序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 多层陶瓷基板及其制造方法 CN201410815104.8 2009-04-21 CN104589738A 2015-05-06 饭田裕一
使具有空腔的多层陶瓷基板薄型化时,因为规定空腔的底面的底壁部薄型化,所以存在该底壁部容易破损的问题。多层陶瓷基板(1)的规定空腔(3)的底壁部(4)形成高热膨胀系数层(6)被第一低热膨胀系数层(7)和第二低热膨胀系数层(8)夹住的层叠结构。根据这种构成,在烧成后的冷却过程中,在低热膨胀系数层(7、8)中会产生压缩应,其结果是,可提高底壁部(4)处的机械强度。
2 用于发光装置的陶瓷体 CN201380019190.5 2013-03-04 CN104508082A 2015-04-08 张彬; 宮川浩明; 中村年孝
本文公开的一些实施方案包括包含第一区和第二区的陶瓷体。第一区可包含主体材料及有效产生发光的第一浓度的掺杂剂。第二区可包含主体材料及第二浓度的掺杂剂。在一些实施方案中,第一区的平均粒径大于第二区的平均粒径。在一些实施方案中,陶瓷体可呈现优异的内部量子效率(IQE)。本文公开的一些实施方案包括本文公开的陶瓷体的制备方法与使用方法。此外,本文公开的一些实施方案包括照明设备,其包含本文公开的陶瓷体。
3 多层陶瓷基板、其制造方法及其翘曲抑制方法 CN200880013670.X 2008-12-08 CN101668620B 2013-11-06 斋藤善史
欲基于所谓无收缩工艺通过在被收缩抑制层夹住的状态下进行烧成来制造包括陶瓷层叠体的多层陶瓷基板时,受到分别形成于陶瓷层叠体的第一及第二主面上的第一及第二表面导体膜的影响,除去了收缩抑制层后的多层陶瓷基板有时会产生翘曲。在烧成工序后,从复合层叠体除去收缩抑制层时,减少在烧成工序中沿着陶瓷生坯层与收缩抑制层的界面生成的第一及第二反应层(22及23)中的至少一层的厚度,藉此使第一及第二反应层(22及23)各自的厚度互不相同,从而调整由反应层(22及23)施加的压缩应,抑制多层陶瓷基板(11)的翘曲。
4 多层陶瓷基板、其制造方法及其翘曲抑制方法 CN200880013670.X 2008-12-08 CN101668620A 2010-03-10 斋藤善史
欲基于所谓无收缩工艺通过在被收缩抑制层夹住的状态下进行烧成来制造包括陶瓷层叠体的多层陶瓷基板时,受到分别形成于陶瓷层叠体的第一及第二主面上的第一及第二表面导体膜的影响,除去了收缩抑制层后的多层陶瓷基板有时会产生翘曲。在烧成工序后,从复合层叠体除去收缩抑制层时,减少在烧成工序中沿着陶瓷生坯层与收缩抑制层的界面生成的第一及第二反应层(22及23)中的至少一层的厚度,藉此使第一及第二反应层(22及23)各自的厚度互不相同,从而调整由反应层(22及23)施加的压缩应,抑制多层陶瓷基板(11)的翘曲。
5 电子元器件及其制造方法 CN200580040741.1 2005-11-28 CN101065842A 2007-10-31 西泽吉彦; 池田哲也
专利文献1所述,若随着混合IC等电子元器件进一步降低高度,而减薄屏蔽壳,则由于屏蔽壳是金属制的,因此难以高精度地对它进行弯折等加工,另外由于吸取时作用的外,使屏蔽壳的变形显著。在专利文献2所述的技术中,由于陶瓷制的盖罩形成为箱型形状,因此若为了电子元器件降低高度,而减薄盖罩的陶瓷厚度,则例如图18(a)、(b)所示,顶部2A产生弯曲。本发明的电子元器件10包括;具有布线图形14的布线基板11;安装在布线基板11的上表面的表面安装元器件12;以及覆盖布线基板11的盖罩13,盖罩13包括;利用平板状的陶瓷构件形成的顶部13A;以及利用具有与表面安装元器件12相同程度的高度的柱状构件而形成的脚部13B。
6 热压制陶瓷扭曲控制 CN200380110766.5 2003-12-05 CN1878670A 2006-12-13 戈文达拉简·纳塔拉简; 拉斯奇德·J·贝扎马
一种通过在烧结之前将非致密化结构(40)放置在未加工陶瓷层压板(100)中控制热压制烧结的多层陶瓷层压板(100)的烧结后扭曲的方法。将一个或多个非致密化结构(40)放置在一个或多个陶瓷印刷电路基板(10)上,然后堆叠和层压该一个或多个陶瓷印刷电路基板以形成未加工陶瓷层压板(100)。然后烧结该层压板,并且该非致密化结构(40)将控制热压制的多层陶瓷基片的尺寸。通过在烧结之前将非致密化结构(40)放置在各个产品合并之间的切口区域(30)中,该方法可以用来控制作为单个或者合并基片制造的MLC基片的烧结后尺寸。
7 热压制陶瓷扭曲控制 CN200380110766.5 2003-12-05 CN1878670B 2012-05-30 戈文达拉简·纳塔拉简; 拉斯奇德·J·贝扎马
一种通过在烧结之前将非致密化结构(40)放置在未加工陶瓷层压板(100)中控制热压制烧结的多层陶瓷层压板(100)的烧结后扭曲的方法。将一个或多个非致密化结构(40)放置在一个或多个陶瓷印刷电路基板(10)上,然后堆叠和层压该一个或多个陶瓷印刷电路基板以形成未加工陶瓷层压板(100)。然后烧结该层压板,并且该非致密化结构(40)将控制热压制的多层陶瓷基片的尺寸。通过在烧结之前将非致密化结构(40)放置在各个产品合并之间的切口区域(30)中,该方法可以用来控制作为单个或者合并基片制造的MLC基片的烧结后尺寸。
8 多层陶瓷基板及其制造方法 CN200980117809.X 2009-04-21 CN102027813A 2011-04-20 饭田裕一
使具有空腔的多层陶瓷基板薄型化时,因为规定空腔的底面的底壁部薄型化,所以存在该底壁部容易破损的问题。多层陶瓷基板(1)的规定空腔(3)的底壁部(4)形成高热膨胀系数层(6)被第一低热膨胀系数层(7)和第二低热膨胀系数层(8)夹住的层叠结构。根据这种构成,在烧成后的冷却过程中,在低热膨胀系数层(7、8)中会产生压缩应,其结果是,可提高底壁部(4)处的机械强度。
9 层叠型陶瓷电子元器件及其制造方法 CN201010249806.6 2010-08-04 CN101998779A 2011-03-30 近川修; 池田哲也
在多层陶瓷基板的表层部形成有包含Ag的导体图案、该Ag在烧成时扩散的情况下,表面上的导体图案之间容易形成Ag的迁移路径,可靠性下降。为获得将要被烧成的未烧成的陶瓷层叠体(12),将第一陶瓷生坯层(1a)配置于表层部,将第二陶瓷生坯层(2a)配置于内层部,然后进行层叠,所述第一陶瓷生坯层(1a)具有包含Ag的第一导体图案(5)、(7)、(9),并且含有包含第一玻璃成分的第一陶瓷材料,所述第二陶瓷生坯层(2a)具有包含Ag作为主要成分的第二导体图案(6)、(8),并且含有包含第二玻璃成分的第二陶瓷材料,且具有与第一陶瓷生坯层(1a)相比在烧成时Ag更容易扩散的组成。将该未烧结陶瓷层叠体(12)烧成,获得多层陶瓷基板(14)。
10 电子元器件及其制造方法 CN200580040741.1 2005-11-28 CN100485910C 2009-05-06 西泽吉彦; 池田哲也
专利文献1所述,若随着混合IC等电子元器件进一步降低高度,而减薄屏蔽壳,则由于屏蔽壳是金属制的,因此难以高精度地对它进行弯折等加工,另外由于吸取时作用的外,使屏蔽壳的变形显著。在专利文献2所述的技术中,由于陶瓷制的盖罩形成为箱型形状,因此若为了电子元器件降低高度,而减薄盖罩的陶瓷厚度,则例如图18(a)、(b)所示,顶部2A产生弯曲。本发明的电子元器件10包括;具有布线图形14的布线基板11;安装在布线基板11的上表面的表面安装元器件12;以及覆盖布线基板11的盖罩13,盖罩13包括;利用平板状的陶瓷构件形成的顶部13A;以及利用具有与表面安装元器件12相同程度的高度的柱状构件而形成的脚部13B。
11 积层陶瓷基板的制造方法 CN200680001419.2 2006-10-31 CN101080960A 2007-11-28 泽田宗之; 胜村英则; 加贺田博司
烧结积层体具有位于第一陶瓷层的表面上的导体,覆盖导体的端部的位于第一陶瓷层的所述表面上的绝缘体,和位于导体和绝缘体上的第二陶瓷层。在第一陶瓷层烧结而第二陶瓷层不烧结的温度下烧成未烧结积层体。烧成积层体后,将第二陶瓷层从积层体除去,从而获得积层陶瓷基板。绝缘体具有10μm以上40μm以下的厚度。通过该方法,可以获得高密度的绝缘体,而可以容易地形成导体。
12 구속용 그린시트 및 이를 이용한 다층 세라믹 기판의 제조방법 KR1020070123036 2007-11-29 KR1020090056060A 2009-06-03 조범준; 이종면
A constraining green sheet and a manufacturing method of a multi-layer ceramic substrate using the same are provided to improve a plastic property by suppressing contraction in x-y direction of ceramic laminate through inorganic powder. A green sheet(10) for binding comprises a first constraint layer(11) and a second constraining layer(12). The first constraint layer is arranged on the lower-part of the ceramic laminated body, and the first constraint layer comprises a first inorganic powder. The first inorganic powder has the particle diameter of 1.0-2.5um, and the second constraining layer is arranged on the first constraint layer. The second constraining layer comprises a second inorganic powder and combustion member, and the combustion member is burnt in the temperature lower than a temperature where the ceramic laminated body is plastic.
13 LAMINATED STRUCTURE AND METHOD OF FORMING SAME EP00986863.9 2000-12-19 EP1255641B1 2010-04-28 DONELSON, Richard; LIN, Theresa
14 METHOD FOR PRODUCING MULTILAYER CERAMIC SUBSTRATE AND COMPOSITE SHEET EP09726051.7 2009-02-19 EP2131637A1 2009-12-09 OTUKA, Yusuke; KISHIDA, Kazuo; TAKADA, Takahiro

To form a high-quality resistor pattern and conductor pattern on an external surface of a multilayer ceramic substrate by an ink jet method.

A composite sheet (11) including a first ceramic green layer (2a) and a shrinkage-retardant layer (10) is formed, and a resistor pattern (4) and a conductor pattern (5) are formed on the first ceramic green layer (2a) of the composite sheet (11) by an ink jet method. Subsequently, a plurality of second ceramic green layers (3a) are stacked with the composite sheet (11) such that the shrinkage-retardant layer (10) of the composite sheet (11) defines the outermost layer, thus forming a multilayer composite (13) including a unfired multilayer ceramic substrate (1a) and the shrinkage-retardant layer (10). Then, the multilayer composite (13) is fired, and the shrinkage-retardant layer (10) is removed to obtain a sintered multilayer ceramic substrate (1).

15 Ceramic thin plate member EP07251700.6 2007-04-23 EP1858106A3 2009-05-06 Ohmori, Makato, c/o NGK Insulators Ltd.; Shimogawa, Natsumi, c/o NGK Insulators Ltd.; Asai, Michihiro c/o NGK Insulators Ltd.; Nanataki, Tsutomu c/o NGK Insulators Ltd.

A thin plate member (10) is a thin plate member that is formed by sintering, contains a ceramic layer, and comprises a thin part having two or more types of layers laminated, each of which is made of a material having a different thermal expansion coefficient, and a thick part that is made by laminating plural layers including at least all of the layers constituting the thin part, and has a thickness (tB) greater than the thickness of the thin part. The thin part has a shape warping in the direction perpendicular to the plane of the thin plate member. By virtue of this configuration, the internal electrical resistance of the thin part can be reduced. Further, the thin plate member can be provided that is difficult to be deformed with respect to the internal stress caused by the difference in thermal expansion coefficient between layers.

16 VERFAHREN ZUR HERSTELLUNG EINES KERAMISCHEN SUBSTRATS UND KERAMISCHES SUBSTRAT EP02769946.1 2002-09-13 EP1425167B1 2008-11-19 HOFFMANN, Christian; AICHHOLZER, Klaus-Dieter
The invention relates to a method for producing a ceramic substrate, comprising the following steps: (a) preparing a base (2) with a stack (2a) of superimposed layers (3), which contain an unsintered ceramic material and a sintering agent, whereby one of said layers (3a) contains an increased proportion of sintering agent compared to an adjacent layer (3) and b) sintering the layer stack (2a). The present invention also relates to a ceramic substrate. The increased proportion of sintering agent permits the mechanical bond between a layer (3a) and the adjacent layer (3) to be improved.
17 HOT PRESSING CERAMIC DISTORTION CONTROL EP03819267.0 2003-12-05 EP1715996A1 2006-11-02 NATARAJAN, Govindarajan; BEZAMA, Raschid, J.
A method to control the post sinter distortion of hot pressing sintered multilayer ceramic laminate (100) by placing a non-densifying structure (40) in the green ceramic laminate (100) prior to sintering. One or more non-densifying structures (40) are placed on one or more ceramic greensheets (10) which are then stacked and laminated to form a green ceramic laminate (100). The laminate is then sintered and the non-densifying structure (40) will control the dimensions of the hot pressed, multilayer ceramic substrate. The method can be used to control post sinter dimensions in MLC substrates manufactured as either singular multi-up substrates by placing the non-densifying structure (40) in the kerf area (30) between the individual product ups prior to sintering.
18 LAMINATED STRUCTURE AND METHOD OF FORMING SAME EP00986863.9 2000-12-19 EP1255641A1 2002-11-13 DONELSON, Richard; LIN, Theresa
A method of alleviating edge curling when laminated structures comprising layers of green material having different shrinkage rates are sintered comprises applying to a face (18) of edges (14) the first layer (10) having the higher shrinkage rate green sinterable material, opposite to the second layer (12) having the lower shrinkage rate green sinterable material, an edge strip (16) of a green sinterable material also having a shrinkage rate lower than the first layer, and then firing the laminated structure. The edge strip may be partly or, advantageously, wholly embedded in the first layer. The sinterable materials of the second layer and edge strip may be the same or similar. The invention is particularly applicable to solid oxide fuel cell sub-structures in which the first layer is the anode layer and the second layer is the electrolyte layer.
19 ELECTRONIC COMPONENT AND FABRICATION METHOD THEREOF EP05809664.5 2005-11-28 EP1818979B1 2012-07-04 NISHIZAWA, Yoshihiko c/o Murata Manufact.Co.,Ltd.; IKEDA, Tetsuya c/o Murata Manufacturing Co., Ltd.
When a shield case is thinned as the profile lowering of electronic components such a hybrid IC is promoted as mentioned in patent document 1, the shield case is difficult to process or bend with high precision because it is made of metal, and, in addition, the deformation of the shield case is made significant by an external force acting at picking up. When the ceramic thickness of a cap is decreased due to the profile lowering of electronic components, undulation occurs at a ceiling unit (2A) as shown in, for example, Figs 18(a), (b) because the ceramic cap is formed in a box shape according to a technique mentioned in patent document 2. An electronic component (10) comprising a wiring board (11) having a wiring pattern (14), a surface-mounted component (12) mounted on the upper surface of the wiring board (11), and a cap (13) covering the wiring board (11), wherein the cap (13) has a ceiling unit (13A) formed of a flat ceramic member, and leg units (13B) formed of columnar members being almost as high as the surface-mounted component (12).
20 HOT PRESSING CERAMIC DISTORTION CONTROL EP03819267.0 2003-12-05 EP1715996B1 2011-06-15 NATARAJAN, Govindarajan; BEZAMA, Raschid, J.
A method to control the post sinter distortion of hot pressing sintered multilayer ceramic laminate (100) by placing a non-densifying structure (40) in the green ceramic laminate (100) prior to sintering. One or more non-densifying structures (40) are placed on one or more ceramic greensheets (10) which are then stacked and laminated to form a green ceramic laminate (100). The laminate is then sintered and the non-densifying structure (40) will control the dimensions of the hot pressed, multilayer ceramic substrate. The method can be used to control post sinter dimensions in MLC substrates manufactured as either singular multi-up substrates by placing the non-densifying structure (40) in the kerf area (30) between the individual product ups prior to sintering.
QQ群二维码
意见反馈