序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
141 SWITCH, METHOD AND SYSTEM FOR SWITCHING THE STATE OF A SIGNAL PATH EP07709425.8 2007-01-19 EP1974364A1 2008-10-01 Oberhammer Joachim
The invention relates to a method, a system and a multi stable arranged to switch the configuration of the signal path for electrical signals comprising a first moving element (12) and a second moving element (14), wherein the first and second element can be arranged into at least two mechanically stable states: a mechanical interlocked state, wherein the first moving element is mechanically interlocked with the second moving element wherein a signal path in the switch is arranged in a closed configuration; and a non interlocked state, wherein the first moving element is separated from the second moving element and the signal path in the switch is arranged in an open configuration; wherein the switch further comprises a fixated electrostatic electrode (10) configured with a first fixated electrode part arranged to actuate and move at least one of the moving elements when an electrical potential difference is applied between the first fixated electrode and at least one of the moving elements, transitioning the moving elements from one state to another.
142 Micro electromechanical switch and method of manufacturing the same EP06111126.6 2006-03-14 EP1703532B1 2007-10-03 MASUDA, Takahiro c/o OMRON Corporation; SEKI, Tomonori c/o OMRON Corporation
143 FLEXIBLE ELECTROSTATIC ACTUATOR EP05738825.8 2005-04-25 EP1738217A2 2007-01-03 DAUSCH, David; GOODWIN, SCOTT, H
An electrostatic actuator having a base including a first electrode and a flexible membrane including at least two material layers of different materials in contact with each other. At least one of the material layers includes a second electrode electrically isolated from the first electrode. The flexible membrane includes a fixed end connected to the base and a free end opposite the fixed end and spaced apart from the base. The second electrode has at least first and second portions separated by a third portion and in combination defining a first and second step provided in a vicinity of the fixed end.
144 MICROELECTROMECHANICAL FLEXIBLE MEMBRANE ELECTROSTATIC VALVE DEVICE AND RELATED FABRICATION METHODS EP01970902.1 2001-09-14 EP1317399B1 2006-08-30 GOODWIN-JOHANSSON, Scott, H.; MCGUIRE, Gary, E.
A MEMS valve device driven by electrostatic forces is provided. The MEMS valve device includes a substrate having an aperture formed therein, a substrate electrode, a moveable membrane that overlies the aperture and has an electrode element and a biasing element. Additionally, at least one resiliently compressible dielectric layer is provided to insure electrical isolation between the substrate electrode and electrode element of the moveable membrane. In operation, a voltage differential is established between the substrate electrode and the electrode element of the moveable membrane to move the membrane relative to the aperture to thereby controllably adjust the portion of the aperture that is covered by the membrane. In another embodiment the resiliently compressible dielectric layer(s) have a textured surface; either at the valve seat, the valve seal or at both surfaces. In another embodiment of the invention a pressure-relieving aperture is defined within the substrate and is positioned to underlie the moveable membrane.
145 ELECTROPLATING PCB COMPONENTS EP04718225.8 2004-03-08 EP1601821A1 2005-12-07 SEXTON, Brett,CSIRO; DAVIS, Thimothy J.,CSIRO
Curved out of plane metal components are formed on PCB substrates (11) by electroplating two layers (13, 14) of the same metal such that each layer has a different internal stress. This produces as curvature of the layer (13, 14) which enables coils, curved cantilever beams and springs to be fabricated. The amplitude and direction of curvature can be controlled by controlling the stress and thickness of each layer. The stress is controlled by controlling the composition of the electroplating bath.
146 MICROELECTROMECHANICAL FLEXIBLE MEMBRANE ELECTROSTATIC VALVE DEVICE AND RELATED FABRICATION METHODS EP01970902.1 2001-09-14 EP1317399A2 2003-06-11 GOODWIN-JOHANSSON, Scott, H.; MCGUIRE, Gary, E.
A MEMS valve device driven by electrostatic forces is provided. The MEMS valve device includes a substrate having an aperture formed therein, a substrate electrode, a moveable membrane that overlies the aperture and has an electrode element and a biasing element. Additionally, at least one resiliently compressible dielectric layer is provided to insure electrical isolation between the substrate electrode and electrode element of the moveable membrane. In operation, a voltage differential is established between the substrate electrode and the electrode element of the moveable membrane to move the membrane relative to the aperture to thereby controllably adjust the portion of the aperture that is covered by the membrane. In another embodiment the resiliently compressible dielectric layer(s) have a textured surface; either at the valve seat, the valve seal or at both surfaces. In another embodiment of the invention a pressure-relieving aperture is defined within the substrate and is positioned to underlie the moveable membrane.
147 HIGH VOLTAGE MICROMACHINED ELECTROSTATIC SWITCH EP00944877.0 2000-06-23 EP1196935A1 2002-04-17 GOODWIN-JOHANSSON, Scott, Halden
A MEMS (Micro Electro Mechanical System) electrostatically operated high voltage switch or relay device is provided. This device can switch high voltages while using relatively low electrostatic operating voltages. The MEMS device comprises a microelectronic substrate, a substrate electrode, and one or more substrate contacts. The MEMS device also includes a moveable composite overlying the substrate, one or more composite contacts, and at least one insulator. In cross section, the moveable composite comprises an electrode layer and a biasing layer. In length, the moveable composite comprises a fixed portion attached to the underlying substrate, a medial portion, and a distal portion moveable with respect to the substrate electrode. The distal and/or medial portions of the moveable composite are biased in position when no electrostatic force is applied. Applying a voltage between the substrate electrode and moveable composite electrode creates an electrostatic force that attracts the moveable composite to the underlying microelectronic substrate. The substrate contact and composite contact are selectively interconnected in response to the application of electrostatic force. Once electrostatic force is removed, the moveable composite reassumes the biased position such that the substrate and composite contacts are disconnected. Various embodiments further define components of the device. Other embodiments further include a source of electrical energy, a diode, and a switching device connected to different components of the MEMS device. A method of using aforementioned electrostatic MEMS device is provided.
148 ARC RESISTANT HIGH VOLTAGE MICROMACHINED ELECTROSTATIC SWITCH EP00930355.3 2000-05-04 EP1196932A1 2002-04-17 GOODWIN-JOHANSSON, Scott, Halden
A MEMS (Micro Electro Mechanical System) electrostatically operated device is provided that can switch high voltages whiles providing improved arcing tolerance. The MEMS device comprises a microelectronic substrate, a substrate electrode, first and second contact sets, an insulator, and a moveable composite. The moveable composite overlies the substrate and substrate electrode. In cross section, the moveable composite comprises an electrode layer and a biasing layer. In length, the moveable composite comprises a fixed portion attached to the underlying substrate, a medial portion, and a distal portion moveable with respect to the substrate electrode. Each contact set has at least one composite contact attached to the moveable composite, and preferably at least one substrate contact attached to the substrate. One of the contact sets is closer to the composite distal portion. The distal and/or medial portions of the moveable composite are biased in position when no electrostatic force is applied. Applying a voltage between the substrate electrode and moveable composite electrode creates an electrostatic force that attracts the moveable composite to the underlying substrate. The first and second contact sets are electrically connected when the distal portion of the moveable composite is attracted to the substrate. Once electrostatic force is removed, the moveable composite reassumes the biased position such that the first and second contact sets are disconnected in a sequence to minimize arcing. Various embodiments and methods of using the electrostatic MEMS device are provided.
149 MIKROMECHANISCHES ELEKTROSTATISCHES RELAIS UND VERFAHREN ZU DESSEN HERSTELLUNG EP98947333.5 1998-07-24 EP1021815B1 2002-01-23 SCHLAAK, Helmut; KIESEWETTER, Lothar
150 MIKROMECHANISCHES ELEKTROSTATISCHES RELAIS UND VERFAHREN ZU DESSEN HERSTELLUNG EP98947333.5 1998-07-24 EP1021815A1 2000-07-26 SCHLAAK, Helmut; KIESEWETTER, Lothar
The micromechanical relay has a base substrate (81) on which a flexible induction tongue (41) with a moveable contact (8) is structured in such a way that it is elastically curved away from the substrate in non-operational mode. A fixed contact (7) interacting with the moveable contact is arranged on a fixed contact flexible tongue (42) that is also curved away from the base substrate, so that the open ends of both flexible tongues face each other and the moveable contact (8) overlaps the fixed contact. By arranging the contacts on two flexible tongues, a relatively high extra way of contacts is achieved throughout the entire stretched position despite a possible low inductive path using an electrostatic driving system, thereby enabling sufficient contact force to be generated.
151 Electrostatic relay EP94101002.7 1994-01-24 EP0608816B1 1998-06-24 Ichiya, Mitsuo; Kasano, Fumihiro; Nishimura, Hiromi; Lewiner, Jacques; Perino, Didier
152 Mikromechanisches Relais EP95115649.6 1995-10-04 EP0710972B1 1998-02-25 Schlaak, Helmut, Dr.; Schimkat, Joachim
153 Mikromechanisches Relais EP95115648.8 1995-10-04 EP0710971B1 1998-01-28 Schlaak, Helmut, Dr.; Schimkat, Joachim
154 Mikromechanisches Relais EP95115648.8 1995-10-04 EP0710971A1 1996-05-08 Schlaak, Helmut, Dr.; Schimkat, Joachim

Das mikromechanische elektrostatische Relais besitzt einerseits ein Basissubstrat mit Basiselektrode und einem Basiskontaktstück, andererseits ein Ankersubstrat mit einer freigeätzten, vom Basissubstrat weg gekrümmten Anker-Federzunge mit einer Ankerelektrode und einem Anker-Kontaktstück. Bei Anlegen einer Steuerspannung zwischen den beiden Elektroden rollt die Federzunge auf dem Basissubstrat ab, bis sie gestreckt ist und die beiden Kontaktstücke zur Berührung bringt. Um eine hohe Kontaktkraft bei möglichst großer Elektrodenfläche zu erhalten, ist das Anker-Kontaktstück (7) auf einem Kontaktfederabschnitt (21) angeordnet, der über Federstege (22) in Form eines Sonnenrades mit spiralförmig ineinandergreifenden Speichenabschnitten von der Federzunge so freigeschnitten ist, daß er allseitig von der Federzunge umschlossen wird.

155 HOCHFREQUENZ-MEMS-SCHALTER MIT GEBOGENEM SCHALTELEMENT UND VERFAHREN ZU SEINER HERSTELLUNG EP05715021.1 2005-02-25 EP1719144B1 2015-10-14 PRECHTEL, Ulrich; ZIEGLER, Volker
156 Composant incluant un condensateur variable EP04106043.5 2004-11-24 EP1536439B1 2012-01-11 Casset, Fabrice; Bouche, Guillaume; Rivoire, Maurice
157 ELECTROPLATING PCB COMPONENTS EP04718225 2004-03-08 EP1601821A4 2007-03-14 SEXTON BRETT; DAVIS THIMOTHY J
Curved out of plane metal components are formed on PCB substrates (11) by electroplating two layers (13, 14) of the same metal such that each layer has a different internal stress. This produces as curvature of the layer (13, 14) which enables coils, curved cantilever beams and springs to be fabricated. The amplitude and direction of curvature can be controlled by controlling the stress and thickness of each layer. The stress is controlled by controlling the composition of the electroplating bath.
158 HOCHFREQUENZ-MEMS-SCHALTER MIT GEBOGENEM SCHALTELEMENT UND VERFAHREN ZU SEINER HERSTELLUNG EP05715021.1 2005-02-25 EP1719144A1 2006-11-08 PRECHTEL, Ulrich; ZIEGLER, Volker
The invention relates to a high-frequency MEMS switch (10) comprising a signal conductor (12), which is located on a substrate (11), in addition to an elongated switching element (13) that has a curved, elastic flexible region (131, 132) and is fixed in a self-supporting manner to the substrate (11). An electrode assembly (14a, 14b) generates an electrostatic force that acts on the switching element (13) in order to move the switching element towards the signal conductor (12). The switching element (13) is aligned longitudinally in parallel with the signal conductor (12) and comprises a contact region (15), which extends transversally to the switching element (13) over the signal conductor (12). The elastic flexible region (131, 132) of the switching element (13) moves progressively towards the electrode assembly (14a, 14b) with the action of the electrostatic force in a direction that runs parallel to the signal conductor (12). The switching element (13) comprises e.g. two parallel switching arms (13a, 13b), which are interconnected by a bridge that forms a contact region (15) and which are located on either side of the signal conductor (12), running parallel to the latter.
159 Composant incluant un condensateur variable EP04106043.5 2004-11-24 EP1536439A1 2005-06-01 Casset, Fabrice; Bouche, Guillaume; Rivoire, Maurice

L'invention concerne un condensateur variable comprenant : une portion de sillon (11) formée dans un substrat isolant (10), deux parties supérieures du substrat situées de chaque côté de la portion de sillon constituant deux bords latéraux (12,13), une couche conductrice (15) recouvrant l'intérieur de la portion de sillon (11), une membrane souple conductrice (16), placée au-dessus de la portion de sillon (11) en s'appuyant sur lesdits bords (12,13), une couche diélectrique (17) recouvrant la couche conductrice (15) ou la membrane (16) de façon à isoler la couche conductrice (15) et la membrane (16), et des bornes d'application d'une tension entre la couche conductrice (15) et la membrane (16), et tel que la profondeur de la portion de sillon (11) augmente continûment en allant d'un des bords (12,13) vers le fond de la portion de sillon, et que la couche conductrice (15) recouvre l'intérieur de la portion de sillon (11) au moins jusqu'à l'un des deux bords (12,13) qu'elle recouvre éventuellement.

160 Mikromechanisches Relais mit verbessertem Schaltverhalten EP00121231.5 2000-09-29 EP1156504A3 2003-12-10 Faul, Robert; Drost, Andreas; Pradel, Helmut

Die vorliegende Erfindung betrifft ein mikromechanisches Relais mit verbesserten Schalteigenschaften, bei dem der Kontaktbügel zur Überbrückung eines Schaltkontaktes beabstandet vom freien Ende eines einseitig eingespannten, mikromechanischen, beweglichen Biegebalkenelementes an diesem angeordnet ist. Beidseitig des Kontaktbügels sind am beweglichen Element Steuerelektroden vorgesehen, die in Zusammenwirkung mit gegenüberliegenden Steuerelektroden am Substrat sowie entsprechenden Steuersignalen das Öffnen und Schließen des Kontaktes bewirken.

Sowohl durch die beidseitige Anordnung der Steuerelektrodengebiete als auch die erweiterten und beispielsweise getrennten Ansteuerungsmöglichkeiten der Steuerelektroden beidseitig des Kontaktbügels bzw. der entsprechenden Steuerelektroden am Substrat lässt sich ein verbessertes Schaltverhalten erzielen.

QQ群二维码
意见反馈