序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
101 Lenticular airship US12957989 2010-12-01 US08109462B2 2012-02-07 Pierre Balaskovic
An airship may include a hull substantially shaped as an oblate spheroid, one or more frame members defining a support structure, wherein the support structure forms at least a partial support for the hull, at least one horizontal stabilizing member operably coupled to a lower surface of the airship, and at least one horizontal stabilizing member having a first end and a second end. The at least one horizontal stabilizing member may define an anhedral configuration. The airship may also include a vertical stabilizing member having a first end pivotally coupled to the airship and a second end oriented to remain below an upper surface of the airship. The vertical stabilizing member may be configured to pivot within a vertical plane, and the first end of the vertical stabilizing member and the first end of the at least one horizontal stabilizing member may be operably coupled to one another.
102 LENTICULAR AIRSHIP US12957989 2010-12-01 US20110163200A1 2011-07-07 Pierre Balaskovic
An airship may include a hull substantially shaped as an oblate spheroid, one or more frame members defining a support structure, wherein the support structure forms at least a partial support for the hull, at least one horizontal stabilizing member operably coupled to a lower surface of the airship, and at least one horizontal stabilizing member having a first end and a second end. The at least one horizontal stabilizing member may define an anhedral configuration. The airship may also include a vertical stabilizing member having a first end pivotally coupled to the airship and a second end oriented to remain below an upper surface of the airship. The vertical stabilizing member may be configured to pivot within a vertical plane, and the first end of the vertical stabilizing member and the first end of the at least one horizontal stabilizing member may be operably coupled to one another.
103 Flying-machine. US21269118 1918-01-19 US1299287A 1919-04-01 BARTO JOHN
104 Aeroplane. US20296517 1917-11-20 US1295970A 1919-03-04 CUMBLER MELVIN BENT
105 Aeroplane-plane. US24078318 1918-06-19 US1288318A 1918-12-17 WASHINGTON ELWOOD
106 Aeroplane. US9301416 1916-04-22 US1196493A 1916-08-29 TEFFT CLINTON A
107 Flying-machine. US1911601278 1911-01-07 US1056772A 1913-03-25 BELL FRANK M
108 Flying-machine. US1911647791 1911-09-05 US1052803A 1913-02-11 ORBESSAN FERNAND D
109 Combined aeroplane and dirigible balloon. US1911610674 1911-02-25 US1019579A 1912-03-05 ZELLS WALTER EDWARD
110 Aeroplane. US1911627450 1911-05-16 US1012559A 1911-12-19 KALABA MORRIS
111 Airship. US1911640067 1911-07-24 US1005988A 1911-10-17 MARIS JOSEPH G
112 Flying-machine. US1909487008 1909-03-31 US1005381A 1911-10-10 WEBER SAMUEL
113 Airship. US1910543577 1910-02-12 US995033A 1911-06-13 RALLS EARL M
114 Combined aeroplane and motor-boat. US1910590952 1910-11-05 US990865A 1911-05-02 HARZMEIER CHARLES
115 BATTERY MANAGEMENT SYSTEM EP14908164.8 2014-12-17 EP3138172B1 2018-09-19 ZHAO, Tao; ZHAN, Juncheng; LIU, Yuancai; WANG, Lei; WANG, Wentao
Systems, methods, and devices of managing a battery assembly used to power an object are provided to discharge a battery assembly for a safe and long-term storage. A controlled self-discharge of the battery assembly may be initiated when the power to the object is turned off for a certain length of time or the battery assembly is not in use for a threshold length of time. The controlled self-discharge may be terminated if the battery assembly reaches a threshold voltage value or the battery is in use again during the self-discharge.
116 MODULE INTÉGRÉ DE CONTRÔLE/COMMANDE POUR DRONE VOLANT EP17185061.3 2017-08-07 EP3282335A1 2018-02-14 La désignation de l'inventeur n'a pas encore été déposée

Le module intègre dans un même boitier monobloc (48) un circuit électronique (100) et une pluralité de capteurs d'attitude, d'altitude, de vitesse, d'orientation et/ou de position du drone (104-116). Il intègre également un circuit électronique de puissance (200) recevant des consignes de commande élaborées par le processeur du circuit électronique en fonction des données délivrées par les capteurs intégrés, et délivrant en sortie des signaux correspondants pour l'alimentation directe en courant ou en tension des moyens propulseurs du drone et des gouvernes.

117 ROUTE PLANNING FOR UNMANNED AERIAL VEHICLES EP16769780.4 2016-03-25 EP3274255A1 2018-01-31 HINKLE, Christopher; RAPTOPOULOS, Andreas; LARSEN, Kendall; BARUCHIN, Ido
A system and process for dynamically determining a route for an unmanned aerial vehicle (UAV) is provided. In one example, at a computer system including one or more processors and memory, the process includes receiving a route request, the route request including an origin location and destination location for a UAV, receiving geospatial information associated with the origin location and the destination location, the geospatial information comprising at least one of physical obstacles and no-fly zones, determining a route of the UAV from the origin location to the destination location based at least in part on the geo-spatial information, and causing the route to be communicated to the UAV.
118 DRONE COMPRENANT DES AILES PORTANTES EP17176713.0 2017-06-19 EP3260945A1 2017-12-27 MARI MARI, Marc; LAVAGEN, Gauthier; BENATAR, Yoni

L'invention concerne un procédé de contrôle dynamique d'attitude d'un drone à voilure tournante comprenant un corps de drone (12) comprenant une carte électronique contrôlant le pilotage du drone, quatre bras de liaison (16), chaque bras comprenant fixé solidairement un bloc propulseur (14). Les bras de liaison (16) forment des ailes portantes. Le drone vole en utilisant la portance des ailes, l'attitude du drone est contrôlée par l'envoi de commandes différenciées à un ou plusieurs desdits blocs propulseurs de manière à produire une rotation du drone autour de l'axe de roulis et/ou de tangage et/ou de lacet du drone depuis une position angulaire courante à une position angulaire finale, ces axes étant définis dans le repère du drone. L'invention concerne également un drone à voilure tournante (10) apte à mettre en oeuvre le procédé de contrôle dynamique.

119 METHOD OF TESTING WIND-TURBINE RECEPTOR EP17152148.7 2017-01-19 EP3211226A1 2017-08-30 Matsushita, Takatoshi; Ota, Keisuke; Hasegawa, Osamu; Imaoka, Kengo; Fukami, Koji

A method of testing a receptor of a wind turbine includes a step of moving an unmanned aerial vehicle (UAV) close to the receptor of a wind turbine blade mounted to a hub of the wind turbine, and performing an electric continuity test on the receptor.

120 ROUTE PLANNING EP15738961.0 2015-06-26 EP3161575A1 2017-05-03 THOMAS, Peter Norman
Disclosed is a method and apparatus for determining a route for a vehicle (2). The method comprises generating, by a processor (12), a grid (16) by specifying a start node (18), specifying one or more movement operations performable by the vehicle (2), and iteratively adding edges and further nodes (20-24) to the grid (16), each edge corresponding to a respective movement operation and each further node corresponding to a location for the vehicle (2). The one or more processors (12) then select a path through the grid (16) from a first node of the grid to a second node of the grid. The first node corresponds to a first location (A) for the vehicle (2) and the second node corresponds to a second location (B) for the vehicle (2). Thus, a route for the vehicle (2) from the first location (A) to the second location (B) is determined.
QQ群二维码
意见反馈