序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
141 熱エネルギー回収装置および熱エネルギー回収装置の起動方法 JP2014097892 2014-05-09 JP2015214922A 2015-12-03 足立 成人; 成川 裕; 福田 貴之
【課題】ポンプの上流に位置する貯留部内の液相の作動媒体の量を確保することができる熱エネルギー回収装置、および熱エネルギー回収装置の起動方法を提供する。
【解決手段】熱エネルギー回収装置X1は、熱媒体の熱によって作動媒体を蒸発させる加熱器2と、加熱器2から流出した作動媒体が流入する膨張機3と、膨張機3に接続される駆動機4と、冷却媒体によって膨張機3から流出した作動媒体を凝縮させる凝縮器5と、凝縮器5において凝縮された作動媒体を貯留する貯留部6と、貯留部6から流出した作動媒体を加熱器2へ送るポンプ7と、加熱器2、膨張機3、凝縮器5、貯留部6、およびポンプ7をこの順に接続する作動媒体の循環流路8と、ポンプ7の駆動を制御するポンプ制御部91と、を備え、ポンプ制御部91は、加熱器2に熱媒体が供給されるとともに凝縮器5に冷却媒体が供給された後に、ポンプ7を駆動する。
【選択図】図1
142 バイパス弁 JP2015537348 2013-10-17 JP2015533396A 2015-11-24 ジョン モーリス,; マーク シーリー,; パトリック ウィリアムズ,; クリストファー ナーボロウ,
廃熱回収システム(100)内で流体の流れを調節するバイパス弁(130)が、提供される。バイパス弁(130)は、弁ハウジング(220)と、弁ハウジング(220)に結合され、膨張器(140)への流体の流れを防止するように適合された膨張器ポペット(250)と、弁ハウジング(230)内に配設された少なくとも一部分を備えた弁ステム(220)であって、膨張器ポペット(250)を変位させて流体が膨張器(140)に流れることを可能にし、流体の流れを調節するように適合される、弁ステム(230)とを備える。【選択図】図8
143 排熱回収システム及び排熱回収方法 JP2014077647 2014-04-04 JP2015200182A 2015-11-12 田中 祐治; 高橋 和雄; 藤澤 亮; 足立 成人; 成川 裕
【課題】簡単な構成によりエンジンに供給される過給空気の排熱を回収することが可能な排熱回収システムを提供すること。
【解決手段】排熱回収システムであって、エンジン(3)に供給される過給空気と作動媒体とを熱交換させることにより当該作動媒体を蒸発させる加熱器(12)と、加熱器(12)から流出した作動媒体が流入する膨張機(16)と、膨張機(16)に接続された動回収機(18)と、膨張機(16)から流出した作動媒体を凝縮させる凝縮器(20)と、加熱器(12)から流出した過給空気を冷却するエアクーラ(6)に冷却媒体を供給するための冷却媒体供給管(7)と、冷却媒体供給管(7)に設けられており、冷却媒体をエアクーラ(6)に送る冷却媒体ポンプ(8)と、冷却媒体により作動媒体が冷却されるように冷却媒体供給管(7)を流れる冷却媒体の一部を凝縮器(20)に分岐させる分岐管と、を備えること。
【選択図】図1
144 Power generation system JP2012241513 2012-11-01 JP2014092040A 2014-05-19 HADIANTO MOHAMMAND ASHARI; TANIGUCHI MASAHIRO; RODIONOV MIKHAIL; OKITA NOBUO; ITO KATSUYASU; YAMASHITA KATSUYA; FURUYA OSAMU; TAKAYANAGI MIKIO
PROBLEM TO BE SOLVED: To provide a power generation plant capable of increasing a power generation amount by improving utilization efficiency of geothermal energy.SOLUTION: In an embodiment, a geothermal fluid is separated into steam and hot water by a flasher, and the separated steam is supplied as a working medium to drive a steam turbine. The steam is supplied to the evaporator from the steam turbine as a first heat medium, and then the first heat medium is supplied to a first preheater through an evaporator. Further the hot water separated by the flasher is supplied to the superheater as a second heat medium, and then the second heat medium is supplied to a second preheater through the superheater. Then a medium of low boiling point exchanges heat successively in the first preheater, the second preheater, the evaporator and the superheater, and then supplied as a working medium to drive a medium turbine. In the evaporator and the first preheater, heat is exchanged between the medium of low boiling point and the first heat medium. In the superheater and the second preheater, heat is exchanged between the medium of low boiling point and the second heat medium.
145 High-efficiency steam generation apparatus and method JP2012500230 2010-03-17 JP5420750B2 2014-02-19 グロモル、ベルント
146 Power generating system JP2010216685 2010-09-28 JP2011174694A 2011-09-08 OGATA TAIYO
PROBLEM TO BE SOLVED: To provide a power generating system for recovering exhaust heat from a working fluid discharged from a fluid coupling to recover slippage lost heat of the fluid coupling and of using the recovered exhaust heat (slippage lost heat) to generate electric power. SOLUTION: In the power generating system, water is supplied to a boiler 1 by a feed pump BP to generate steam, a steam turbine 2 is driven by using the generated steam to generate electric power, the steam discharged from the steam turbine 2 is condensed in a condenser 4, and then the condensed water is resupplied to the boiler 1 by the feed pump BP. The power generating system has the fluid coupling 10 provided between the feed pump BP and a driving machine M driving the feed pump PB to transmit a torque by working fluid filled in an impeller chamber, and the condensed water supplied from the condenser 4 is heated by the working fluid discharged from the fluid coupling 10. COPYRIGHT: (C)2011,JPO&INPIT
147 How to take advantage of waste heat energy in the power plant JP50384295 1994-07-05 JPH09501750A 1997-02-18 ヴェリ オラヴィ ロイッティ、アリ
(57)【要約】 発電所のような動装置において、より高い動力発生効率を達成するための、廃熱エネルギーの活用方法が開示される。 本発明の方法においては、媒体A,及び返送媒体Bの熱エネルギーが、本発明の方法によるポンプ(1)により臨界圧より高い圧力まで加圧した媒体Bを、並列する熱交換器(2、3)内で加熱する。 続いて、媒体Bを合流させ、熱交換器(4)内で返送媒体Bにより更に加熱する。 この媒体Bをボイラー(5)で別の処理サイクルの媒体Aにより更に加熱し、タービン(6)内で膨張させて臨界圧より低い圧力にし、熱交換器(4、3)の工程に返送する。 次に媒体Bをコンデンサー(7)で液体に凝縮し、ポンプ(1)で臨界超過圧まで加圧して新しいサイクルを始める。 上記した媒体Bの並列する熱交換器内での加熱を、臨界超過温度まで、又は媒体Bがすでに臨界超過温度を有している場合には更に高い温度まで加熱することによって行ない、それにより、エンタルピーの差(エネルギーバランスにおけるエネルギーギャップ)が、廃熱エネルギーにより同等にされる(補償される)ことから、或る温度差に相当するエンタルピーの差が、タービンに続く場所における圧力下でのエンタルピーの差より大きくなる。 本発明の方法は更に、閉鎖二酸化炭素サイクル内で酸素によって可燃物を燃焼して生成した二酸化炭素を、経済的に分離することを可能にする。
148 JPS628606B2 - JP14241678 1978-11-20 JPS628606B2 1987-02-24 ANTON SUTAIGERU
149 Dual rankine cycle power plant JP1251585 1985-01-28 JPS61171808A 1986-08-02 SEKIYA EIJI
PURPOSE:To increase the output of plant by branching the heat source fluid of high temperature working media into two systems then feeding for preheating process of high temperature working media and for evaporating/preheating process of low temperature working media. CONSTITUTION:The heat source fluid exited from a high temperature evaporator 2 is branched to feed one to a high temperature preheater 3. The remainder is led to a low temperature evaporator 8 to provide the heat upto the plant outlet temperature T1 to the low temperature working media through a low temperature preheater 9. Since the evaporation temperature (t1') of the low temperature working media will increase, the output from the low temperature turbine 11 will increase, resulting in increase of the output of dual Rankine power plant.
150 JPS5944487B2 - JP6634877 1977-06-07 JPS5944487B2 1984-10-30 NIKORAUSU RAAINGU; INGEBORUKU RAAINGU; ORIBAA RAAINGU
151 JPS599800B2 - JP579176 1976-01-21 JPS599800B2 1984-03-05 SHARURU MANDORAN
152 Two fluid cycle JP9649482 1982-06-05 JPS58214606A 1983-12-13 MIYAMOTO KAZUMASA
PURPOSE:To collect effectively the exhaust gas energy and thereby enhance the thermal efficiency of Rankin's cycle by combining the water Rankin cycle for processing of high temperature part of the heat source with the organic medium Rankin cycle for processing of the low temperature part of the heat source. CONSTITUTION:Steam generated at a water boiler 1 installed in the high temp. part makes his work at a turbine 3 to be then led to a condenser 5 and feed water heater 7. This feed water heater uses exhaust steam from a florinol 85 turbine 10 as heat source. Florinol 85 steam produced by a low temp. side boiler 2 makes his work at the florinol 85 turbine 10 to be then led to the feed water heater 7, where th steam heats the condensed water of the water cycle. Thus the cycle thermal efficiency can be enhanced throughout the two fluid cycle.
153 Internal combustion engine device JP14241678 1978-11-20 JPS5479336A 1979-06-25 ANTON SUTAIGERU
154 Heat power plant JP2855277 1977-03-15 JPS52112039A 1977-09-20 GEORUGE GIYARUMATEI; HANSU PUFUENINGAA
155 JPS5024645A - JP2611374 1974-03-06 JPS5024645A 1975-03-15
156 STEAM POWER CYCLE SYSTEM EP12829554.0 2012-09-07 EP2754861B1 2018-11-14 IKEGAMI, Yasuyuki; JITSUHARA, Sadayuki; WATANABE, Taro; OKAMURA, Shin
There is provided a steam power cycle system in which steam power cycles using pure materials as a working fluid is used in a multiple stage to reduce pressure loss in the flow channels in the respective heat exchanger so that the fluid serving as heat sources has been caused to make an effective heat exchange with the working fluid. More specifically, not only that the respective flow channels for the fluid serving as heat sources in the evaporator and the condenser in the respective steam power cycle units are connected in series to each other, but the evaporator and the condenser comprise a cross-flow type heat exchanger and are arranged respectively in a flowing direction of the fluid serving as heat source. Consequently, it is possible to reduce the length of the flow channels to the minimum necessary, simplify the flow channel structure, and reduce the pressure loss.
157 GAS TURBINE AIR INJECTION SYSTEM CONTROL AND METHOD OF OPERATION EP15802675 2015-03-26 EP3129621A4 2018-03-28 KRAFT ROBERT J; AUERBACH SCOTT
The present invention discloses a novel apparatus and methods for controlling an air injection system for augmenting the power of a gas turbine engine, improving gas turbine engine operation, and reducing the response time necessary to meet changing demands of a power plant. Improvements in control of the air injection system include ways directed towards preheating the air injection system, including using an gas turbine components, such as an inlet bleed heat system to aid in the preheating process.
158 HEAT ENERGY RECOVERY SYSTEM EP16185262.9 2016-08-23 EP3150808A1 2017-04-05 TANAKA, Yuji; TAKAHASHI, Kazuo; ADACHI, Shigeto; NARUKAWA, Yutaka

A heat energy recovery system includes an evaporator, a superheater, an expander, a power recovery device, a condenser, a pump, and a controller. The controller includes: an engine load calculation section; a maximum rotation speed determination section for determining a maximum rotation speed of the pump which is obtained when a pinch temperature reaches a target pinch temperature, based on a relational expression representing a relationship between the engine load and the maximum rotation speed, and an engine load; and a rotation speed regulation section for regulating the rotation speed of the pump in such a way as to allow the degree of superheat of the working medium flowing into the expander to be equal to or greater than a reference value, and to allow the rotation speed to be equal to or less than a maximum rotation speed determined by the maximum rotation speed determination section.

159 INTEGRATED HEAT AND POWER PLANT USING GEOTHERMAL ENERGY EP15178571.4 2015-07-28 EP3124757A1 2017-02-01 Maczan, Richard

Integrated heat and power plant comprises a steam power generation unit arranged to burn or to react fuels and produce electricity and comprises a supplementary heat generation unit arranged to utilize a geothermal energy, especially low-enthalpy geothermal energy and provide geothermal heat stream.

The both units are combined in that way that the steam power generation unit is arranged to employ geothermal energy stream in the regenerative Rankine cycle arrangement of the steam power generation aimed at improving thermal efficiency and operational effectivity of the steam power generation, as well reducing the level of environmentally damaging emissions.

160 CONTROLLING TURBOPUMP THRUST IN A HEAT ENGINE SYSTEM EP14775493 2014-03-12 EP2971622A4 2016-12-21 GAYAWAL SUYASH; VERMEERSCH MICHAEL LOUIS
A heat engine system and a method are provided for generating energy by transforming thermal energy into mechanical and/or electrical energy, and for controlling a thrust load applied to a turbopump of the heat engine system. The generation of energy may be optimized by controlling a thrust or net thrust load applied to a turbopump of the heat engine system. The heat engine system may include one or more valves, such as a turbopump throttle valve and/or a bearing drain valve, which may be modulated to control the thrust load applied to the turbopump during one or more modes of operating the heat engine system.
QQ群二维码
意见反馈