序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
81 미각 수용체 기능화된 탄소 나노튜브 전계효과 트랜지스터 기반 미각센서 및 이를 포함한 고선택성 바이오 전자혀 KR1020100027992 2010-03-29 KR1020110108661A 2011-10-06 홍승훈; 박태현; 김태현; 송현석; 진혜준; 이상훈
본 발명은 인간 미각 수용체 기능화된 단일벽 탄소 나노튜브-전계효과 트랜지스터(swCNT-FET)에 기초하고 인간의 미각 시스템을 모사한 고선택성의 바이오 전자혀에 관한 것이다. 본 발명자들은 최초로 미각 수용체 단백질을 인공혀에 적용하였으며 고선택성, 고민감성의 전자혀를 성공적으로 증명하였다. 이는 인간의 미각 수용체 단백질을 전자혀의 1차 신호 변환기로 사용함으로써 인간의 미각 시스템을 모방하는 전자혀를 구현하였다. 또한 기존의 전자혀에 비해 선택성과 민감성 측면에서 매우 우수하다. 본 발명에 의한 바이오 전자혀는 식품 산업에서 품질검사의 목적이나 맛 물질의 선별을 위한 도구로 사용될 수 있다.
82 나노구조물 패터닝 방법 KR1020090127387 2009-12-18 KR1020110070530A 2011-06-24 임현의; 지승묵; 김완두
PURPOSE: A nanostructure patterning method is provided to give hybrid functions of collecting and dehumidifying water to a surface of a substrate by combining a colloidal lithography and a printing technique or a tape masking technique and by arraying nanostructures to a specific location. CONSTITUTION: The nanostructure patterning method includes following steps.(a) The colloidal particle single-layer film is coated in the surface of the substrate.(b) Except a pattern section of the substrate, the rest of surface is masked.(c) The masked substrate is etched and the nanostructures are formed in the pattern part. And(d) the masking formed on the substrate is eliminated. The step(a) is operated by more than one method selected among a spin-coating, a dip-coating, a lifting up, an electrophoretic deposition, a chemical or electrochemical deposition and an electrospray.
83 전기 방사법을 이용한 유기물 패턴 형성 방법 KR1020090112510 2009-11-20 KR1020110055894A 2011-05-26 김성현; 이수재; 박진아; 문제현
PURPOSE: A method for forming organic patterns using an electro-spinning method is provided to obtain desired patterns on a desired substrate by transferring the patterns using surface energy difference between two substrates. CONSTITUTION: Nano-scale or micro-scale wires(20) are formed on a first substrate(10) using an electro-spinning method. A second substrate(30) is arranged on the first substrate. The nano-scale or micro-scale wires are transferred from the first substrate to the second substrate using surface energy difference between two substrates. The first substrate is a conductive substrate, and the second substrate is an insulating substrate.
84 나노 채널 형성 방법 KR1020090105662 2009-11-03 KR1020110048913A 2011-05-12 김범준; 박재원; 조영학; 한아름
PURPOSE: A method for forming nano-channels is provided to improve the production efficiency using an imprinting nano-channel processing method and a sealing method based on steam. CONSTITUTION: A method for forming nano-channels forms the nano-channels by welding the end part of the opening(230a) of a nano-trench(230) in order to seal the opening of the nano-trench. A method forming the nano-channels at a nanofludic unit(200) includes the following: A template for forming the nano-trench is formed. The template is stamped to the main body of the nanofludic unit to form the nano-trench to the main body of the nanofludic unit. The nano-trench is sealed using toluene or methanol steam.
85 코어/쉘 구조를 갖는 열전 나노와이어의 제조방법 KR1020090098284 2009-10-15 KR1020110041214A 2011-04-21 이우영; 강주훈; 함진희; 김은경
PURPOSE: A method for manufacturing thermoelectric nano-wire with a core/shell structure is provided to obtain Bi/thermoelectric material-based thermoelectric nano-wire with a core/shell structure by sputtering a thermoelectric element on a Bi single crystal nano-wire. CONSTITUTION: A Bi-based thin film(50) is formed on a substrate(10), on which an oxide layer(30) is formed, through a sputtering method. The substrate is thermally treated to grow a Bi single crystal nano-wire using compressive stress. The thermally treated substrate is cooled to room temperature. A sputtering process is implemented on the Bi single crystal nano-wire using a thermoelectric material in order to obtain a thermoelectric nano-wire with a Bi/thermoelectric material-based thermoelectric nano-wire. The thermoelectric material is one selected from Te, Bi2Te3, PbTe, Sb, and S.
86 실세스퀴옥세인을 포함한 팔라듐 나노입자와 탄소나노튜브의 자기조직화에 의한 나노복합재료의 제조방법 KR1020090004936 2009-01-21 KR1020100085565A 2010-07-29 김경민; 임정혁; 전종환
PURPOSE: A manufacturing method of a nano-composite material using a palladium nano particle including silsesquioxane and a self-assembly of a carbon nanotube is provided to uniformly combined the palladium nano particle with the carbon nanotube. CONSTITUTION: A manufacturing method of a nano-composite material using a palladium nano particle including silsesquioxane and a self-assembly of a carbon nanotube comprises the following steps: forming octa(3-aminopropyl)octa sisesquioxane octahydro chloride powder; forming the palladium nanoparticle including the silsesquioxane; acid processing a multi-walled carbon nanotube; forming dispersed solution by dispersing the multi-walled carbon nanotube into deionized distilled water; vaporizing the multi-walled carbon nanotube on a substrate; and forming a nanocomposite(10) on the substrate.
87 관능화된 나노입자 및 방법 KR1020107007727 2008-09-12 KR1020100067108A 2010-06-18 브린,크레이그; 콕스,마셜; 스테켈,조너선,에스.
A nanoparticle including an inorganic core comprising at least one metal and/or at least one semi-conductor compound comprising at least one metal includes a coating or shell disposed over at least a portion of a surface of the core. The coating can include one or more layers. Each layer of the coating can comprise a metal and/or at least one semiconductor compound. The nanoparticle further includes a ligand attached to a surface of the coating. The ligand is represented by the formula: X-Sp-Z, wherein X represents, e.g., a primary amine group, a secondary amine group, a urea, a thiourea, an imidizole group, an amide group, a phosphonic or arsonic acid group, a phosphinic or arsinic acid group, a phosphate or arsenate group, a phosphine or arsine oxide group; Sp represents a spacer group, such as a group capable of allowing a transfer of charge or an insulating group; and Z represents: a reactive group capable of communicating specific chemical properties to the nanocrystal as well as provide specific chemical reactivity to the surface of the nanocrystal, and/or a group that is cyclic, halogenated, or polar a-protic. In certain embodiments, at least two chemically distinct ligands are attached to an surface of the coating, wherein the at least two ligands are represented by the formula: X-Sp-Z. In ligand X represents a phosphonic, phosphinic, or phosphategroup and in ligand X represents a primary or secondary amine, or an imidizole, or an amide; In both ligands and Sp, which can be the same or different in the two compounds, represents a spacer group, such as a group capable of allowing a transfer of charge or an insulating group; Z, which can be the same or different in the two compounds, is a group chosen from among groups capable of communicating specific chemical properties to the nanoparticle as well as provide specific chemical reactivity to the surface of the nanoparticle. In preferred embodiments, the nanoparticle includes a core comprising a semiconductor material.
88 탄소나노튜브 정제 방법 및 이를 이용하여 제조된 탄소나노튜브를 포함하는 전자파 흡수체 KR1020080105286 2008-10-27 KR1020100046445A 2010-05-07 오경근; 황태조; 성용호; 이창훈; 문승환; 임재석
PURPOSE: A purification method of a carbon nano tube and the electromagnetic wave absorber including the carbon nano tube are provided to obtain the carbon nano tube with high purity by removing a metallic catalyst or amorphous carbon. CONSTITUTION: A purification method of a carbon nano tube comprises the following steps: preparing the carbon nano tube in a pristine state; processing a dry purification by blowing oxidative gas at 300~550 deg C to the carbon nano tube for 1~2 hours; processing a wet purification by dipping the carbon nano tube to a purification solution at 60~90 deg C, and stirring for 1~2 hours for removing the solution. The oxidative gas is selected from air, oxygen and carbon dioxide. The purification solution is a mixture of more than substance selected from nitric acid, sulfuric acid, hydrochloric acid, and potassium permanganate.
89 마이크로웨이브를 이용한 금속성 탄소나노튜브의 분리방법 KR1020080061712 2008-06-27 KR1020100001698A 2010-01-06 김도현; 이경균; 이영준
PURPOSE: A method for isolating metallic carbon nano tube through microwave is provided to remove semiconductive carbon nano tube. CONSTITUTION: A method for isolating metallic carbon nano tube comprises: a step of irradiating microwave to carbon nano tube mixture containing metallic carbon nano tube and semiconductive carbon tube to remove semiconductive carbon nano tube; a step of adding acid solution; and a step of irradiating microwave to remove impurities. The carbon nano tube is selected from a group comprising single walled-carbon nano tube, double-walled carbon nano tube and multi-walled carbon nano tube.
90 분산 방법 KR1020097009683 2007-09-20 KR1020090080080A 2009-07-23 베르케이,미하엘; 놀테,울리히; 사위토우스키,토마스; 프릿친스,볼프강
The invention relates to a method for dispersing carbon nanotubes (CNTs) in a continuous phase, especially in at least one dispersing agent. In said method, the carbon nanotubes, which are especially not subjected to a preliminary treatment, are dispersed in a continuous phase, particularly in at least one dispersing agent, in the presence of at least one dispersing agent while supplying enough power for the dispersion. The invention further relates to the dispersions obtained in said manner and the use thereof. The inventive method allows the carbon nanotubes (CNTs) to be dispersed at high concentrations and with a long shelf life.
91 탄소나노튜브 및 그 형성 방법, 하이브리드 구조 및 그형성 방법 및 발광 디바이스 KR1020070107432 2007-10-24 KR1020090041765A 2009-04-29 송병권; 홍진표; 진용완; 차승남; 이종현; 하재환
A carbon nanotube is provided for a light-emitting diode when the carbon nanotube is applied to manufacture back light for liquid display, which results from a self-irradiation property in no need of using low-voltage fluorescent substances. A method for preparing a carbon nanotube comprises the following steps of: forming a multiple-thin-film structural catalyst layer to promote growth of carbon nanotube on a substrate; and injecting gas containing carbon to the catalyst layer in order to grow the carbon nanotube. The catalyst layer includes one or more first layer containing Zn and one or more second layer which does not contain the Zn. The first and second layers are laminated in turns. The second layer contains Ni. The catalyst layer is surface-treated to form catalyst grain. The formation of the catalyst grain is processed through a plasma treatment, laser treatment or a heat treatment.
92 탄소나노튜브의 정제방법 KR1020070068727 2007-07-09 KR1020090005571A 2009-01-14 박종래; 조현구
A purification process of carbon nanotube is provided to remove effectively various impurities including metal catalyst particles coated with carbon, carbon nano-particle and amorphous carbon inevitably included when the carbon nanotube is manufactured. A purification process of carbon nanotube comprises steps of: irradiating ultrasonic wave after putting the carbon nanotube which is not re-fined into an aqueous acid solution or a surfactant solution and dispersing the aqueous acid solution or the surfactant solution; moving a solution in which a carbon nanotube is dispersed to a glass filter and irradiating ultrasonic wave and reducing pressure; and injecting and heating oxidative gas after putting the carbon nanotube filtered with the ultrasonic wave pressure in a heater.
93 기상법 카본 나노튜브의 제조방법 KR1020077005499 2005-09-21 KR1020070064595A 2007-06-21 소가테츠오; 샤론마헤슈워; 아프레라케슈아쇼크
Disclosed are a method and apparatus for producing carbon nanotubes which are characterized by spraying an oil on a catalyst metal, which is supported by at least one carrier selected from the group consisting of silica gel, alumina, magnesia, silica alumina and zeolite, in an atmosphere maintained at a constant temperature. The present invention enables to synthesize a large amount of carbon nanotubes from a low-cost material using a simple apparatus.
94 원료 분무식 고효율 카본 나노 구조물 제조 방법 및 장치 KR1020077000250 2004-06-04 KR1020070039533A 2007-04-12 나카야마요시카즈; 나가사카다케시; 사카이도루; 하야시다케시; 츠치야히로유키; 리수; 노사카도시카즈
타르 형상 부생성물의 발생을 감소시키고, 게다가 카본 나노 구조물을 고효율로 생성하는 카본 나노 구조물의 제조 방법 및 그 장치를 개발한다. 본 발명에 관련된 원료 분무식 고효율 카본 나노 구조물 제조 장치 (2) 는, 반응관 (4) 내에 촉매체 (12) 를 배치하고, 이 촉매체 (12) 의 근방을 카본 나노 구조물 (14) 의 생성 온도 영역으로까지 가열하는 가열 장치 (6) 를 형성하고, 반응관 (4) 내에 원료 가스를 도입하는 원료 가스 공급관 (8) 을 형성하여 그 공급관 선단 (8a) 을 촉매체 (12) 에 접근시켜 배치시키고, 또 원료 가스로부터 타르 형상 생성물이 생성되지 않는 온도 영역으로까지 상기 원료 가스 공급관 (8) 을 예열하는 예열 장치 (9)로 구성된다. 원료 가스 공급관 안에서는 타르 형상 물질은 생성되지 않고, 중간 온도를 뛰어넘어 원료 가스를 단숨에 촉매체에 분무하기 때문에, 반응 확률이 증대되어 카본 나노 구조물의 생성 수율이 증대된다. 원료 가스의 대부분이 소비되기 때문에, 반응관 (4) 내에도 타르 형상 물질이 생성되지 않는다.
95 나노미터크기의 산화갈륨입자가 세공 내에 담지된모더나이트 제올라이트 및 그 제조 방법 KR1020050039227 2005-05-11 KR1020060117448A 2006-11-17 홍석봉
A multi-functional mordenite catalyst uniformly containing a larger amount of Ga2O3 nanoparticles in zeolite pores, which is prepared through ammonium ion exchange and calcination at a high temperature after preparing mordenite zeolite which has gallium, or gallium and aluminum are simultaneously substituted within a skeleton thereof, and a preparing method of the same are provided. A method for preparing a mordenite catalyst on which nanometer-sized Ga2O3 particles are contained comprises the steps of: (a) adding sodium hydroxide as an aqueous solution to gallium oxide(Ga2O3) at a ratio of 2 to 10 moles relative to 1 mole of gallium oxide(Ga2O3), and heating the mixture at 90 to 120 deg.C for 10 to 15 hours to dissolve gallium oxide(Ga2O3); (b) adding a silica sol or an amorphous silica to the dissolved aqueous gallium oxide solution at a ratio of 10 to 20 moles relative to 1 mole of gallium oxide(Ga2O3) at an ordinary temperature, and agitating the mixture for 20 to 30 hours to prepare a reaction mixture; (c) heating the reaction mixture obtained from the step(b) at 100 to 200 deg.C for 3 to 14 days; and (d) after subjecting the gallosilicate mordenite zeolite prepared from the step(C) to ammonium ion exchange, and heat-treating the ammonium ion exchanged zeolite at a temperature of 500 to 700 deg.C to prepare a gallosilicate mordenite zeolite with a formula of 1.0 Ga2O:10.0 to 20.0 SiO2.
96 초미세 기공을 갖는 다공성의 나노 미립자 이산화티탄광촉매 및 안료의 제조방법 KR1020050024260 2005-03-23 KR1020060102420A 2006-09-27 조인철; 장영권
본 발명은 이산화티탄 촉매의 광분해 효과를 증진시키기 위하여 아나타제 결정상으로 제조하며, 5 내지 100㎚ 크기의 미립자 입자상과 이산화티탄 입자 내부에 중심 기공의 지름이 약 0.8㎚인, 나노 크기의 기공을 형성시켜, 유해가스 및 세균의 흡착, 탈착 기능을 부가하여, 광분해성을 크게 향상시킨 나노 크기의 기공을 갖는 다공성의 이산화티탄 광촉매와 이를 이용한 안료 제조방법이다. 이러한 이산화티탄 광촉매를 포함하여, 공기정화, 수질정화, 자외선흡수, 친수 및 항균 등의 각종 기능성 코팅 및 도료화와 백색안료를 제조할 수 있는 응용제품들에 관한 것으로서, 본 발명에 따른 나노 크기의 입자 내부에 초미세기공을 갖는 다공성의 이산화티탄 광촉매의 제조방법에 의하여 입자 내부에 기공의 지름이 0.01 내지 5㎚기공을 갖는, 아나타제형의 이산화티탄으로 이루어지는 나노 크기의 입자 내부에 초미세 기공을 갖는 다공성의 이산화티탄 광촉매 및 이를 이용하여 첨가제로 칼륨(K), 인(P), 알루미늄(Al), 실리콘(Si) 등을 백색도 향상 및 안정화제로 첨가하여 고순도화 한, 50 내지 100㎚ 입자크기의 미분체 아나타제형 이산화티탄 안료를 제조함을 특징으로 한다. 이산화티탄, 광촉매, 나노 크기의 기공, 미립자, 아나타제형, 다공성
97 정전기적으로 구동되는 나노 집게 KR1020040061794 2004-08-05 KR1020060013025A 2006-02-09 마슬로우레오니드; 유진규; 김철순
본 발명은 정전기적으로 구동되는 적어도 두 개의 나노 튜브가 프로브 팁에 장착된 나노 집게를 개시한다. 본 발명에 따른 나노 집게는, 테이퍼진 팁이 일측 단부로부터 축방향으로 돌출하여 형성된 도전성 프로브; 상기 프로브 표면의 적어도 일부에 형성된 절연층; 상기 프로브 표면의 절연층 상에 형성된 적어도 하나의 전극; 상기 전극과 연결되며, 상기 프로브 팁 보다 더 돌출하도록 상기 절연층 상에 부착된 적어도 두 개의 전도성 나노 소자; 및 상기 도전성 프로브 및 전극에 각각 전압을 공급하기 위한 전원;을 포함하는 것을 특징으로 한다. 주사터널현미경(STM), 원자력현미경(AFM), 프로브, 나노 집게, 탄소나노튜브, 정전기력, 나노 물질
98 열화학기상증착 방식을 이용한 탄소나노선재 연속 제조장치 KR1020030096325 2003-12-24 KR1020050064738A 2005-06-29 강흥원
본 발명은 탄소나노선재의 대량생산을 위한 열화학기상증착 방식의 탄소나노선재 연속제조장치에 관한 것으로, 회전하는 원통형 반응기 내에 반응시 생성되는 부착물을 제거할 수 있는 스크래퍼가 장착된 합성장치와, 합성이 완료된 탄소나노선재를 연속적으로 상온까지 냉각할 수 있는 냉각장치로 연결 구성되어 탄소나선재를 보다 높은 효율로 연속제조할 수 있는 장치의 제공에 관한 것이다. 본 발명은 분말상의 촉매를 이용하여 탄소나노선재를 제조하기 위한 화학기상증착 방식의 연속제조장치로서, 일측에 촉매 장입장치(10)가 배치되고 타측에는 반응가스공급을 위한 가스공급장치(40)가 배치되어 일정한 각도로 기울어진 상태에서 회전하며 내부의 벽면에서 생성되는 부착물을 제거하기 위한 스크래퍼(90)가 장착된 원통형의 반응기(20)와, 상기 반응기(20)를 통해 합성이 완료배출되는 탄소나노선재를 연속으로 냉각시키도록 배치된 냉각장치(50)를 포함하는 구성을 특징으로 하는 탄소나노선재 연속 제조장치를 제공한다.
99 10나노 이하 사이즈의 바이오 나노어레이 제조방법 KR1020030036531 2003-06-05 KR1020040105320A 2004-12-16 정희태; 권기영; 이수림
PURPOSE: Provided is a method for manufacturing bio nanoarrays by fixing biomaterial or bio-receptor on a nano-sized pattern based on self-assembly of polymeric supramolecules and stanning of metal. CONSTITUTION: The bio nanoarrays are manufactured by the following steps of: (i) forming a thin film of organic molecules inducing self-assembly on a substrate formed by spin-coating, rubbing or solution spreading; (ii) annealing the thin film to form ordered structure by self-assembling organic molecules, wherein the organic molecules are annealed by heating to 240deg.C, higher than phase transition temperature(230deg.C) of the liquid crystal and cooling; (iii) adsorbing metals selectively on the ordered structure formed in self-assembling by using RuO4; (iv) etching the thin film through reactive ion etching and/or ion milling to remove the parts on which the metal is not adsorbed, resulting in formation of a nano-sized pattern of organic molecules; (v) printing the nano-sized pattern having a uneven hole or columnar shape on the substrate; (vi) fixing biomaterial or bio-receptor bonding to biomaterials on the nano-sized pattern due to the amine-aldehyde reaction between amine group on the ends of biomaterial or bio-receptor and aldehyde on the surface of substrate, wherein the biomaterials are selected from the group consisting of protein, peptide, amino acid, ligand, carbohydrate, DNA, oligonucleotide and RNA.
100 나노크기의 중공구조를 가진 탄소 캡슐의 제조방법 및그로부터 제조된 탄소 나노캡슐 KR1020030001316 2003-01-09 KR1020040064056A 2004-07-16 장정식; 하현규
PURPOSE: A method for preparing a carbon capsule having a nano-sized hollow structure and a carbon nanocapsule prepared by the method are provided, to obtain the carbon nanocapsule easily without an etching process. CONSTITUTION: The method comprises the steps of preparing a nano-sized spherical particle comprising a pyrolysis polymer at high temperature; coating the outer surface of the spherical particle with a carbonizing polymer at high temperature to prepare a core-shell composite comprising a pyrolysis polymer at high temperature as a core component and a carbonizing polymer at high temperature as a shell component; and heating the core-shell composite at a high temperature to pyrolyze the polymer of core component and carbonize the polymer of shell component. Preferably the pyrolysis polymer at high temperature is a linear polymer and the carbonizing polymer at high temperature is a crosslinked polymer.
QQ群二维码
意见反馈