序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 一种纳米铈基稀土复合化物的制备方法 CN201710073042.1 2017-02-10 CN106892400A 2017-06-27 李杏英; 刘志强; 曹洪杨; 雷一锋; 金明亚; 陶进长; 朱薇; 郭秋松; 李伟; 高远; 张魁芳
一种纳米铈基稀土复合化物的制备方法,由以下步骤组成:在总稀土金属离子浓度为0.2~0.4mol/L氯化稀土溶液中,加入防团聚试剂氯化铵;在酸氢铵溶液中,加入表面活性剂;在不断搅拌下,将碳酸氢铵溶液加入到氯化稀土溶液中,得到悬浮液;继续搅拌10~30分钟,静置陈化30~60分钟;过滤碳酸稀土复合物,用纯洗涤,然后用表面处理液处理3~6次;将碳酸稀土复合物于120℃干燥4小时;将碳酸稀土复合物于700~1100℃煅烧4小时,得到纳米铈基稀土复合氧化物。本发明提供一种工艺简单、成本低的纳米铈基稀土复合氧化物的制备方法,降低粉体的团聚程度,获得粒度小、形貌一致、粒径分布窄的纳米粉体材料。
2 具有可控空隙尺寸的自支撑的纳米微粒网络/骨架 CN200980150549.6 2009-12-15 CN102245528A 2011-11-16 G·库玛拉斯瓦米; K·P·沙玛
发明公开了具有500nm至1mm的可控变化的目径、具有0.5至50%的微粒体积分数的纳米微粒的自支撑网络或骨架。该网络包含纳米微粒、能够形成有序结构化的相的表面活性剂和交联剂,其中表面活性剂被洗去以留下自支撑的骨架。本发明还公开了制备自支撑的骨架的方法及其用途。
3 具有可控空隙尺寸的自支撑的纳米微粒网络/骨架 CN200980150549.6 2009-12-15 CN102245528B 2017-10-20 G·库玛拉斯瓦米; K·P·沙玛
发明公开了具有500nm至1mm的可控变化的目径、具有0.5至50%的微粒体积分数的纳米微粒的自支撑网络或骨架。该网络包含纳米微粒、能够形成有序结构化的相的表面活性剂和交联剂,其中表面活性剂被洗去以留下自支撑的骨架。本发明还公开了制备自支撑的骨架的方法及其用途。
4 一种具有筋防腐,疏双重功效保护膜的制备方法 CN201710248819.3 2017-04-17 CN106917087A 2017-07-04 王增梅; 陆文敏
发明提供了一种具有筋防腐,疏双重功效保护膜的制备方法。这种特种膜具备双层结构:首先,采用电化学沉积法在钢筋表面上一层溶胶膜,然后采用气相沉积法在溶胶膜上沉积一层超疏水膜,在低温环境中静置1‑2天,即可获得高效的,集抗Cl‑、SO42‑侵蚀、防腐蚀、疏水多重功效于一体的保护膜。该方法工艺简单,操作简便,成本低廉,效果显著,为钢筋防腐提供了创新新思路。
5 TECHNIQUE FOR THREE-DIMENSIONAL NANOPRINTING US15767967 2016-12-13 US20180297270A1 2018-10-18 Gang-Yu Liu; Jianli Zhao; Logan A. Swartz
The disclosed embodiments provide a system that forms a three-dimensional (3D) nanostructure through 3D printing. During operation, the system performs a 3D printing operation that uses multiple passes of a scanning probe microscope (SPM) tip to deliver an ink to form the 3D nanostructure, wherein the ink includes both a positively charged polyelectrolyte (PE) and a negatively charged PE. While delivering the ink, the SPM tip is loaded with the ink and moved to a target location to deposit the ink. Finally, after the multiple passes are complete, the system cures the 3D nanostructure to remove excess positive or negative charges from the 3D nanostructure.
6 Coated silver nanoparticle composites comprising a sulfonated polyester matrix and methods of making the same US14531937 2014-11-03 US09243141B1 2016-01-26 Valerie M. Farrugia; Alana Desouza; Sandra J. Gardner
A composite structure includes a core particle including a sulfonated polyester matrix and a plurality of silver nanoparticles dispersed throughout the matrix and a shell polymer disposed about the core particle. A method includes heating a sulfonated polyester resin in an organic-free solvent adding a solution of silver (I) ion to the heated resin in water to form a mixture, forming of an emulsion of core particles comprising a sulfonated polyester matrix and a plurality of silver nanoparticles disposed within the sulfonated polyester matrix, and adding a styrene monomer and initiator to the emulsion of composite particles to form a shell polymer disposed about the core particles, thereby forming a composite structure. The composites herein are readily incorporated into various articles.
7 Self Standing Nanoparticle Networks/Scaffolds with Controllable Void Dimensions US13139680 2009-12-15 US20110244003A1 2011-10-06 Guruswamy Kumaraswamy; Kamendra Prakash Sharma
The present invention discloses a self standing network or scaffold of nanoparticles with controllably variable mesh size between 500 nm and 1 mm having particle volume fraction between 0.5 to 50%. The network comprises nanoparticles, a surfactant capable of forming ordered structured phases and a cross linking agent, wherein the surfactant is washed off leaving the self standing scaffold. The invention further discloses the process for preparing the self standing scaffolds and uses thereof.
8 DIRECT SYNTHESIS OF RADIOACTIVE NANOPARTICLES INVOLVING NEUTRONS US15892520 2018-02-09 US20180240561A1 2018-08-23 Carlos Henry Castano Giraldo; Maria Camila Garcia Toro; Brian Michael Mills
A method to synthesize radioactive nanoparticles includes the production of metallic and multimetallic nanoparticles in a single step by providing an aqueous solution of the metal precursor, and irradiating the aqueous solution thereby producing nanoparticles. The obtained nanoparticles include one or more radioactive isotopes of gold, such as 198Au and 199Au as well as radioisotopes of silver when the obtained nanoparticles are bimetallic. The aqueous solution is irradiated in a radiation field that includes neutrons and gamma rays. The radiation field may be provided by a nuclear reactor. The aqueous solution may include silver, and bimetallic nanoparticles may be produced. Duration of the irradiation time is selected to control the particle size distribution of the produced nanoparticles. The bimetallic nanoparticles can include core-shell nanoparticles and alloyed nanoparticles.
9 MANUFACTURING METHOD OF MICRO-NANO STRUCTURE ANTIREFLECTIVE COATING LAYER AND DISPLAY APPARATUS THEREOF US15325448 2016-12-28 US20180143352A1 2018-05-24 Guowei ZHA
A manufacturing method of micro-nano structure antireflective coating layer and a display apparatus thereof are described. The method includes providing a substrate, forming a silicon oxide layer on the substrate, forming a graphene layer with a hexagonal honeycomb lattice on the silicon oxide layer, and forming a bottom surface of the antireflective coating layer in the nucleation points by serving the graphene layer as a growing base layer, wherein a diffusion length and an atomic mass of diffusion atoms of the antireflective coating layer are decreased with time by a gradient growing manner to form a upper surface of the antireflective coating layer.
10 制御可能な空隙寸法を備えた自立型ナノ粒子網状組織/スキャフォルド JP2011541718 2009-12-15 JP5615840B2 2014-10-29 グルスワミー クマラスワミー; カメンドラ プラカス シャルマ
11 SELF STANDING NANOPARTICLE NETWORKS/SCAFFOLDS WITH CONTROLLABLE VOID DIMENSIONS EP09810797.2 2009-12-15 EP2365948A2 2011-09-21 KUMARASWAMY, Guruswamy; SHARMA, Kamendra Prakash
The present invention discloses a self standing network or scaffold of nanoparticles with controllably variable mesh size between 500nm and 1 mm having particle volume fraction between 0.5 to 50%. The network comprises nanoparticles, a surfactant capable of forming ordered structured phases and a cross linking agent, wherein the surfactant is washed off leaving the self standing scaffold. The invention further discloses the process for preparing the self standing scaffolds and uses thereof.
12 HYBRID NANOPARTICLES CONTAINING DENDRONS, METHODS OF PRODUCING SUCH HYBRID NANOPARTICLES, AND USES THEREOF US15580905 2016-06-10 US20180162726A1 2018-06-14 Bertrand DONNIO; Davit JISHKARIANI; Benjamin DIROLL; Lawrence Alan HOUGH; Christopher MURRAY; Matteo CARGNELLO; Ludivine MALASSIS
The present disclosure relates to a hybrid nanoparticle comprising a metallic core and at least one lipophilic dendron attached to the surface of the metallic core, and methods of producing such hybrid nanoparticles. The present disclosure also relates to films containing the hybrid nanoparticles described herein.
13 METHOD FOR PRODUCING SMALL METAL ALLOY NANOPRTICLES US14778480 2014-03-24 US20160288212A1 2016-10-06 Jill Erin Millstone; Christopher Michael Andolina; Andrew Craik Dewar
A method for producing small metal alloy nanoparticles of a first metal and a second metal, comprising: mixing, at room temperature in air, a first aqueous solution of first and second metal nanoparticle precursor species in a first molar ratio of the first metal to the second metal; mixing a separate organic ligand into the first aqueous solution; adding a reducing agent to the first aqueous solution; and aging the first aqueous solution for a first period. The method may further comprise characterizing by photoluminescence or other property the metal alloy nanoparticles from the first aqueous solution and/or from a second aqueous solution of first and second metal nanoparticle precursor species in a second molar ratio of the first metal to the second metal.
14 SELF STANDING NANOPARTICLE NETWORKS/SCAFFOLDS WITH CONTROLLABLE VOID DIMENSIONS US14988945 2016-01-06 US20160115079A1 2016-04-28 Guruswamy Lynn KUMARASWAMY; Kamendra Prakash SHARMA
The present invention discloses a self standing network or scaffold of nanoparticles with controllably variable mesh size between 500 nm and 1 mm having particle volume fraction between 0.5 to 50%. The network comprises nanoparticles, a surfactant capable of forming ordered structured phases and a cross linking agent, wherein the surfactant is washed off leaving the self standing scaffold. The invention further discloses the process for preparing the self standing scaffolds and uses thereof.
15 コーティングされた銀ナノ粒子コンポジット、およびその製造方法 JP2015208622 2015-10-23 JP2016089163A 2016-05-23 ヴァレリー・エム・ファルジア; アラーナ・デソウザ; サンドラ・ジェイ・ガードナー
【課題】マトリックス全体に分散した複数の銀ナノ粒子を含む、コア粒子とコア粒子の周囲に配置されたシェルポリマーとを含むコンポジットの提供。
【解決手段】有機物を含まない溶媒中、スルホン酸化ポリエステル樹脂を加熱し、この加熱した樹脂に、中で銀(I)イオン溶液を加えて混合物を作成し、スルホン酸化ポリエステルマトリックス、及びスルホン酸化ポリエステルマトリックス内に分散した複数の銀ナノ粒子を含むコア粒子のエマルションを作成し、コンポジット粒子のエマルションにスチレンモノマー及び開始剤を加え、コア粒子の周囲に配置されたシェルポリマーを作成し、これによって、コンポジット構造を作成する銀ナノ粒子を含むコア粒子とシェルポリマーとを含むコンポジット構造の製造方法。
【選択図】なし
16 With a controllable pore size freestanding nanoparticle network / scaffold JP2011541718 2009-12-15 JP2012512241A 2012-05-31 グルスワミー クマラスワミー; カメンドラ プラカス シャルマ
本発明は、500nm〜1mmの制御可能な可変性メッシュサイズ、0.5〜50%の粒子体積率を有する、ナノ粒子の自立型網状組織またはスキャフォルドを開示する。 該網状組織は、ナノ粒子、規則正しい構造化相を形成する能のある界面活性剤、および架橋剤を含み、ここで、該界面活性剤は、洗い流されて、自立型スキャフォルドを残す。 本発明は、さらに、自立型スキャフォルドの調製方法、およびその使用を開示する。
17 HYBRID NANOPARTICLES CONTAINING DENDRONS, METHODS OF PRODUCING SUCH HYBRID NANOPARTICLES, AND USES THEREOF EP16808431.7 2016-06-10 EP3307672A1 2018-04-18 DONNIO, Bertrand; JISHKARIANI, Davit; DIROLL, Benjamin T.; HOUGH, Lawrence; MURRAY, Christopher; CARGNELLO, Matteo; MALASSIS, Ludivine
The present disclosure relates to a hybrid nanoparticle comprising a metallic core and at least one lipophilic dendron attached to the surface of the metallic core, and methods of producing such hybrid nanoparticles. The present disclosure also relates to films containing the hybrid nanoparticles described herein.
18 PROCESS FOR THE PREPARATION OF SELF STANDING NANOPARTICLE NETWORKS/SCAFFOLDS WITH CONTROLLABLE VOID DIMENSIONS EP09810797.2 2009-12-15 EP2365948B1 2017-10-04 KUMARASWAMY, Guruswamy; SHARMA, Kamendra Prakash
19 SELF STANDING NANOPARTICLE NETWORKS/SCAFFOLDS WITH CONTROLLABLE VOID DIMENSIONS PCT/IN2009000723 2009-12-15 WO2010070679A3 2010-10-14 KUMARASWAMY GURUSWAMY; SHARMA KAMENDRA PRAKASH
The present invention discloses a self standing network or scaffold of nanoparticles with controllably variable mesh size between 500nm and 1 mm having particle volume fraction between 0.5 to 50%. The network comprises nanoparticles, a surfactant capable of forming ordered structured phases and a cross linking agent, wherein the surfactant is washed off leaving the self standing scaffold. The invention further discloses the process for preparing the self standing scaffolds and uses thereof.
20 SELF STANDING NANOPARTICLE NETWORKS/SCAFFOLDS WITH CONTROLLABLE VOID DIMENSIONS PCT/IN2009000723 2009-12-15 WO2010070679A9 2012-05-24 KUMARASWAMY GURUSWAMY; SHARMA KAMENDRA PRAKASH
The present invention discloses a self standing network or scaffold of nanoparticles with controllably variable mesh size between 500nm and 1 mm having particle volume fraction between 0.5 to 50%. The network comprises nanoparticles, a surfactant capable of forming ordered structured phases and a cross linking agent, wherein the surfactant is washed off leaving the self standing scaffold. The invention further discloses the process for preparing the self standing scaffolds and uses thereof.
QQ群二维码
意见反馈