序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
21 超音波距離検出のための装置、方法、プログラム、及びモバイルプラットフォーム JP2016548358 2015-07-09 JP6327656B2 2018-05-23 シエ、ジエビン; ザン、リチアン; レン、ウェイ
22 無線航空機、位置情報出方法及び無線航空機用プログラム。 JP2015130293 2015-06-29 JP6326009B2 2018-05-16 菅谷 俊二
23 自動航空機のプロペラ安全性 JP2017506762 2015-08-07 JP2017523087A 2017-08-17 ダニエル ブックミューラー; ブライアン シー ベックマン; アミール ナボット; ブランドン ウイリアム ポーター; グル キムチ; ジェフリー ピー ベゾス; フレデリック シャファリツキー
本開示は、自動航空機(AVV)及びAAVのプロペラと物体(例えば人間、ペット、若しくは他の動物)との間の接触または差し迫った接触を自動的に検出するためのシステムを説明する。接触または差し迫った接触が検出されるとき、安全プロファイルは物体及び/またはAAVへの潜在的な害を削減または回避するために実行されて良い。例えば、物体によるAAVのプロペラとの接触が検出される場合、プロペラの回転は物体に危害を加えることを避けるために停止されて良い。同様に、物体検出構成部品は、プロペラに近づいてくる物体を検出する、プロペラの回転を停止する、及び/または検出された物体から離れてAAVを航行させるために使用されて良い。【選択図】図3
24 風車レセプタの検査方法 JP2016035528 2016-02-26 JP6426113B2 2018-11-21 松下 崇俊; 太田 慶助; 長谷川 修; 今岡 健悟; 深見 浩司
25 超音波距離検出のためのシステムおよび方法 JP2016548358 2015-07-09 JP2017528683A 2017-09-28 シエ、ジエビン; ザン、リチアン; レン、ウェイ
超音波を利用してモバイルプラットフォーム上の距離を検出するためのシステム、および製造および使用するための方法。システムは、超音波を送信および/または受信し、超音波の飛行時間を利用して、注目のオブジェクトからの距離を決定できる超音波送受信機を含む。システムは、受信された超音波エコーの可能な位置に対する複数の制約を設定すべく、モバイルプラットフォームの動的モデルを利用することにより、ノイズを低減するように適合される。線形定速動的モデルは、複数の制約を設定するために利用され得る。システムは、さらに、受信された超音波波形パケット化し、複数のパケットの高さおよび幅に従って、ノイズを除去することによりノイズを低減できる。システムは、同様に、受信された波形から余震波形を減算することにより、超音波送受信機において複数の不感帯を取り除くことができる。複数のシステムおよび複数の方法は、無人航空機を含む、いかなるタイプのモバイルプラットフォーム上の超音波距離検出に適している。
26 無線航空機、位置情報出方法及び無線航空機用プログラム。 JP2015130293 2015-06-29 JP2017016271A 2017-01-19 菅谷 俊二
【課題】コストを抑制しつつ、処理を簡単にするとともに、必要な情報を出することが可能な無線航空機、位置情報出力方法及び無線航空機用プログラムを提供する。
【解決手段】空中を飛行する無線航空機10は、ライブ画像を撮影し、自身が位置する位置情報を検知可能であり、抽出した対象に関する特定画像を記憶し、撮影したライブ画像と、特定画像とを比較して、ライブ画像から抽出したい対象を認識し、対象を認識した際に、検知した現在位置を出力する。
【選択図】図1
27 無人式空中移動体を係留して充電するシステム及び方法 JP2016019465 2016-02-04 JP2016165215A 2016-09-08 ダグラス エー.ムーア
【課題】無人空中移動体に対する係留及び充電箇所を提供する充電ステーションを提供する
【解決手段】、無人式空中移動体用の充電システムは、光源ソケットに対して結合されるべく構成された光源ソケット用コネクタと、光源ソケット用コネクタに対して電気的に結合された電回路と、電力回路に対して電気的に結合された一つ以上の電気接触領域を有する充電ステーション胴体と、を有する無人式空中移動体用の充電ステーション含む。
【選択図】図1
28 무인 항공 장치를 이용한 배송지 결정 방법 및 시스템 KR1020160057607 2016-05-11 KR1020170127242A 2017-11-21 최준균; 양진홍; 박효진; 전규영
무인항공장치를이용한배송지결정방법및 시스템이개시된다. 컴퓨터로구현되는무인항공장치를이용한배송지결정방법에있어서, 상품을배송하는상기무인항공장치가목적지주변에접근함에따라상기목적지에착륙하기이전에상기상품을수신할사용자단말이상기목적지주변에존재하는지여부의확인을서버에요청하는단계, 상기목적지주변에사용자단말이존재하는것으로확인됨에따라사용자단말과의상호인증을수행하는단계, 및상기상호인증에성공함에따라목적지에착륙하려는착륙시점에상기사용자단말과의통신을통해착륙지점을결정하는단계를포함할수 있다.
29 비행 표시장치 KR1020150058207 2015-04-24 KR1020160127283A 2016-11-03 김범식
본발명의일실시예에따르면본 발명의일실시예에따른표시부는표시부, 상기표시부와연결된적어도하나이상의비행부, 표시장치의현재위치에대한정보를획득하는위치정보수신부, 사용자의정보를획득하는센서부, 표시장치의비행을자동제어하는비행제어부, 표시장치의자세정보를획득하는자세정보획득부, 각구성의전체동작을제어하는주제어부, 및표시장치또는표시부의각도를변경하는자세보정부, 진동시스템부, 표시장치는사용자의음성을인식하여수신받은정보를주제어부에제공하는음성인식부, 입력정보를수신하여정보를주제어부에제공하는통신모듈, 상기통신모듈에입력정보를전달하는입력수단, 전원부, 장애물감지부, 비행부, 상기표시부를연결하는관절기구부및 상기표시부와상기표시장치를연결하는연결부를포함한다.
30 전동 무인기의 추진부 특성 분석장치 KR1020130057606 2013-05-22 KR1020140137124A 2014-12-02 김태연; 박진하; 김충일
본 발명은 전동 무인기의 추진부 특성 분석장치에 관한 것으로, 브러시리스 직류모터와 프로펠러로 구성된 추진부가 동작함에 따라 발생하는 추력과 회전속도, 소비전류를 동시에 측정하고, 추력 대 회전속도, 추력 대 소비전류, 회전속도 대 소비전류 관계를 상기 측정된 데이터 집합으로부터 유도하고 도시함으로써 결과적으로 추진부를 구성하는 브러시리스 직류모터와 프로펠러 조합의 효율성과 전동 무인기 설계의 정확성을 높일 수 있도록 한 것으로, 브러시리스 직류모터로 이루어진 추진부 및 상기 추진부의 추력을 측정하기 위한 로드 셀이 부착된 기구부(100)와; 상기 로드 셀로부터 무게를 측정하고 상기 브러시리스 직류모터를 구동하며 상기 브러시리스 직류모터의 회전속도와 소비전류를 측정하기 위한 전자부(200)와; 상기 전자부(20)에서 측정된 데이터 집합으로부터 추력 대 회전속도, 추력 대 소비전류, 회전속도 대 소비전류 관계를 포함하는 추진부 특성을 유도하기 위한 분석컴퓨터(300);를 포함하여 이루어진다.
31 Ultralight aircraft US15041424 2016-02-11 US10093427B2 2018-10-09 Simon Burns
An aircraft which has a supporting structure which has at least one fuselage, a wing structure and at least one drive apparatus. The drive apparatus has at least one propeller and a drive motor. The aircraft has at least one energy store for providing energy for operation of the drive apparatus. The at least one drive apparatus and the at least one energy store are mechanically connected to the supporting structure and/or the wing structure of the aircraft by a securing device.
32 Pre-flight self test for unmanned aerial vehicles (UAVs) US15364852 2016-11-30 US10023326B2 2018-07-17 Charles Calvin Byers; Gonzalo Salgueiro
In one embodiment, a controller instructs an unmanned aerial vehicle (UAV) docked to a landing perch to perform a pre-flight test operation of a pre-flight test routine. The controller receives sensor data associated with the pre-flight test operation from one or more force sensors of the landing perch, in response to the UAV performing the pre-flight test operation. The controller determines whether the sensor data associated with the pre-flight test operation is within an acceptable range. The controller causes the UAV to launch from the landing perch based in part on a determination that UAV has passed the pre-flight test routine.
33 Unmanned device utilization methods and systems US13551287 2012-07-17 US10019000B2 2018-07-10 Royce A. Levien; Richard T. Lord; Robert W. Lord; Mark A. Malamud; John D. Rinaldo, Jr.; Lowell L. Wood, Jr.
Structures and protocols are presented for configuring an unmanned aerial device to perform a task, alone or in combination with other entities, or for using data resulting from such a configuration or performance.
34 Systems and methods for updating non-networked autonomous devices US15255577 2016-09-02 US10002468B2 2018-06-19 Darren Hamilton
Various arrangements for servicing autonomous devices via satellite-based communication links are detailed herein. A satellite transponder stream of data may be monitored via a tuner for an identifier indicative of an autonomous device. An update linked with the identifier may be acquired from the satellite-transmitted transponder stream of data. The acquired update may be stored at least until the autonomous device communicatively pairs with the network-independent maintenance device. The autonomous device may be communicatively paired with the system or device that received the satellite-broadcast update. In response to having acquired the update linked with the identifier from the transponder stream of data and the autonomous device being communicatively paired with the system or device, the acquired update may be transmitted to the autonomous device.
35 SYSTEMS AND METHODS FOR UPDATING NON-NETWORKED AUTONOMOUS DEVICES US15255577 2016-09-02 US20180068494A1 2018-03-08 Darren Hamilton
Various arrangements for servicing autonomous devices via satellite-based communication links are detailed herein. A satellite transponder stream of data may be monitored via a tuner for an identifier indicative of an autonomous device. An update linked with the identifier may be acquired from the satellite-transmitted transponder stream of data. The acquired update may be stored at least until the autonomous device communicatively pairs with the network-independent maintenance device. The autonomous device may be communicatively paired with the system or device that received the satellite-broadcast update. In response to having acquired the update linked with the identifier from the transponder stream of data and the autonomous device being communicatively paired with the system or device, the acquired update may be transmitted to the autonomous device.
36 ANTENNA HAVING INCREASED SIDE-LOBE SUPPRESSION AND IMPROVED SIDE-LOBE LEVEL US15240980 2016-08-18 US20180054004A1 2018-02-22 Tom Driscoll; John Desmond Hunt; Nathan Ingle Landy; Milton Perque; Charles A. Renneberg; Ioannis Tzanidis; Robert Tilman Worl; Felix D. Yuen
An embodiment of an antenna includes first and second transmission lines, first antenna elements, and second antenna elements. The first transmission line is configured to guide a first signal such that the first signal has a characteristic of a first value, and the second transmission line is configured to guide a second signal such that the second signal has the same characteristic but of a second value that is different than the first value. The first antenna elements are each disposed adjacent to the first transmission line and are each configured to radiate the first signal in response to a respective first control signal, and the second antenna elements are each disposed adjacent to the second transmission line and are each configured to radiate the second signal in response to a respective second control signal. Such an antenna can have better main-beam and side-lobe characteristics, and a better SIR, than prior antennas.
37 INTEGRATED CONTROL/COMMAND MODULE FOR A FLYING DRONE US15672264 2017-08-08 US20180039272A1 2018-02-08 Henri SEYDOUX; Frédéric PIRAT; Arnaud VAN DEN BOSSCHE
A module for a drone that integrates an electronic circuit and one or more sensors for the attitude, altitude, speed, orientation and/or position of the drone in the same one-piece housing. The module also integrates an electronic power circuit that receives set command values prepared by the processor of the electronic circuit on the basis of the data provided by the integrated sensors and provides, as an output, corresponding signals for directly supplying current or voltage to the propulsion means of the drone and to the control surfaces.
38 Generating Crowd-Sourced Navigation Data US15228034 2016-08-04 US20180038695A1 2018-02-08 Suresh Kumar Bitra; Meghna Agrawal
Various embodiments include methods and a server implementing the methods for generating crowd-sourced navigation data. The methods may include receiving, by a server, location data from a plurality of wireless communication devices, and generating, by the server, topological map data based on the location data received from the plurality of wireless communication devices. The location data received from the plurality of wireless communication devices may include an altitude, a latitude, and a longitude, and at least one of a medium access control address, a time stamp, a round trip time, a received signal strength indicator value, a reference signal received power value, a reference signal receive quality value, and a service set identifier. Methods may further include receiving location data from an unmanned aerial vehicle (UAV), generating navigation data relevant to the UAV using the generated topological map data, and transmitting the navigation data to the UAV.
39 Gimbaled Universal Drone Controller US15219116 2016-07-25 US20180024570A1 2018-01-25 Donald Hutson
Various embodiments are disclosed of a device for use on an unmanned aerial vehicle (drone) including two or more gimbals, a gimbal processor, an inertial measurement unit, and a communication connection. The two or more gimbals are pivotally coupled to rotate orthogonally relative to each other. An inner gimbal of the two or more gimbals may support an inner platform for receiving components thereon. An outer gimbal of the two or more gimbals may be pivotally coupled to the drone. The gimbal processor is mounted on the inner platform, wherein the gimbal processor is configured to control pivotal movement of the two or more gimbals. The inertial measurement unit may be fixed relative to the inner platform and coupled to the gimbal processor. The communication connection may be coupled to the gimbal processor and configured to exchange signals with the drone for controlling operations.
40 Magnetic End Effector US15691521 2017-08-30 US20170366051A1 2017-12-21 Eric HOLLAND; Michael George SLEATOR
A magnetic end effector utilizing a switchable Halbach array includes a pair of opposing members that can move towards and away from each other. The switchable Halbach arrays are located on or near the inner surface of the opposing members. A mechanical switching system is used to control the switchable Halbach arrays by moving one or more magnets that make up the switchable Halbach arrays. When manipulated in a certain way, the switchable Halbach arrays cause the opposing members to move towards each other, and when manipulate in a different manner, cause the opposing members to move away from each other.
QQ群二维码
意见反馈