序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
141 CERAMIC SUBSTRATE MANUFACTURING METHOD AND CERAMIC SUBSTRATE EP07806757.6 2007-09-05 EP2061290B1 2011-10-12 YAMAMOTO, Yasuyuki; SUGAWARA, Ken; MAEDA, Masakatsu
A method for manufacturing a ceramic substrate having a via hole and a surface wiring pattern to which the via hole is electrically connected. The method comprises a step of preparing a sintered ceramic substrate having a via hole, a step of forming a sintered ceramic layer having a hole or an opening portion whose bottom is constituted of at least part of the exposed end surface of the via hole on the sintered ceramic substrate by the post-fire method, a step of forming a conductive portion electrically connecting the surface of the sintered ceramic layer and the via hole in the hole or opening portion, and a step of forming a surface wiring pattern electrically connecting to the conductive portion on the surface of the sintered ceramic layer. With this, even if a sintered ceramic substrate is manufactured by the co-fire method, the position of the connection between the via hole and the surface wiring pattern can be controlled with high precision, any problem such as short-circuit is not caused, and a fine wiring pattern with high precision can be formed on a ceramic substrate.
142 Ceramic thin plate member EP07251700.6 2007-04-23 EP1858106B1 2011-02-23 Ohmori, Makato, c/o NGK Insulators Ltd.; Shimogawa, Natsumi, c/o NGK Insulators Ltd.; Asai, Michihiro c/o NGK Insulators Ltd.; Nanataki, Tsutomu c/o NGK Insulators Ltd.
143 Keramisches Vielschicht-Bauelement EP10184225.0 2004-09-29 EP2264800A2 2010-12-22 Florian, Heinz; Ottlinger, Marion; Sedlmaier, Peter

Die Erfindung betrifft ein keramisches Vielschicht-Bauelement mit einem Stapel alternierender Keramikschichten und als Innenelektroden dienender kupferhaltiger Elektrodenschichten, die an Außenkontakte angeschlossen sind, sowie Verfahren zur Herstellung des Bauelements. Erfindungsgemäß enthalten die Außenkontakte metallisches Kupfer, wobei in dem an der Grenzfläche zwischen den Außenkontakten und den Keramikschichten anliegenden Grenzbereich die Außenkontakte nicht oxidiert sind und das Material der Keramikschichten nicht reduziert ist und wobei die Haftfestigkeit der Außenkontakte am Stapel den Wert von 50 N übersteigt. Erfindungsgemäß erfolgt die Entbinderung bei einer vergleichsweise niedrigen Temperatur von max 300°C in einer feuchten Stickstoffatmosphäre.

144 PROCESS FOR PRODUCING CERAMIC SUBSTRATE, AND CERAMIC SUBSTRATE EP06730501 2006-03-29 EP1873131A4 2010-10-20 IKEDA TETSUYA; CHIKAGAWA OSAMU; ITO YUKI
145 JOINED BODY AND PROCESS FOR PRODUCING THE SAME EP08711190 2008-02-13 EP2112129A4 2010-09-01 TOMITA TAKAHIRO
146 LAMINATED CERAMIC ELECTRONIC COMPONENT EP07745061 2007-06-12 EP2028664A4 2010-08-25 NISHIZAWA YOSHIHIKO
147 Verfahren zur Herstellung eines keramischen Vielschicht-Bauelements EP07017605.2 2004-09-29 EP1863104A2 2007-12-05 Florian, Heinz; Ottlinger, Marion, Dr.; Sedlmaier, Peter

Die Erfindung betrifft ein keramisches Vielschicht-Bauelement mit einem Stapel alternierender Keramikschichten und als Innenelektroden dienender kupferhaltiger Elektrodenschichten, die an Außenkontakte angeschlossen sind, sowie Verfahren zur Herstellung des Bauelements. Erfindungsgemäß enthalten die Außenkontakte metallisches Kupfer, wobei in dem an der Grenzfläche zwischen den Außenkontakten und den Keramikschichten anliegenden Grenzbereich die Außenkontakte nicht oxidiert sind und das Material der Keramikschichten nicht reduziert ist und wobei die Haftfestigkeit der Außenkontakte am Stapel den Wert von 50 N übersteigt. Erfindungsgemäß erfolgt die Entbinderung bei einer vergleichsweise niedrigen Temperatur von max 300°C in einer feuchten Stickstoffatmosphäre.

148 Ceramic thin plate member EP07251700.6 2007-04-23 EP1858106A2 2007-11-21 Ohmori, Makato, c/o NGK Insulators Ltd.; Shimogawa, Natsumi, c/o NGK Insulators Ltd.; Asai, Michihiro c/o NGK Insulators Ltd.; Nanataki, Tsutomu c/o NGK Insulators Ltd.

A thin plate member (10) is a thin plate member that is formed by sintering, contains a ceramic layer, and comprises a thin part having two or more types of layers laminated, each of which is made of a material having a different thermal expansion coefficient, and a thick part that is made by laminating plural layers including at least all of the layers constituting the thin part, and has a thickness (tB) greater than the thickness of the thin part. The thin part has a shape warping in the direction perpendicular to the plane of the thin plate member. By virtue of this configuration, the internal electrical resistance of the thin part can be reduced. Further, the thin plate member can be provided that is difficult to be deformed with respect to the internal stress caused by the difference in thermal expansion coefficient between layers.

149 DIELECTRIC COMPOSITION, METHOD OF MANUFACTURING A CERAMIC MULTILAYER ELEMENT, AND ELECTRONIC DEVICE. EP01958009.1 2001-07-23 EP1230653B1 2007-01-24 MIKKENIE, Ronald; DORTANT, Gerardus, C., M.; ALBERTSEN, Knuth; KOHLER, Heinz, G.; SCHLENKER, Tilman
The dielectric composition contains a mixture of a ceramic composition containing BaaREbTicO3, wherein RE represents a rare earth element, with 0.05∫a∫0.25, 0.525∫b∫0.70, 0.85∫c∫1.0, and 2a + 3b + 4c = 6, and free from lead and bismuth, a glass composition, and a metal oxide. The glass composition preferably contains ZnO or MgO, SiO2, and at least 10% by weight of Li2O or TiO2. Preferably, the alkaline earth metal oxide is MgO. By preference, the glass composition essentially consists of 50-80% weight of SiO2, 5-25% weight of MgO, and optionally another alkaline earth metal oxide, and 10-25% by weight of Li2O, and is substantially free from boron. The dielectric composition can be sintered in the presence of Cu electrodes at a temperature below the melting point of Cu so as to manufacture an electronic device such as a ceramic multilayer element. After sintering, the dielectric composition has a relative dielectric constant of at least 55.
150 VERFAHREN ZUR HERSTELLUNG EINES KERAMISCHEN SUBSTRATS EP03783950.3 2003-08-04 EP1525090A1 2005-04-27 ALTHOFF, Anke; GRABNER, Holger
The invention relates to a method for producing a ceramic multi-layer substrate, in which the debinding and sintering stages directly succeed one other, without an intervening cooling of the multi-layer substrate. The advantage of said method is that the risk of cracking is reduced. In an advantageous variant of the invention, part of the debinding process is carried out in an inert atmosphere and the atmosphere is subsequently converted to one containing air. The temperature is simultaneously lowered to a value that does not however drop below the minimum temperature for the debinding process, in order to prevent organic components in the binding agent from oxidising too rapidly and the explosive expulsion of CO2.
151 LAMINATED STRUCTURE AND METHOD OF FORMING SAME EP00986863 2000-12-19 EP1255641A4 2005-01-12 DONELSON RICHARD; LIN THERESA
A method of alleviating edge curling when laminated structures comprising layers of green material having different shrinkage rates are sintered comprises applying to a face (18) of edges (14) the first layer (10) having the higher shrinkage rate green sinterable material, opposite to the second layer (12) having the lower shrinkage rate green sinterable material, an edge strip (16) of a green sinterable material also having a shrinkage rate lower than the first layer, and then firing the laminated structure. The edge strip may be partly or, advantageously, wholly embedded in the first layer. The sinterable materials of the second layer and edge strip may be the same or similar. The invention is particularly applicable to solid oxide fuel cell sub-structures in which the first layer is the anode layer and the second layer is the electrolyte layer.
152 METHOD FOR MANUFACTURING CERAMIC MULTILAYERED BOARD EP02771763 2002-05-21 EP1392093A4 2004-12-15 HASHIMOTO AKIRA; NAKAO KEIICHI; KATSUMATA MASAAKI
A manufacturing method including the step of forming an adhesive layer (12) over the surface of a ceramic substrate (11) enables the manufacture of a ceramic multilayered circuit board of a high dimensional precision comprising a monolithic block of the ceramic substrate (11) and a ceramic green sheet (14) with almost no in−plane shrinkage after baking.
153 Gasentladungslampe und Verfahren zu deren Herstellung EP02100675.4 2002-06-07 EP1265264A2 2002-12-11 Rausenberger, Bernd; Braun, Norbert; Groen, Wilhelm-Albert; Kraus, Albrecht; Vorachen, Jozef; Roelevink, Bauke Jacob

Die Erfindung betrifft ein Verfahren zur Herstellung einer Gasentladungslampe (100) und eine Gasentladungslampe (100) als solche. Eine bekannte Gasentladungslampe (100) umfasst einen mit einem Gas gefüllten Glashohlkörper (120), wobei das Gas durch Energiezufuhr zum Aussenden von Licht angeregt wird, und zumindest eine an dem Glashohlkörper (120) befestigte Keramikelektrode (140a,140b) zum kapazitiven Einkoppeln von Energie in das Gas im Innern des Glashohlkörpers (120). Aufgabe der Erfindung ist es, die Herstellung der Gasentladungslampe (100) zu vereinfachen. Erfindungsgemäß geschieht dies dadurch, dass das Glasmaterial, aus welchem der Glashohlkörper (120) gebildet ist, und das Keramikmaterial, aus welchem die Keramikelektrode (140a,140b) gebildet ist, so ausgewählt werden, dass ihre beiden Temperatur-Ausdehnungskoeffizienten zumindest näherungsweise übereinstimmen und dass das Glasrohr durch Direkteinschmelzung an der Keramikelektrode (140a,140b) befestigt wird.

154 Composite laminate and method for manufacturing the same EP00123653.8 2000-10-30 EP1096558A2 2001-05-02 Kameda, Hirokazu, (A170) Intel.Property Department; Nakao, Shuya, (A170) Intel.Property Department; Kuroda, Shigeyuki, (A170)Intel.Property Department; Kojima, Masaru, (A170)Intel.Property Department; Tanaka, Kenji, (A170)Intel.Property Department

A composite laminate includes first sheet layers and second sheet layers. The first sheet layers include a first particulate aggregate and the second sheet layers include a second particulate aggregate. Each of internal second sheet layers is disposed between two first sheet layers and two external second sheet layers constitute two main faces of the composite laminate. The thickness of the internal second sheet layers is greater than the thickness of the external second sheet layers. The first sheet layers and the second sheet layers are bonded to each other by penetration of a part of the first particulate aggregate contained in the first sheet layers into the second sheet layers. This configuration can reduce the transverse shrinkage in the firing step of the composite laminate.

155 Cutting elements and methods of manufacture thereof EP00305411.1 2000-06-28 EP1081119A1 2001-03-07 Griffin, Nigel Dennis; Taylor, Malcolm Roy

A cutting element for a rotary drill bit includes at least one insert (20) of polycrystalline diamond of a kind incorporating a carbonate as a sintering binder-catalyst. The insert (20) is mounted by being at least partly surrounded by a support body (21) of conventional polycrystalline diamond of a kind incorporating a sintering binder-catalyst selected from cobalt and other iron group elements or alloys thereof. The insert (20) and support body (21) may be integrally bonded to a substrate during manufacture. Either the insert (20) or support body (21) may be pre-sintered or sintered during formation of the cutting element.

156 Verfahren zur Herstellung eines Keramikbauteils mit einem Cermet-Körper EP99115374.3 1999-08-04 EP0987233A1 2000-03-22 Bitz, Günther; Graf, Hans-Joachim; Mayer, Helmut

Ein Verfahren dient zur Herstellung eines Keramikbauteils (30) mit wenigstens einem Cermet-Körper (20, 21), insbesondere einer Cermet-Elektrode. Das Verfahren soll dahingehend weitergebildet werden, daß der Aufwand reduziert wird und in reproduzierbarer Weise das den Anforderungen entsprechende Keramikbauteil mit integriertem Cermet-Körper hergestellt werden kann. Es wird vorgeschlagen, daß zunächst der Cermet-Körper (20, 21) als Grünling hergestellt wird, daß der Cermet-Körper (20, 21) in die Keramikmasse (18, 22) eingebracht wird, daß nachfolgend die Keramikmasse gemeinsam mit dem als Grünling vorliegenden Cermet-Körper (20, 21) verdichtet und schließlich die Sinterung durchgeführt wird.

157 Method for producing a ceramic diaphragm structure EP99307212.3 1999-09-13 EP0987101A2 2000-03-22 Takeuchi, Yukihisa; Nanataki, Tsutomu, Esuopa Toyoake VI Nibankan 1403; Takeuchi, Katsuyuki

A method for forming a ceramic diaphragm structure includes the steps of:

  • a) providing a laminate, comprising:
    • i) a ceramic green substrate having at least one window therethrough and a plurality of layers; and
    • ii) a thin ceramic green sheet having at least one layer superposed on the ceramic green substrate to cover the at least one window; and
  • b) firing the laminate so that the ceramic green sheet provides a diaphragm portion protruding in a direction away from the at least one window;
   wherein the ceramic green substrate and the ceramic green sheet satisfy the formulae:
  • 1) S(substrate) - S(sheet)

       ≧ - 0.08{T70(substrate) - T70(sheet)} - 1
  • 2) 0 ≦ T70(substrate)- T70(sheet) ≦ 300, and
  • 3) S(substrate) - S(sheet) ≦ 20
(wherein S(substrate) and S(sheet) denote shrinkage rates(%) of the ceramic green substrate and the ceramic green sheet, respectively, and T70(substrate) and T70(sheet) denote an mid-sintering temperatures (°C) of the ceramic green substrate and the ceramic green sheet, respectively.), and average mid-sintering temperature difference of the ceramic green substrate, shown by the following formula, is smaller than 0: (wherein N denotes the number of layers constituting the ceramic green substrate, T70(substrate)n denotes a mid-sintering temperature (°C) of a layer positioned in the nth place from the bottom of the laminate in the ceramic green substrate having the ceramic green sheet thereon, tn and tn+1 denote distances from the lower and upper surfaces, respectively, of the layer positioned in the nth place to a neutral line of the substrate after firing the unitary laminate, using (-) for a surface under the neutral line and (+) for a surface over the neutral line.), and an average shrinkage-rate difference of the ceramic green substrate, shown by the following formula, is smaller than 0: (wherein N denotes the number of layers constituting the ceramic green substrate, S(substrate)n denotes a shrinkage rate (%) of a layer positioned in the nth place from the bottom of the laminate in the ceramic green substrate having the ceramic green sheet thereon, and tn and tn+1 denote distances from the lower and upper surfaces, respectively, of the layer positioned in number n place to a neutral line of the substrate after firing the unitary laminate, using (-) for a surface under the neutral line and (+) for a surface over the neutral line.).

158 JOINED PRODUCT OF OF SUPERCONDUCTIVE OXIDE MATERIALS AND ITS MANUFACTURE EP93906883.9 1993-04-02 EP0634379B1 1999-08-11 KIMURA, Keiichi, Nippon Steel Corp. Advanced Mat.; MIYAMOTO, Katuyoshi, Nippon Steel Corp. Advanced; HASHIMOTO, Masao, Nippon Steel Corp. Advanced. Mat
A bonded element of superconductive oxide materials having a high current density and a method for manufacturing such an element. The bonded element is such that regularly oriented superconductive oxide materials are bonded through the same kind of superconductive phase having the same crystalline orientation as, but a peritectic temperature lower than that of the bonding materials. The bonding method is such that the crystalline orientations of the bonding superconductive oxide materials are adjusted on the bonding surface; a substance which is formed by the constituent elements of the superconductive oxide material having a peritectic temperature lower than that of the material is inserted as the solder or is caused to contact each of the bonding superconductive oxide materials on the bonding surface; these materials are heated at a temperature lower than the peritectic temperature of the bonding materials, but higher than the peritectic temperature of the solder; and these are gradually cooled so that the same kind of oxide superconductor is grown and oriented on the bonded surface. In this way, it is possible to obtain a bonded element of the superconductive oxide materials having a high critical current density without grain boundaries that may hinder the flow of the electric current. The element can be used as a material for magnets, magnetic shields, and current leads.
159 Ceramic sheath type part and method of manufacturing the same EP96302628.1 1996-04-15 EP0771773A3 1997-10-15 Kita, Hideki; Numao, Hisataka; Kawamura, Hideo

The present invention provides a ceramic sheath type part capable of preventing the breaking of a conductive wire rod(2, 2A, 2B, 22) and having a thermal resistance and a thermal shock resistance, and a method of manufacturing the same. In this ceramic sheath type part, a conductive wire rod(2, 2A, 2B, 22) is provided in a protective pipe(1, 41) of silicon nitride or SiAlON so as to extend longitudinally from one end toward the other end thereof, and buried in a filler(3, 20) of reaction sintered silicon nitride. The filler(3, 20) comprises two layers, i.e. a core portion(4) having a low sintering time size variation ratio, and a seal portion(5) constituting a boundary layer between the core portion(4) and the protective pipe(1, 41) and having a sintering time size variation ratio higher than that of the core poriton(4). The conductive wire rod(2) comprises a coil(22) of a metal wire. The coil(22) is formed helically along the whole length thereof, and the winding pitch of the coil(22) is set small, large and small in the mentioned order from a front end portion of a shell of the protective pipe(1, 41) toward a base end portion thereof.

160 Microlaminated composites and method for preparing them EP93116127.7 1993-10-06 EP0595075B1 1997-09-17 Henderson, Michael James, Corning Incorporated; Pattabhirami Reddy, K., Corning Incorporated; Ketcham, Thomas Dale, Corning Incorporated; Share, Leroy Steven, Corning Incorporated; St. Julien, Dell Joseph, Corning Incorporated
QQ群二维码
意见反馈