以上、不足50atm%。这样能获得金属层在烧结后不易断裂的陶瓷叠层体。
103 低温烧结瓷器及电子部件 CN02107122.5 2002-03-11 CN1374272A 2002-10-16 大渕武志; 成尾良明; 井出良律
发明提供下述的低温烧结瓷器,该低温烧结瓷器可在1000℃以下的低温区中烧结,能降低介电常数εr,能提高质量因数,并且能将裂纹发生率抑制得很低。低温烧结瓷器含有换算成BaO为10~64重量%的钡成分、换算成SiO2为20~80重量%的成分、换算成Al2O3为0.1~20重量%的成分、换算成B2O3为0.3~1.0重量%的成分、换算成ZnO为0.5~20重量%的锌成分、以及换算成Bi2O3为20重量%以下的铋成分。
104 绝缘陶瓷压、陶瓷多层基板和陶瓷电子器件 CN01122798.2 2001-07-20 CN1334256A 2002-02-06 森直哉; 杉本安隆; 近川修
提供一种可通过低温烧制获得的绝缘陶瓷压,它具有低的相对介电常数和优良的高频特性,能与热膨胀系数高的材料共烧结。这种绝缘陶瓷压块是MgAl2O4基陶瓷和酸盐玻璃的烧制混合物,其中,MgAl2O4晶相与Mg3B2O6晶相和Mg2B2O5晶相中至少一种晶相以主晶相析出。
105 复合叠片及其制造方法 CN00133783.1 2000-10-30 CN1305339A 2001-07-25 龟田裕和; 中尾修也; 黑田茂之; 小嶋胜; 田中谦次
发明提供一种复合叠层,该复合叠层包含包括第一微粒聚集体的第一片层和包含第二微粒聚集体的第二片层。在两个第一片层之间设置每个内部第二片层并且第二片层的两个外部片层构成复合叠层的两个主表面。内部第二片层的厚度大于外部第二片层的厚度。第一片层与第二片层通过包含在第一片层内的一部分第一微粒聚集体渗入第二片层互相结合。这样的结构能够减少复合叠层在煅烧步骤中的横向收缩。
106 陶瓷糊浆组合物和制造陶瓷坯料片及多层电子元件的方法 CN00131765.2 2000-10-12 CN1303104A 2001-07-11 中村一郎; 田中秀彦
公开了一种具有均匀分散且无严重损伤的陶瓷粉末的陶瓷糊浆组合物。一种使用该陶瓷糊浆组合物制造陶瓷坯料片的方法和一种多层陶瓷电子元件的制造方法。该陶瓷糊浆组合物含有陶瓷粉末、分散剂、粘合剂溶剂,其中使用阴离子分散剂作为分散剂,其用量设定为其总酸值相当于陶瓷粉末值的10—150%。使用的陶瓷粉末的平均粒径为0.01—1微米。
107 复合未焙烧陶瓷坯体及其制造方法 CN95119887.4 1991-10-04 CN1048969C 2000-02-02 K·R·米克斯卡; D·T·谢弗
焙烧陶瓷坯体时减小X-Y收缩的方法,有柔性约束层在焙烧时变为多孔,将其加在陶瓷坯体上,柔性约束层在焙烧组合件时,在未焙烧的陶瓷坯体的表面上密切吻合。
108 用于固体电解质电绝缘的陶瓷绝缘层装置 CN94191132.2 1994-11-26 CN1042460C 1999-03-10 卡尔-赫尔曼·弗里则; 海因茨·盖依尔; 维尔纳·格鲁根瓦尔德; 克劳迪欧·德·拉·普林塔
一种特别用于气体探测器的绝缘层装置,包括至少一导电的固体电解质层(10)、一导电层(20)以及该固体电解质层(10)与该导电层(20)之间的至少一电绝缘层(13)。该绝缘层(13)的材料在烧结前含有作为添加剂的铌或钽的五价金属化物,该添加剂可在烧结过程中扩散入邻接的固体电解质层(10)中。
109 陶瓷坯体焙烧时减小收缩的方法 CN91109552.7 1991-10-04 CN1061585A 1992-06-03 K·R·米克斯卡; D·T·谢弗
焙烧陶瓷坯体时减小X-Y收缩的方法,有柔性约束层在焙烧时变为多孔,将其加在陶瓷坯体上,柔性约束层在焙烧组合件时,在未焙烧的陶瓷坯体的表面上密切吻合。
110 超导电路板及其采用的涂料 CN88102627 1988-05-07 CN88102627A 1988-12-07 横山博三; 今中佳彦; 山中一典; 亀原伸男; 丹羽纮一; 卷拓也; 铃木均; 町敬人
发明提供一种超导电路板,它包括含有重量百分比大于99%的烧结氧化铝板和在此氧化铝板上形成的超导陶瓷互连电路图形。由于将Ti或Si连结剂加入形成此互连电路图形的涂料中,改进了互连电路图形与氧化铝板的粘合。用粉代替铜氧化物粉作为涂料中形成超导陶瓷的一种成分有利于印制和获得均匀的超导陶瓷电路图形。
111 多层超导电路衬底及其制备方法 CN88102545 1988-04-27 CN88102545A 1988-11-23 今中佳彦; 町敬人; 山中一典; 横山博三; 龟原伸男; 丹羽纮一
发明提供了一种多层超导电路衬底,它包括绝缘层和位于绝缘层之间的超导陶瓷材料的内连接模,借助于超导陶瓷材料通孔将超导陶瓷材料模块连通。超导陶瓷材料的模块最好用金、、铂及其合金封装。
112 METHOD FOR MANUFACTURING LARGE CERAMIC CO-FIRED ARTICLES PCT/EP2015060126 2015-05-07 WO2015169929A3 2016-02-18 AHRENDES SAMUEL; HARLAND GARY; LEE CHENGTSIN; TOMASEK EDWARD; YORK GEORGE
A method of forming one or more high temperature co-fired ceramic articles, comprising the steps of:- a) forming (34) a plurality of green compacts, by a process comprising dry pressing a powder comprising ceramic and organic binder to form a green compact; b) disposing (38) a conductor or conductor precursor to at least one surface of at least one of the plurality of green compacts to form at least one patterned green compact; c) assembling the at least one patterned green compact with one or more of the plurality of green compacts or patterned green compacts or both to form a laminated assembly; d) isostatically (40) pressing the laminated assembly to form a pressed laminated assembly; e) firing (42) the pressed laminated assembly at a temperature sufficient to sinter the ceramic layers together.
113 SENSOR WITH ELECTRODES OF A SAME MATERIAL PCT/US2009065147 2009-11-19 WO2010059823A3 2010-08-26 NAIR BALAKRISHNAN G; HENDERSON BRETT T; PACE THOMAS K; WANG GANGQIANG
A sensor (20, 24) for monitoring concentration of a constituent in a gas may include an ionically conductive layer (34, 36, 38, 38A) and a sensing electrode (50, 50A) coupled to the ionically conductive layer. The sensing electrode may be exposed to a gas. The sensor may also include a reference electrode (40, 40A) that is exposed to the gas and made of substantially a same material as the sensing electrode.
114 METHOD OF MAKING REACTIVE MULTILAYER FOIL AND RESULTING PRODUCT PCT/US0113962 2001-05-01 WO0183623A3 2002-03-21 WIEHS TIMOTHY P; REISS MICHAEL
In accordance with the invention a reactive multilayer foil is fabricated by providing an assembly (stack or multilayer) of reactive layers, inserting the assembly into a jacket, deforming the jacketed assembly to reduce its cross sectional area, flattening the jacketed assembly into a sheet, and then removing the jacket. Advantageously, the assembly is wound into a cylinder before insertion into the jacket, and the jacketed assembly is cooled to a temperature below 100 DEG C during deforming. The resulting multilayer foil is advantageous as a freestanding reactive foil for use in bonding, ignition or propulsion.
115 REACTIVE MULTILAYER STRUCTURES FOR EASE OF PROCESSING AND ENHANCED DUCTILITY PCT/US0114052 2001-05-01 WO0183205A3 2002-03-14 WEIHS TIMOTHY P; REISS MICHAEL; KNIO OMAR; BLOBAUM KERRI J
In accordance with the invention, a reactive multilayer structure comprises alternating layers of materials that exothermically react by a self-propagating reduction/oxidation reaction or by a self-propagating reduction/formation reaction. This combination of a reduction reaction and either an oxidation of formation reaction can lead to ductile reaction products and is frequently accompanied by the generation of large amounts of heat. As compared with conventional multilayer foils, the new multilayer structures are easier to fabricate, easier to handle, and produce more reliable bonds.
116 METHOD FOR JOINING MATERIALS AND PLATE AND SHAFT DEVICE AND MULTI-LAYER PLATE FORMED THEREWITH PCT/US2012067491 2012-11-30 WO2013082564A3 2013-07-25 ELLIOT ALFRED GRANT; ELLIOT BRENT DONALD ALFRED; BALMA FRANK; SCHUSTER RICHARD ERICH; REX DENNIS GEORGE; VEYTSER ALEXANDER
A method for joining first and second ceramic pieces comprising brazing a continuous layer of joining material between the two pieces. The wetting and flow of the joining material can be controlled by among other factors the selection of the joining material, the joining temperature, the time at temperature and the joining atmosphere. The pieces may be aluminum nitride and the pieces may be brazed with an aluminum alloy under controlled atmosphere. The joint material can be adapted to later withstand both the environments within a process chamber during substrate processing, and the oxygenated atmosphere which may be seen within the shaft of a heater or electrostatic chuck.
117 METHOD OF MANUFACTURING A TUBULAR INSULATING DEVICE AND CORRESPONDING DEVICE PCT/FR2008001397 2008-10-07 WO2009080915A3 2009-08-20 LECLERCQ BERANGERE; BERNARD OLIVIER; POTIER ALEXANDRE
In the method, an insulating material (2) is fed in and said insulating material (2) is shaped by superposing a plurality of N layers Ci (3) of the said insulating material (2). It is characterized in that: a) for each layer Ci (3), a plurality of ni axial insulating elements Ei (4) precut from the said insulating material (2) is formed, b) a rough form (5) of the said tubular insulating device (1) is formed by: b1) using an adhesive (6) to assemble the Ni elements Ei (4) of each layer Ci (3) which are juxtaposed along a plurality of joining zones Ji (30) so that the plurality of joining zones Ji+1 of a layer Ci+1 is offset relative to the plurality of joining zones Ji of the adjacent layer Ci; b2) then by polymerizing the said adhesive (6); c) subjecting the said tubular element rough form (5) to a heat treatment. Advantages: economical method that makes it possible to obtain a device of high mechanical strength.
118 JUNCTION PROCESS FOR A CERAMIC MATERIAL AND A METALLIC MATERIAL WITH THE INTERPOSITION OF A TRANSITION MATERIAL PCT/IB2005052434 2005-07-20 WO2006024971A3 2006-07-13 LIBERA STEFANO; VISCA ELISEO
The invention refers to a method useful for obtaining junctions having high qualities of mechanical resistance and capabilities of heat conduction between materials with different physical properties, and in particular ceramic/metal junctions or ceramic/metal composites in which the different thermal expansion coefficient entails remarkable stresses in the interface both during the junction process and their industrial application. The issues solved with the proposed method are the metal's difficulty of wetting the surfaces to be coupled and the general low mechanical resistance to tensile stress of ceramics or ceramic compounds. The first issue is solved with the application of a Titanium-base alloy that, by combining with the ceramic at a surface level enables metal to wet the surface. The second issue is solved by increasing the specific surface of the ceramic or compound, machining it through long-pitch multi-start thread.
119 MULTI-LAYER CERAMIC COMPOSITE PCT/DE0303834 2003-11-19 WO2004071631A3 2004-12-23 EHLEN FRANK; BINKLE OLAF; NONNINGER RALPH
The invention relates to a method for production of a ceramic composite, whereby a second green layer is applied to a green support layer, the ceramic particles of which have a size of x <= 100 nm. On common sintering of the green layers the second layer contracts to give a defect-free, fine-pored functional layer.
120 METHOD FOR PRODUCING A CERAMIC SUBSTRATE PCT/DE0202963 2002-08-13 WO03028085A2 2003-04-03 HOFFMANN CHRISTIAN; AICHHOLZER KLAUS-DIETER
The invention relates to a method for producing a ceramic substrate (1), comprising the following steps: a) a base body (2) is prepared, said base body comprising a stack (2a) of superimposed layers (3) containing an unsintered ceramic material, b) a constraining layer (4) is formed by pressing a powder (5) onto the surface (6) of the uppermost layer (7) of the stack (2a), c) the stack (2a) is sintered, and d) the constraining layer (4) is removed.
QQ群二维码
意见反馈