序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
61 Process of making low loss visible-IR transmitting glass-ceramic spinel composites US12687194 2010-01-14 US08266924B2 2012-09-18 Shyam S. Bayya; Jasbinder S. Sanghera; Guillermo R. Villalobos; Geoff Chin; Ishwar D. Aggarwal
This invention pertains to a process of bonding a magnesium aluminate spinel article or articles and a germanate glass article or articles including the step of heating them together above the softening temperature of the glass.
62 Low loss visible-IR transmitting glass-aluminum oxynitride composites and process US13046971 2011-03-14 US08221887B2 2012-07-17 Shyam S. Bayya; Jasbinder S. Sanghera; Guillermo Villalobos; Geoffrey Chin; Ishwar D. Aggarwal
This invention pertains to a composite of AlON and a germanate glass, and to a process for bonding AlON to the glass. The composite includes AlON and glass bonded together and having transmission in the visible and mid-infrared wavelength region. The process includes the step of heating them together above the softening temperature of the glass, the composite having excellent, i.e., typically in excess of about 60%, transmission in the 0.4-5 wavelength region.
63 POLYCRYSTALLINE DIAMOND COMPACT INCLUDING A SUBSTRATE HAVING A RAISED INTERFACIAL SURFACE BONDED TO A POLYCRYSTALLINE DIAMOND TABLE, AND APPLICATIONS THEREFOR US13037548 2011-03-01 US20120012401A1 2012-01-19 Jair J. Gonzalez; Neil D. Haddock
In various embodiments, a polycrystalline diamond compact (“PDC”) comprises a substrate including an interfacial surface having a raised region. In an embodiment, a PDC comprises a substrate including an interfacial surface having a generally cylindrical raised region and a peripheral region extending about the generally cylindrical raised region. The generally cylindrical raised region extends to a height above the peripheral region of about 450 μm or less. The PDC includes a PCD table bonded to the interfacial surface of the substrate. The PCD table includes an upper surface and at least one peripheral surface, and includes a plurality of bonded diamond grains defining interstitial regions. At least a portion of the interstitial regions includes a metallic constituent therein. In another embodiment, instead of employing a generally cylindrical raised region, the interfacial surface may include a plurality of raised arms extending above the face. Each raised arm extends radially and circumferentially.
64 Process of Making Low Loss Visible - IR Transmitting Glass - Ceramic Spinel Composites US12687194 2010-01-14 US20100126219A1 2010-05-27 Shyam S. Bayya; Jasbinder S. Sanghera; Guillermo Villalobos; Geoffrey Chin; Ishwar D. Aggarwal
This invention pertains to a process of bonding a magnesium aluminate spinel article or articles and a germanate glass article or articles including the step of heating them together above the softening temperature of the glass.
65 CERAMIC SHEET AND PRODUCING METHOD THEREOF US12266166 2008-11-06 US20090117328A1 2009-05-07 Hideharu Kawai; Toru Matsuzaki
A ceramic sheet has at least one ceramic layer. The at least one ceramic layer includes a plurality of ceramic pieces, at least a part of the plurality of ceramic pieces is formed by cracking a sintered ceramic plate, which at least partially has a flat part, at the flat part of the sintered ceramic plate.
66 Silicon nitride circuit board US970811 1997-11-14 US6040039A 2000-03-21 Kazuo Ikeda; Hiroshi Komorita; Yoshitoshi Sato; Michiyasu Komatsu; Nobuyuki Mizunoya
This invention provides a silicon nitride circuit board in which a metal circuit plate is bonded to a high thermal conductive silicon nitride substrate having a thermal conductivity of not less than 60 W/m K, wherein a thickness D.sub.S of the high thermal conductive silicon nitride substrate and a thickness D.sub.M of the metal circuit plate satisfy a relational formula D.sub.S .ltoreq.2D.sub.M. The silicon nitride circuit board is characterized in that, when a load acts on the central portion of the circuit board which is held at a support interval of 50 mm, a maximum deflection is not less than 0.6 mm until the silicon nitride substrate is broken. The silicon nitride circuit board is characterized in that, when an anti-breaking test is performed to the circuit board which is held at a support interval of 50 mm, an anti-breaking strength is not less than 500 MPa. The metal circuit plate or a circuit layer are integrally bonded on the silicon nitride substrate by a direct bonding method, an active metal brazing method, or an metalize method. According to the silicon nitride circuit board with the above arrangement, high thermal conductivity and excellent heat radiation characteristics can be obtained, and heat cycle resistance characteristics can be considerably improved.
67 Silicon nitride circuit board US970813 1997-11-14 US5998000A 1999-12-07 Kazuo Ikeda; Hiroshi Komorita; Yoshitoshi Sato; Michiyasu Komatsu; Nobuyuki Mizunoya
This invention provides a silicon nitride circuit board in which a metal circuit plate is bonded to a high thermal conductive silicon nitride substrate having a thermal conductivity of not less than 60 W/m K, wherein a thickness D.sub.s of the high thermal conductive silicon nitride substrate and a thickness D.sub.M of the metal circuit plate satisfy a relational formula D.sub.s .ltoreq.2D.sub.M. The silicon nitride circuit board is characterized in that, when a load acts on the central portion of the circuit board which is held at a support interval of 50 mm, a maximum deflection is not less than 0.6 mm until the silicon nitride substrate is broken. The silicon nitride circuit board is characterized in that, when an anti-breaking test is performed to the circuit board which is held at a support interval of 50 mm, an anti-breaking strength is not less than 500 MPa. The metal circuit plate or a circuit layer are integrally bonded on the silicon nitride substrate by a direct bonding method, an active metal brazing method, or an metalize method. According to the silicon nitride circuit board with the above arrangement, high thermal conductivity and excellent heat radiation characteristics can be obtained, and heat cycle resistance characteristics can be considerably improved.
68 Metal ceramic substrate US835049 1997-03-27 US5981036A 1999-11-09 Jurgen Schulz-Harder; Peter H. Maier
An arched metal-ceramic substrate with one ceramic layer and with a metal coating provided on the top and bottom of the ceramic layer which is curved around at least one axis parallel to the plane of the substrate such that it forms a convexly curved surface on the bottom. The thickness of the metal coatings on the top and bottom of the arched ceramic layer is the same.
69 Silicon nitride circuit board US666467 1996-09-04 US5928768A 1999-07-27 Kazuo Ikeda; Hiroshi Komorita; Yoshitoshi Sato; Michiyasu Komatsu; Nobuyuki Mizunoya
This invention provides a silicon nitride circuit board in which a metal circuit plate is bonded to a high thermal conductive silicon nitride substrate having a thermal conductivity of not less than 60 W/m K, wherein a thickness D.sub.s of the high thermal conductive silicon nitride substrate and a thickness D.sub.M of the metal circuit plate satisfy a relational formula D.sub.s .ltoreq.2D.sub.M. The silicon nitride circuit board is characterized in that, when a load acts on the central portion of the circuit board which is held at a support interval of 50 mm, a maximum deflection is not less than 0.6 mm until the silicon nitride substrate is broken. The silicon nitride circuit board is characterized in that, when an anti-breaking test is performed to the circuit board which is held at a support interval of 50 mm, an anti-breaking strength is not less than 500 MPa. The metal circuit plate or a circuit layer are integrally bonded on the silicon nitride substrate by a direct bonding method, an active metal brazing method, or an metalize method. According to the silicon nitride circuit board with the above arrangement, high thermal conductivity and excellent heat radiation characteristics can be obtained, and heat cycle resistance characteristics can be considerably improved.
70 Field-assisted sealing US745766 1996-11-08 US5747169A 1998-05-05 Zhong Hui-Hugh Fan; Aaron William Levine; Satyam Choudary Cherukuri; Steven A. Lipp
The invention provides a method of bonding a glass substrate and a nonconductive substrate comprising the steps of: (a) contacting a surface of the nonconductive substrate which is coated with a field-assist bonding material with a conforming surface of the glass substrate; and (b) applying sufficient heat to the two substrates and sufficient voltage across the two substrates to bond the two substrates together.
71 Ceramic veneer composite structure US327698 1994-10-24 US5437898A 1995-08-01 John S. Forry; Thomas C. Simonton; William C. Welch; Jerome D. Wisnosky
A print and fusion process is used to fabricate ceramic elements that are subsequently utilized to generate a composite including a fibrous mat and discrete ceramic elements. The composite may include a substrate and a flexible or rigid non-ceramic composition between the discrete ceramic elements and/or the substrate. A ceramic ink preferably partially penetrates the fibrous mat to form the discrete elements or a continuous layer.
72 Laminated tile product, method for producing the same and method for installing the same US424193 1989-10-19 US5208086A 1993-05-04 Charles R. Owens
A method for producing a laminated tile is disclosed which comprises providing a sheet of natural stone having opposed first and second major surfaces and providing a plurality of ceramic substrates, each having opposed first and second major surfaces. An adhesive material is provided on at least one of the first and second major surface of the sheet of natural stone and the first major surface of each of the plurality of ceramic substrates. The plurality of ceramic substrates and the sheet of natural stone are assembled to form a laminated assembly such that the first surface of each of a portion of the plurality of ceramic substrates faces the first major surface of the sheet of natural stone with adhesive material therebetween, and the remainder of the ceramic substrates face the second major surface of the sheet of natural stone with adhesive material therebetween. The sheet of natural stone having the ceramic substrates adhered thereto is cut along a plane substantially parallel to the first and second major surfaces of the sheet of natural stone to form two laminates, each having an exposed layer of natural stone and ceramic substrates adhered thereto. Then the exposed layer of natural stone of each of the two laminates is polished. The laminated tiles produced by the method are also disclosed.
73 Joint assembly for ceramics and method for making same US3534991D 1968-11-01 US3534991A 1970-10-20 CALKINS NOEL C
74 Hermetically sealed semiconductor device US20690662 1962-07-02 US3381080A 1968-04-30 STELMAK JOHN P
75 蝋付け組成物及び関連装置 JP2013107545 2013-05-22 JP6266233B2 2018-01-24 ラガヴェンドラ・ラオ・アダラプラプ; サンディープ・クマール; モハメド・ラーメイン
76 蝋付け組成物及び関連装置 JP2013107544 2013-05-22 JP6266232B2 2018-01-24 ラガヴェンドラ・ラオ・アダラプラプ; サンディープ・クマール; モハメド・ラーメイン
77 セラミックス回路基板の製造方法及びセラミックス回路基板 JP2014551478 2013-08-15 JPWO2015022748A1 2017-03-02 博幸 手島; 寿之 今村; 渡辺  純一
セラミックス基板に、ろう材粉末と有機バインダとを含むろう材領域を形成するろう材領域形成工程と、前記セラミックス基板に、前記形成したろう材領域を介して金属基板を載置し、前記セラミックス基板、前記ろう材領域、及び前記金属基板を加熱し、前記セラミックス基板と前記金属基板とを、前記ろう材からなるろう材層を介して接合して接合体を形成する接合工程と、前記接合体を、次亜塩素酸塩を含む薬剤で洗浄する洗浄工程とを有することを特徴とするセラミックス回路基板の製造方法。
78 カーボンセラミックブレーキディスク及びそれを製造する方法 JP2016007104 2016-01-18 JP2016211725A 2016-12-15 イム,ドン ウォン; チョイ,ヨン ホ; ユ,ガン; イ,ナム チョル
【課題】カーボンセラミックブレーキディスクを製造する過程において摩擦層と支持部が分離されることを防ぐことのできるカーボンセラミックブレーキディスク及びそれを製造する方法を提供する。
【解決手段】冷却チャネル12が中心部に形成された支持部10、及び前記支持部10の上下面に接着層なしで直接結合され、前記支持部と異なる成分を有する摩擦層20、を含み、前記支持部は、前記冷却チャネルを中心に前記摩擦層に向かっていくほど、段階的に前記摩擦層の成分と類似した成分を有する複数個の層で構成されたことを特徴とする。また、前記支持部10は、前記摩擦層と接着層なしに直接結合された第1支持層10Aと、前記第1支持層よりSiC含量の少ない第2支持層10Bとで構成され、前記第1支持層のSiC含量は、前記摩擦層のSiC含量と類似していることを特徴とする。
【選択図】図2
79 複合プレートおよびその製造方法 JP2014522434 2013-06-26 JP6020564B2 2016-11-02 山下 勲; 今井 紘平; 山内 正一; 津久間 孝次
80 無機繊維結合型セラミックスの製造方法 JP2014507775 2013-03-21 JPWO2013146514A1 2015-12-14 松永 賢二; 賢二 松永; 梶井 紳二; 紳二 梶井; 翔平 水津; 努 児玉
欠陥が少なく、端部と中央部で同等の組織構造及び学的特性を有する無機繊維結合型セラミックスを歩留まりよく製造することができ、大型化することも可能な無機繊維結合型セラミックスの製造方法を提供する。熱分解開始温度が1900℃以下の無機繊維からなる無機繊維部と、該無機繊維どうしを結合するための無機物質からなる表面層とにより構成される被覆無機繊維の成形体を積層した積層物を、セラミックス粉末で囲むようにカーボンダイスにセットし、不活性ガス雰囲気中、1000〜1800℃の温度及び5〜50MPaの圧力でプレスする第一プレス工程、及び該第一プレス工程で得られたセラミックス被覆積層物を、不活性ガス雰囲気中、1600〜1900℃の温度でかつ前記第一プレス工程よりも高い温度及び5〜100MPaの圧力でプレスする第二プレス工程、を備えることを特徴とする無機繊維結合型セラミックスの製造方法に関する。
QQ群二维码
意见反馈