序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
161 조절 가능한 기공 크기를 갖는 나노입자의 자립 네트워크/스캐폴드 KR1020117016411 2009-12-15 KR1020110099739A 2011-09-08 쿠마라스와미구루스와미; 샤르마카멘드라프라카쉬
본 발명은 500nm 내지 1mm에서 조절 가능하게 가변적인 메쉬 크기를 갖고 0.5 내지 50%의 입자 부피 분율(particle volume fraction)을 갖는 나노입자들의 자립 네트워크 또는 스캐폴드를 개시한다. 상기 네트워크는 나노입자들, 규칙적인 구조화된 상을 형성할 수 있는 계면 활성제 및 가교제를 포함하고, 상기 계면 활성제는 세척 제거되어 상기 자립 스캐폴드를 남긴다. 본 발명은 또한 상기 자립 스캐폴드의 제조방법 및 그것의 용도를 개시한다.
162 나노입자 선 제조방법 및 나노입자 네트워크 제조방법과 이를 이용한 나노구조물 제조방법 KR1020100017776 2010-02-26 KR1020110098250A 2011-09-01 이신두; 이상욱; 박승철
나노입자 선 형성방법 및 나노입자 네트워크 형성방법과 이를 이용한 나노구조물 형성방법이 개시된다. 이에 의하면, 구조물이 패턴된 소수성(hydrophobic) 상부기판과 친수성(hydrophilic) 하부기판 사이로 모세관원리에 의해 주입된 콜로이드 용액이 구조물 내부에만 선택적으로 공동(air-cavity)을 형성하고, 용매 증발 때 공동 주변의 용액/공기 경계면들이 서로 수렴하며 콜로이드 입자들이 나열됨으로써 나노입자 선을 제조할 수 있고, 콜로이드 용액이 흐르는 방향과 구조물 안의 공동의 배열에 따라 다양한 나노입자 네트워크를 제조할 수 있으며, 나노입자 네트워크를 이용하여 다양한 모양과 기능을 갖는 나노 구조물을 제조할 수 있다.
163 산화아연 나노로드 - 그래핀 박막의 하이브리드 구조체 및 그 제조 방법 KR1020090126343 2009-12-17 KR1020110069560A 2011-06-23 박원일; 이정민
PURPOSE: A manufacturing method of a hybrid structure of ZnO nanorod-graphene thin film is provided to obtain a device combining graphene and features of ZnO nanorods by allowing graphene and nanorods to be integrated in a low temperature with a simple and cheap method. CONSTITUTION: The hybrid structure(100) includes a graphene thin film(30); and a ZnOnanorod(50) grown up on the graphene thin film.The graphene thin film is a sheet shape obtained by a graphene evaporation using a vapor carbon source. The manufacturing method of the hybird structure includes following steps.(a) The sheet shaped graphene thin film is manufactured.(b) The ZnO nanorods on the graphene thin film are grown up by a hydrothermal process. The step(b) includes following steps.(i) A photoresist layer is spread on the graphene thin film and a hole is patterned.(ii) A ZnO seed layer is exposed with etching through the hole.(iii) The ZnO nanorods are selectively grown up from the ZnO seed layer by dipping a substrate for the device into an aqueous solution capable of growing ZnO.
164 치과용 임플란트 표면에 나노튜브를 신속하고도 균일하게 형성시키는 방법 KR1020090108018 2009-11-10 KR1020110051441A 2011-05-18 이민호; 박형호; 배태성
PURPOSE: A method for uniformly forming nano-tubes on the surface of dental implant is provided to reduce time required for forming processes by implementing anodization using electrolyte based on the mixture of ammonium fluoride, water, and glycerol. CONSTITUTION: Anodization is electrochemically implemented using electrolyte based on the mixture of ammonium fluoride, water, and glycerol in order to form nano-tubes on the surface of dental implant. The implant is based on one selected from a group including tantalum, cobalt, chrome, titanium, stainless steel, or the alloy of the same. The content of the ammonium fluoride is 0.1 to 3 wt% of the electrolyte. The content of the glycerol is 80 to 90 wt% of the electrolyte.
165 나노돗이 형성된 열전재료의 제조방법 KR1020090089261 2009-09-21 KR1020110031846A 2011-03-29 오민욱; 이희웅; 김봉서; 박수동; 민복기
PURPOSE: A method for manufacturing a thermoelectric material containing nano-dots is provided to improve the thermoelectric performance of the thermoelectric material by uniformly forming nano-dots in the thermoelectric material through a rapid-cooling process. CONSTITUTION: A method for manufacturing a thermoelectric material containing nano-dots includes the following: Raw materials for a thermoelectric material are measured and washed. Each raw material is measured according to the composition ratio of the thermoelectric material. The measured raw materials are introduced into a quartz pipe. The inside of the quartz pipe is set into a vacuum state. The quartz pipe is hermetically sealed by filling a gas. The quartz pipe is input into a furnace, and a primary heating process is implemented. A slowing cooling process is implemented until temperature reaches to Tc. A secondary heating process is implemented at Tc. A rapid cooling process is implemented until the temperature reached to room temperature.
166 디스플레이 장치용 기판의 제조방법 KR1020090083463 2009-09-04 KR1020110025410A 2011-03-10 황장환
PURPOSE: A manufacturing method of a substrate for a display device is provided to accurately perform the installation arrangement of a thin film transistor by easily forming ITO or carbon nano tube electrode on a substrate. CONSTITUTION: An electrode is formed in one side of a release film(S110). A surface is attached on a surface on which the electrode of the release film is formed(S120). The electrode is separated from the substrate(S130). The formed electrode is ITO or carbon nano tube electrode. The ITO or the carbon nano tube electrode is formed on the release film. The transparent electrode is easily formed in a substrate.
167 Ni 박막이 증착된 Si-과잉산화막을 이용한 실리카 나노선의 제조 방법 KR1020090080730 2009-08-28 KR1020110023109A 2011-03-08 최석호; 김성; 신동희
PURPOSE: A method for manufacturing silica nanowire is provided to simply control the diameter of silica nanowires by varying a composition(x value) of an SiOx thin film. CONSTITUTION: A method for manufacturing silica nanowire comprises the steps of: preparing an SiOx thin film on a silicon substrate; depositing an Ni thin film o the SiOx thin film using an ion sputtering method; and annealing the Ni-deposited SiOx thin film while flossing N2 gas in the center of a heating zone B within a quartz tube to prepare silica nanowires on the SiO2 thin film.
168 용매의 상 분리를 이용한 금속성 또는 반도체성 탄소나노튜브의 순도 향상 방법 및 그 방법으로 제조된 탄소나노튜브 KR1020090032673 2009-04-15 KR1020100114242A 2010-10-25 한종훈; 신권우; 심대섭; 이건홍
PURPOSE: A method for improving purity of metallic or semiconductive carbon nanotube is prorivded to selectively separate carbon nanotube. CONSTITUTION: A method for improving purity of metallic or semiconductive carbon nanotube(CNT(12)) comprises: a stepf of disperign raw material CNT to a first solvent(14) to obtain raw material CNT solution(10); a step of adding a second solvent(24) to the raw material CNT solution and eddying; and a step of separating first CNT solution containing the first solvent and second CNT solution containing second solvent. The first solvent is phase-separated from the second solvent.
169 나노 입자를 함유하는 나노 패턴의 제조방법 및 전자 소자 KR1020090029996 2009-04-07 KR1020100111525A 2010-10-15 이재석; 정건영; 이정필; 김은욱; 강남구; 고행덕
PURPOSE: A method for preparing nanopattern having nanoparticles is provided to improve degree of integration by arranging nanoparticles of various materials in a nanoscale pattern. CONSTITUTION: A method for preparing a nanopattern having nanoparticles comprises: a step of forming a sacrificed pattern layer(32,34) having a groove which exposes a part of upper substrate(30); a step of applying block copolymer micelle solution containing nanoparticles on the substrate having a sacrificed pattern; and a step of removing the block copolymer micelle(40).
170 나노와이어의 합성 방법 KR1020090015872 2009-02-25 KR1020100096812A 2010-09-02 이은경; 황동목; 최병룡; 김병성
나노와이어의합성방법이개시된다. 개시된합성방법은, 기판상에게르마늄을포함하는제1 산화물층을형성하는단계; 상기제1 산화물층을열처리하여핵(nuclei)을포함하는제2 산화물층을형성하는단계; 및화학기상증착법에의해상기핵으로부터게르마늄을포함하는나노와이어(nanowire)를성장시키는단계;를포함한다.
171 유기 아민 안정화 은 나노입자 및 그의 제조 방법 KR1020100012803 2010-02-11 KR1020100092392A 2010-08-20 목타리마햐; 사반마르코디.; 게이너로저이.
PURPOSE: A method for manufacturing organic amine-silver nanoparticels is provided to obtain silver nanoparticles of high quality by reproducibly dissolving silver particles through an organic amide addition process comprising two steps and to improve the stability and storage lifespan of the nanoparticles. CONSTITUTION: A method for manufacturing organic amine-silver nanoparticles comprises: a first step of forming a heated solution including an organic solvent and organic amine having a first amount; a step of adding silver particles to the solution from the first step; a third step of adding organic amine having a second amount to the solution from the second step; a fourth step of adding organic hydrazine to the solution from the third step; and a fifth step of forming the organic-amine silver nanoparticles by reacting to the solution from the fourth step. The weight ratio of the organic amine having the first amount and the organic amine having the second amount is approximately 1:1, respectively.
172 분무 화염 열분해법을 이용한 산화마그네슘 및 세륨이 도핑된 산화마그네슘 나노분말 제조방법 KR1020080133543 2008-12-24 KR1020100074972A 2010-07-02 박종일; 최승덕; 박언병; 이영주; 손영근; 변갑식
PURPOSE: A producing method of magnesium oxide powder is provided to mass produce magnesium oxide doped with cerium, and the magnesium oxide with the size smaller than 500 nanometers, using the flame spray pyrolysis. CONSTITUTION: A producing method of magnesium oxide powder comprises the following steps: preparing a magnesium salt solution; and combusting the magnesium salt solution for the magnesium salt solution, by spraying the magnesium salt solution and supplying combustion gas. The magnesium salt has the purity over 98%. The concentration of the magnesium salt solution is 1~20%. A producing method of the magnesium oxide powder doped with cerium comprises the following steps: preparing a mixture solution containing cerium salt and magnesium salt; and producing the magnesium oxide powder doped with the cerium by spraying the mixture solution and supplying the combustion gas for the pyrolysis.
173 전이금속을 포함하는 광촉매 제조방법, 및 그를 포함하는 염료감응형 태양전지 제조방법 KR1020080124796 2008-12-09 KR1020100066129A 2010-06-17 조성용; 박기민; 김태영; 민병준; 이승재
PURPOSE: A manufacturing method of a photocatalyst having transition metals, and a manufacturing method of a dye-sensitive solar cell including the photocatalyst are provided, which can improve the energy conversion efficiency of the dye sensitized solar cell. CONSTITUTION: A manufacturing method of a photocatalyst including transition metals comprises a step for forming sludge through a centrifuge process, after stirring the photocatalyst in which the transition metal is supported, and a step for creating a photocatalyst particle by calcining and pulverizing the sludge. The transition metal is chrome, vanadium, silver, gold, palladium, platinum, molybdenum, or niobium. A manufacturing method for a dye-sensitized solar cell comprises the following steps: manufacturing paste by using the photocatalyst particle; manufacturing a photoelectrode with the paste; and forming a solar cell with a hot pressing method.
174 탄소나노튜브 로프 제조방법 및 장치, 탄소나노튜브 로프를 포함하는 냉전자 음극 제조방법, 및 탄소나노튜브 로프 제조방법을 위한 프로세서 판독 가능 저장 매체 KR1020080085539 2008-08-29 KR1020090095442A 2009-09-09 김용협; 강태준; 장의윤
Provided are a method and an apparatus for manufacturing carbon nanotube ropes using excellent mechanical properties of CNTs. A method for manufacturing carbon nanotube ropes comprises the following steps of: preparing metal tips(720); preparing a CNT colloidal solution(740); dipping the metal tips in the CNT colloidal solution(760); and withdrawing the metal tips from the CNT colloidal solution(780). The metal tips contain tungsten. The metal tips show high wettability in the CNT colloidal solution.
175 거친 표면을 가진 아나타제상의 이산화티탄 광촉매 막 및그 제조방법 KR1020080076019 2008-08-04 KR1020080108201A 2008-12-12 박동수; 류정호
A titanium dioxide photocatalyst film having an anatase phase having a rough surface is provided to have superior property without being additionally heat-treated by depositing a photocatalyst film at a high speed at a room temperature. A titanium dioxide photocatalyst film having an anatase phase having a rough surface contains a substrate(110) and a titanium dioxide coating layer(120) having the anatase phase formed on the substrate. The titanium dioxide coating layer having the anatase phase has a concavo-convex surface having a mesh shape. An average surface luminous intensity of the titanium dioxide coating layer is 200-1000nm.
176 양친매성 블록공중합체 마이셀을 이용한 단일벽탄소나노튜브의 분산방법 KR1020060073582 2006-08-04 KR1020080012575A 2008-02-12 박철민; 성진우; 신혜인; 황원석
A method of dispersing single wall carbon nanotubes is provided to obtain single wall nanotubes having excellent dispersibility and stability in the dispersion in polar or non-polar solvent through nondestructive way by using amphiphilic block copolymer micelles. A method of dispersing single wall carbon nanotubes comprises a step of dispersing the nanotubes in amphiphilic block copolymer selected from block copolymer(PS-b-P4VP) consisting of polystyrene and poly(4-vinylpyridine) and block copolymer(PS-b-PAA) consisting of polystyrene and poly(acrylic acid). The amount of the single wall carbon nanotube is at most 0.1 parts by weight with respect to 1 part per weight of the amphiphilic block copolymer. In the presence of non-polar solvent, a core consisting of polar blocks in the micelle is partially reduced by reducing agent or electronic beam for generating metallic nanoparticles by reducing metal salt selectively.
177 연속적인 자기영동을 이용한 순수한 탄소나노튜브와 금속 불순물을 함유한 탄소나노튜브의 분리방법 및 이에 사용되는 자기영동 미세 유체 제어소자 KR1020060064044 2006-07-07 KR100791036B1 2008-01-03 박제균; 강주헌
A method for separating pure carbon nanotubes from carbon nanotubes containing metal impurities using continuous magnetophoresis and microfluidic devices for separation of pure carbon nanotubes from carbon nanotubes containing metal impurities by the method are provided to obtain carbon nanotubes of very high purity by purifying carbon nanotubes economically and efficiently. A method for separation of pure carbon nanotubes from carbon nanotubes containing metal impurities using continuous magnetophoresis comprises: a first step of injecting carbonnanotube fluid samples before purification into an injection part; a second step of injecting a control fluid into a control fluid injection part to flow the injected carbonnanotube fluid samples through central parts of microfluidic channels(2) in a state that the injected carbonnanotube fluid samples are aligned; a third step of applying a flux density gradient(8) perpendicularly to the microfluidic channels having the control fluid comprising the carbonnanotube fluid samples passed therethrough to separate pure carbon nanotubes(5) from carbon nanotubes(6) containing metal impurities; and a fourth step of capturing the pure carbon nanotubes that have been separated from the carbon nanotubes containing metal impurities through the microfluidic channels of the third step at discharge parts(3,4) in which branch roads are formed at ends of the microfluidic channels.
178 탄소나노튜브의 탄화질 불순물의 정제방법 KR1020070045511 2007-05-10 KR1020070065277A 2007-06-22 배은주; 민요셉; 박완준
A method for eliminating carbonaceous impurities from carbon nano-tubes(CNT) is provided to purify CNT combined with sulfur without damage or modification of CNT by selectively removing the impurities adhered to sulfur combined CNT through sulfidization in a sealed space under vacuum condition. The method includes: first step of preparing carbon nano-tubes and sulfur in a sealed space; second step of heating the sulfur to higher than the temperature for sulfidization of carbonaceous impurities deposited on the carbon nano-tubes; and third step of removing the carbonaceous impurities from the carbon nano-tubes through sulfidization. The sulfidization temperature is higher than 150deg.C. The sulfur contained in the sealed space is a solid form of sulfur. The first step further contains formation of vacuum condition by exhausting air out of the sealed space. The second step is carried out by maintaining temperature of about 300deg.C for about 30 minutes.
179 PtRu 나노합금을 함유하는 직접메탄올연료전지 촉매의제조방법 KR1020050110288 2005-11-17 KR1020070052541A 2007-05-22 박준택; 이영환
본 발명은 PtRu 나노합금을 함유하는 직접메탄올연료전지 촉매의 제조방법에 관한 것으로 보다 상세하게는 백금전구체, 루테늄전구체 및 환원제를 용매에 용해시키고 비활성기체 분위기하에서 가열한 후 표면안정제를 첨가하고 환류시켜 백금-루테늄 나노합금을 얻고 이를 지지체에 흡착시켜 백금-루테늄 촉매를 얻고 화학적인 방법으로 백금-루테늄 촉매의 표면안정제를 제거하는 단계를 포함하는 것을 특징으로 하는 PtRu 나노합금을 함유하는 직접메탄올연료전지 촉매의 제조방법에 관한 것이다. 본 발명은 유기금속선구물질을 선택해서 표면안정제 하에서 환원반응을 통한 빠르고, 간단한 방법으로 콜로이드 PtRu 나노합금을 함유하는 직접메탄올연료전지 촉매를 합성하고, 화학적인 방법으로 표면안정제를 제거하는 PtRu 나노합금을 함유하는 직접메탄올연료전지 촉매의 제조방법 제공을 목적으로 한다. 본 발명은 위와 같은 방법을 이용하여 제조한 PtRu 나노합금을 함유하는 직접메탄올연료전지 촉매를 포함한다. 본 발명은 위와 같은 방법을 이용하여 제조한 PtRu 나노합금을 함유하는 촉매를 포함하는 직접메탄올연료전지를 포함한다.
180 반도성 및 금속성 탄소나노튜브의 분리방법 KR1020070029819 2007-03-27 KR1020070044412A 2007-04-27 최재영; 윤선미; 이은성; 류영균; 송기용
본 발명은 반도성 및 금속성 탄소나노튜브의 분리방법에 관한 것으로, 보다 상세하게는 무전해 도금 방법을 이용하여 금속성 탄소나노튜브를 선택적으로 도금한 후, 침전된 금속성 탄소나노튜브를 여과함으로써 반도성 탄소나노튜브와 금속성 탄소나노튜브를 분리하는 방법에 관한 것이다. 본 발명에 의하면, 간단한 공정에 의해 저비용으로 대량의 반도성 탄소나노튜브와 금속성 탄소나노튜브를 효과적으로 분리할 수 있다. 금속성 탄소나노튜브, 반도성 탄소나노튜브, 무전해 도금, 분리 방법
QQ群二维码
意见反馈