序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 可变电容器及相关的制造方法 CN00803826.0 2000-11-28 CN1408120A 2003-04-02 阿伦·B·考恩; 维加库玛·R·度勒; 爱德华·A·希尔; 戴维·A·科斯特; 拉玛斯瓦米·马哈德万
提供一种有低损耗和相应的高Q值的可变电容器。除了基片外,该可变电容器包括配置在该基片上的至少一个基片电极和一基片电容器板,它们由低电阻材料如HTS材料或厚金属层形成。可变电容器还包括一双晶构件,它由基片向外延伸并覆盖在至少一个基片电极之上。双晶构件包括由具有不同热膨胀系数的材料形成的第一和第二层。双晶构件的第一和第二层限定至少一个双晶电极和双晶电容器板,使得在基片电极和双晶电极间建立的电压差能使双晶构件相对于基片电极移动,从而改变极间距离和电容器板间的距离。因此,可变电容器的电容量可根据双晶构件及其下面的基片间的相对间距而控制。还提供一种方法以微细加工或者用别的方式制造一可变电容器,其电极和电容器板由低电阻材料形成,使所得的电容器有低损耗和相应的高Q值。该可变电容器因此可用于高频应用,例如某些可调谐滤波器所需要的。
2 微型机械式静电继电器及其制造方法 CN98808413.9 1998-07-24 CN1310854A 2001-08-29 H·施拉克; L·基塞韦特
微型机械式继电器含有一个基本基片(81),在该支持层上一个单侧连接的带有活动触点(8)的簧舌(41)被如下构造成,在静止状态时该衔铁簧舌由支持层向外弯曲。与活动触点共同作用的固定触点(7)在被同样布置成由基本基片向外弯曲的固定触点簧舌(42)上如下摆动,两个簧舌利用其自由端彼此相对布置并且活动触点(8)重合在固定触点上。通过在两个簧舌上的触点布置尽管只有一个较小的利用静电驱动实现的衔铁行程仍可以通过持续的状态在触点上获得按比例放大的超程,由此产生一个足够的触点
3 具有混合驱动的微型机械继电器 CN94191220.5 1994-02-14 CN1040049C 1998-09-30 H·-J·吉瓦特; L·基斯韦特; J·辛卡特; H·施拉克
微型机械继电器有一个由基体(52)腐蚀出来的舌簧状衔铁(53),此衔铁(53)与衔铁基体弹性连接,它与一个在它下面的基座(51)的基座电极(58)构成了一种静电驱动。此外,在衔铁(53)上设有压电层(60),它起弯曲变换器的作用,并构成一种附加的驱动。当在衔铁(53)的电极、基座(51)的电极和压电层(60)的电极上施加一个电压时,衔铁被吸在此基座上,并因而在至少一个触头(55、56)闭合的情况下,衔铁大面积地贴靠在此基座上。此时,静电驱动和压电驱动的不同特性线叠加在一起,所以,既能在衔铁运动开始时产生一个大的吸引,又能在衔铁吸住后产生一个大的接触力。
4 静电微触点通断器及其制造方法、使用该通断器的装置 CN200610064810.9 2006-03-14 CN1848344A 2006-10-18 增田贵弘; 积知范
静电微触点通断器及其制造方法、使用该通断器的装置。本发明的静电微继电器(10)通过在设于基座(11)上的固定电极(12)和致动器(21)的可动电极(24)之间施加电压而产生的静电引来驱动可动电极(24),使设于致动器(21)上的可动触点26与设于基座(11)上的固定触点(13a、14a)接触或分离而对电路进行通断。致动器(21)具有:支撑部(22),其竖立地设置于基座(11)上;以及梁部(23),其从支撑部(22)向侧方延伸、弹性地支撑可动电极(24)以及可动触点(26)。梁部(23)从支撑部(22)侧开始以可动电极(24)和可动触点(26)的顺序进行弹性支撑。连接梁部(23)和可动电极(24)的连接部(28)从支撑部(22)侧开始形成有狭缝(27)。
5 开关 CN03801500.5 2003-06-05 CN1592942A 2005-03-09 中西淑人; 中村邦彦
一种能够利用较低的DC电压以较高的速度做出反应并且能够提供高绝缘度的开关。在该开关中,使用具有微结构102a、102b和102c的微结构组103,通过微动微结构102a、102b和102c而使微结构组作为整体得到较大的移动量。此外,通过这种结构,可以减小施加给微结构102a、102b和102c的控制电极106a、106b、107a、107b、108a、108b、109a和109b的DC电压。结果,可以实现能够利用较低DC电压以较高速度做出反应的高绝缘度开关100。
6 具有混合驱动的微型机械继电器 CN94191220.5 1994-02-14 CN1118199A 1996-03-06 H·-J·吉瓦特; L·基斯韦特; J·辛卡特; H·施拉克
微型机械继电器有一个由基体(52)腐蚀出来的舌簧状衔铁(53),此衔铁(53)与衔铁基体弹性连接,它与一个在它下面的基座(51)的基座电极(58)构成了一种静电驱动。此外,在衔铁(53)上设有压电层(60),它起弯曲变换器的作用,并构成一种附加的驱动。当在衔铁(53)的电极、基座(51)的电极和压电层(60)的电极上施加一个电压时,衔铁被吸在此基座上,并因而在至少一个触头(55、56)闭合的情况下,衔铁大面积地贴靠在此基座上。此时,静电驱动和压电驱动的不同特性线叠加在一起,所以,既能在衔铁运动开始时产生一个大的吸引,又能在衔铁吸住后产生一个大的接触力。
7 静电微触点通断器及其制造方法、使用该通断器的装置 CN200610064810.9 2006-03-14 CN1848344B 2010-05-12 增田贵弘; 积知范
静电微触点通断器及其制造方法、使用该通断器的装置。本发明的静电微继电器(10)通过在设于基座(11)上的固定电极(12)和致动器(21)的可动电极(24)之间施加电压而产生的静电引来驱动可动电极(24),使设于致动器(21)上的可动触点26与设于基座(11)上的固定触点(13a、14a)接触或分离而对电路进行通断。致动器(21)具有:支撑部(22),其竖立地设置于基座(11)上;以及梁部(23),其从支撑部(22)向侧方延伸、弹性地支撑可动电极(24)以及可动触点(26)。梁部(23)从支撑部(22)侧开始以可动电极(24)和可动触点(26)的顺序进行弹性支撑。连接梁部(23)和可动电极(24)的连接部(28)从支撑部(22)侧开始形成有狭缝(27)。
8 开关 CN03801500.5 2003-06-05 CN1275275C 2006-09-13 中西淑人; 中村邦彦
一种能够利用较低的DC电压以较高的速度做出反应并且能够提供高绝缘度的的开关。在该开关中,使用具有微结构(102a、102b和102c)的微结构组(103),通过微动微结构(102a、102b和102c)而使微结构组作为整体得到较大的移动量。此外,通过这种结构,可以减小施加给微结构(102a、102b和102c)的控制电极(106a、106b、107a、107b、108a、108b、109a和109b)的DC电压。结果,可以实现能够利用较低DC电压以较高速度做出反应的高决绝度开关(100)。
9 微型机电式继电器与其生产方法 CN00810953.2 2000-07-28 CN1212637C 2005-07-27 H·施拉克; M·汉克
发明涉及一种继电器,尤其是一种微型化的、包括一个桥式闭合触头的静电继电器。接触弹簧设计成为扭转弹簧,并通过多段弯曲弹簧部分(7)与开关弹簧(3)联接。这样特别有可能补偿固定触头(2)的不同高度。该发明进而涉及微型机械式静电继电器的生产方法。
10 微型机电式继电器与其生产方法 CN00810953.2 2000-07-28 CN1365504A 2002-08-21 H·施拉克; M·汉克
发明涉及一种继电器,尤其是一种微型化的、包括一个桥式闭合触头的静电继电器。接触弹簧设计成为扭转弹簧,并通过多段弯曲弹簧部分(7)与开关弹簧(3)联接。这样特别有可能补偿固定触头(2)的不同高度。该发明进而涉及微型机械式静电继电器的生产方法。
11 Flexible electrostatic actuator US11578556 2005-04-25 US08198974B2 2012-06-12 David E. Dausch; Scott H. Goodwin
An electrostatic actuator having a base including a first electrode and a flexible membrane including at least two material layers of different materials in contact with each other. At least one of the material layers includes a second electrode electrically isolated from the first electrode. The flexible membrane includes a fixed end connected to the base and a free end opposite the fixed end and spaced apart from the base. The second electrode has at least first and second portions separated by a third portion and in combination defining a first and second step provided in a vicinity of the fixed end.
12 Electromechanical switch US11292421 2005-12-02 US07453339B2 2008-11-18 David K. Fork; Thomas Hantschel; Koenraad F. Van Schuylenbergh; Jeng Ping Lu
In one aspect, an electromechanical switching device is illustrated. The electromechanical switching device includes a relay with at least one first conductive portion, at least one second conductive portion, and at least one actuation component that moves the at least one first conductive portion and the at least one second conductive portion into and out of conductive contact. The at least one first conductive portion includes a conductive stationary end coupled to a substrate and a conductive free-floating end. The at least one actuation component includes an actuation stationary end coupled to the substrate and an actuation free-floating end. The actuation free floating end, when the at least one actuation component is not energized, curls, which curls the conductive free floating end into or out of conductive contact with the at least one second conductive portion.
13 Apparatus comprising an array of switches and display US11485539 2006-07-11 US20070046214A1 2007-03-01 Nicholas Pasch
A class of electromechanical switch cell is disclosed that has improved switching speed and tolerance to array non-planarity, among other advantages. In one embodiment, the switch cell can include a movable foil that is anchored to the structure, but is not under tension in the unbiased state. In another embodiment, a flexible foil may be mechanically biased so that a portion of the foil is positioned proximate to a reference substrate.
14 Switch pad and micro-switch having the same US11345379 2006-02-02 US20060181377A1 2006-08-17 Soon-cheol Kweon; Hyung-jae Shin; Che-heung Kim; Sang-hun Lee; Mark Da Silva; Siebe Bouwstra
A switch pad for switching signal flow and a micro-switch having the same. The switch pad comprises a body formed so that as approaching opposite end portions from a central portion of the body, the body is more remotely spaced from a horizontal plane containing a top surface of the electrostatic driving unit. With the body of the switch pad formed in this manner, the switch pad can be more stably driven.
15 Component comprising a variable capacitor US10999211 2004-11-29 US07082024B2 2006-07-25 Fabrice Casset; Guillaume Bouche; Rivoire Maurice
A variable capacitor having a groove portion formed in an insulating substrate, two upper portions of the substrate located on either side of the groove portion forming two lateral edges, a conductive layer covering the inside of the groove portion, a flexible conductive membrane, placed above the groove portion by bearing on the edges, a dielectric layer covering the conductive layer or the membrane to insulate the conductive layer and the membrane, and terminals of application of a voltage between the conductive layer and the membrane, and such that the depth of the groove portion continuously increases from one of the edges to the bottom of the groove portion, and that the conductive layer covers the inside of the groove portion at least to reach one of the two edges, that it may cover.
16 COMPONENT COMPRISING A VARIABLE CAPACITOR US10999211 2004-11-29 US20060114638A1 2006-06-01 Fabrice Casset; Guillaume Bouche; Maurice Rivoire
A variable capacitor having a groove portion formed in an insulating substrate, two upper portions of the substrate located on either side of the groove portion forming two lateral edges, a conductive layer covering the inside of the groove portion, a flexible conductive membrane, placed above the groove portion by bearing on the edges, a dielectric layer covering the conductive layer or the membrane to insulate the conductive layer and the membrane, and terminals of application of a voltage between the conductive layer and the membrane, and such that the depth of the groove portion continuously increases from one of the edges to the bottom of the groove portion, and that the conductive layer covers the inside of the groove portion at least to reach one of the two edges, that it may cover.
17 LIQUID METAL CONTACT MICRORELAY US10857306 2004-05-28 US20050264385A1 2005-12-01 Jonathan Simon; Steven Rosenau
Liquid metal microrelays may be made where a contact is formed by constraining a quantity of liquid metal at the end of a contact support suspended over a substrate. Movement of the contact support typically drags the liquid metal along the surface of the substrate and allows the liquid metal to bridge contacts located on the substrate. Coplanar waveguides may be used for the switched signal instead of microstrip transmission lines to reduce transmission line discontinuities due to impedance changes.
18 Liquid metal contact microrelay US10857306 2004-05-28 US06963038B1 2005-11-08 Jonathan Simon; Steven A. Rosenau
Liquid metal microrelays may be made where a contact is formed by constraining a quantity of liquid metal at the end of a contact support suspended over a substrate. Movement of the contact support typically drags the liquid metal along the surface of the substrate and allows the liquid metal to bridge contacts located on the substrate. Coplanar waveguides may be used for the switched signal instead of microstrip transmission lines to reduce transmission line discontinuities due to impedance changes.
19 Method of making an electrostatic actuator US10668887 2003-09-22 US20040180465A1 2004-09-16 Jurgen Musolf; Paul Kohl
A method of fabricating an electrostatic actuator with an intrinsic stress gradient is provided. An electrode is formed on a substrate and a support layer is formed over the electrode. A metal layer is deposited onto the support layer via a deposition process. Deposition process conditions are varied in order to induce a stress gradient into the metal layer. The intrinsic stress in the metal layer increases in the direction from the bottom to the top of the metal layer. The support layer under the electrode is removed to release the electrostatic actuator.
20 OVERDRIVE STRUCTURES FOR FLEXIBLE ELECTROSTATIC SWITCH US10139527 2002-05-06 US20040017644A1 2004-01-29 Scott H. Goodwin-Johansson
A MEMS (Micro Electro Mechanical System) electrostatically operated high voltage switch or relay device is provided. These devices can switch high voltages while using relatively low electrostatic operating voltages. The MEMS device comprises a substrate, a substrate electrode, and one or more substrate contacts. The MEMS device also includes a flexible composite overlying the substrate, one or more composite contacts, and at least one insulator. The switch or relay device is provided overdrive potential through protrusions on the contact surface of the switch or relay contacts. In one embodiment the substrate contacts define protrusions on the contact surface that extend toward the flexible composite contacts. In another embodiment the flexible composite contacts define protrusions on the contact surface that extend toward the substrate contacts.
QQ群二维码
意见反馈