序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
161 PROCÉDÉ ET APPAREIL DE GÉNÉRATION D'ÉLECTRICITÉ UTILISANT UNE CENTRALE NUCLÉAIRE EP14830815.8 2014-12-17 EP3084149A1 2016-10-26 DAVIDIAN, Benoît; PAUFIQUE, Cyrille
A method for generating electricity by means of a nuclear power plant (3) and a liquid vaporisation apparatus involves producing heat energy by means of the nuclear power plant and using the heat energy to vaporise water or to heat water vapour, expanding the water vapour formed in a first turbine (T1) and using the first turbine to drive an electricity generator (G1) in order to produce electricity, vaporising liquefied gas (15) coming from a cryogenic store (S) in order to produce pressurised gas (17), reheating the pressurised gas with a part of the water vapour intended for the first turbine of the nuclear power plant and expanding the pressurised fluid in a second turbine (T2) to produce electricity.
162 PROCÉDÉ ET APPAREIL DE GÉNÉRATION D'ÉLECTRICITÉ ET DE STOCKAGE D'ÉNERGIE UTILISANT UNE CENTRALE THERMIQUE OU NUCLÉAIRE EP14830813.3 2014-12-17 EP3084147A1 2016-10-26 DAVIDIAN, Benoît; PAUFIQUE, Cyrille
A method for generating electricity by means of a nuclear power plant (3) and a liquid vaporisation apparatus involves, during a first period, producing heat energy by means of the nuclear power plant (5) and using the heat energy to vaporise water or to heat water vapour, expanding the water vapour formed in a first turbine (T1) and using the first turbine to drive an electricity generator (G1) in order to produce electricity, vaporising liquefied gas (15) coming from a cryogenic store (S) in order to produce pressurised gas (17), reheating the pressurised gas with a part of the water vapour intended for the first turbine of the nuclear power plant and expanding the pressurised fluid in a second turbine (T2) to produce electricity and, during the second period, liquefying the gas to be vaporised.
163 HEAT PIPE TEMPERATURE MANAGEMENT SYSTEM FOR A TURBOMACHINE EP16163035.5 2016-03-30 EP3075957A1 2016-10-05 EKANAYAKE, Sanji; RIZZO, Joseph Paul; SCIPIO, Alston Ilford; YANG, Timothy Tahteh; WICKERT, Thomas Edward

A turbomachine includes a compressor 110 having an inter-stage gap 113 between adjacent rows of rotor blades 111 and stator vanes 112. A combustor 120 is connected to the compressor, and a turbine 130 is connected to the combustor. An intercooler is operatively connected to the compressor 110, and includes a first plurality of heat pipes 222 that extend into the inter-stage gap. The first plurality of heat pipes are operatively connected to a first manifold 224, and the heat pipes and the first manifold are configured to transfer heat from the compressed airflow from the compressor to heat exchangers. A cooling system 250 is operatively connected to the turbine 130, and includes a second plurality of heat pipes 252 located in the turbine nozzles 134. The second plurality of heat pipes 252 are operatively connected to a second manifold 256, and the heat pipes and the second manifold are configured to transfer heat from the turbine nozzles to the heat exchangers.

164 POWER GENERATING SYSTEM EP10769077.8 2010-09-28 EP2529086B1 2016-06-08 OGATA, Hiroshi
165 BYPASS VALVE EP15185521.0 2013-10-17 EP2993317A1 2016-03-09 MORRIS, John; SEALY, Mark; WILLIAMS, Patrick; NARBOROUGH, Christopher

A bypass valve (130) that regulates a flow of a fluid in a waste heat recovery system (100) is provided. The bypass valve (130) comprises a valve housing (220), an expander poppet (250) coupled to the valve housing (220) and adapted to prevent the flow of the fluid to an expander (140), and a valve stem (230) with at least a portion disposed in the valve housing (220) wherein the valve stem (230) is adapted to displace the expander poppet (250) to allow the fluid to flow to the expander (140), and regulate the flow of the fluid.

166 CONTROLLING TURBOPUMP THRUST IN A HEAT ENGINE SYSTEM EP14775493.1 2014-03-12 EP2971622A1 2016-01-20 GAYAWAL, Suyash; VERMEERSCH, Michael, Louis
A heat engine system and a method are provided for generating energy by transforming thermal energy into mechanical and/or electrical energy, and for controlling a thrust load applied to a turbopump of the heat engine system. The generation of energy may be optimized by controlling a thrust or net thrust load applied to a turbopump of the heat engine system. The heat engine system may include one or more valves, such as a turbopump throttle valve and/or a bearing drain valve, which may be modulated to control the thrust load applied to the turbopump during one or more modes of operating the heat engine system.
167 A MODIFIED ORGANIC RANKINE CYCLE (ORC) PROCESS EP13853630.5 2013-11-06 EP2923044A1 2015-09-30 JONAS, Jørn Magnus
The present invention provides a modified Organic Rankine Cycle (ORC) process, for reducing or preventing pump cavitation, wherein an ORC working medium flow is pressurized in a pump, heated in a heat exchanger by the use of a waste heat flow, and expanded in an expansion machine. The working medium flow from the expansion machine is split in a splitting device into two parallel working medium flows, the working medium flow is condensed in a condenser by the use of a cooling medium flow, the working medium flow is cooled in a heat exchanger to a temperature lower than the temperature of the working medium flow from the condenser by heat exchanging with an LNG flow flowing from a LNG fuel storage tank through the heat exchanger and to a LNG fuelled machinery, and the condensed working medium flow from the condenser and the cooled working medium flow from the heat exchanger are combined in a mixing device positioned upstream of the pump.
168 A rankine cycle apparatus EP13000615.8 2013-02-07 EP2765281B1 2015-07-08 Guadalajara Saiz, Mario
169 HIGH EFFICIENCY POWER GENERATION SYSTEM AND SYSTEM UPGRADES EP13756774.9 2013-08-20 EP2888456A2 2015-07-01 SIMPKIN, William, Edward
A thermal/electrical power converter includes a gas turbine with an input couplable to an output of an inert gas thermal power source, a compressor including an output couplable to an input of the inert gas thermal power source, and a generator coupled to the gas turbine. The thermal/electrical power converter also includes a heat exchanger with an input coupled to an output of the gas turbine and an output coupled to an input of the compressor. The heat exchanger includes a series -coupled super-heater heat exchanger, a boiler heat exchanger and a water preheater heat exchanger. The thermal/electrical power converter also includes a reservoir tank and reservoir tank control valves configured to regulate a power output of the thermal/electrical power converter.
170 TRIPLE EXPANSION WASTE HEAT RECOVERY SYSTEM AND METHOD EP13731204.7 2013-06-10 EP2882942A2 2015-06-17 FREUND, Sebastian, Walter
A waste heat recovery system is provided. The waste heat recovery system includes a Rankine cycle system for circulating a working fluid. The Rankine cycle system includes at least one first waste heat recovery boiler configured to transfer heat from a heat source to the working fluid. The Rankine cycle system also includes a first expander configured to receive the heated working fluid from the at least one first waste heat recovery boiler. Further, the Rankine cycle system includes a second expander and a third expander coupled to at least one electric generator. The waste heat recovery system also includes a condenser configured to receive the working fluid at low pressure from the first expander, the second expander and the third expander for cooling and a pump connected to the condenser for receiving a cooled and condensed flow of the working fluid from the condenser.
171 SOLAR CHIMNEY WITH EXTERNAL VERTICAL AXIS WIND TURBINE EP12863181.9 2012-04-05 EP2798208A1 2014-11-05 Yangpichit, Pitaya
The solar chimney of the present invention comprises an elongated chamber having an inlet end and an outlet end, the chamber defining a path for fluid, such as air, from the inlet to the outlet. Air updrafts in the chamber drive an internal turbine which is connected to an electric generator, or to some other machine. The chamber has the general configuration of an hourglass; the diameter of the chamber becomes progressively smaller with distance from the inlet end, until the diameter reaches a minimum value, then becomes progressively larger, as one proceeds towards the outlet end. Disposed within the chamber are one or more heat exchangers for heating air in the chamber by solar and/or wind energy.
172 Rankine cycle integrated with organic rankine cycle and absorption chiller cycle EP11189313.7 2011-11-16 EP2455591A3 2014-02-19 Lehar, Matthew Alexander; Freund, Sebastian; Frey, Thomas Johannes; Ast, Gabor; Huck, Pierre Sebastien; Muehlbauer, Monika

A power generation system is provided. The system comprises a first Rankine cycle-first working fluid circulation loop (231) comprising a heater (212), an expander (218), a heat exchanger (222), a recuperator (230), a condenser (234), a pump (242), and a first working fluid; integrated with a) a second Rankine cycle-second working fluid circulation loop (245) comprising a heater (246), an expander (252), a condenser (256), a pump (260), and a second working fluid comprising an organic fluid; and b) an absorption chiller cycle (228) comprising a third working fluid circulation loop comprising an evaporator, an absorber, a pump, a desorber, a condenser, and a third working fluid comprising a refrigerant. In one embodiment, the first working fluid comprises CO2. In one embodiment, the first working fluid comprises helium, air, or nitrogen.

173 Anlage zur Speicherung und Abgabe von thermischer Energie mit einem Wärmespeicher und einem Kältespeicher und Verfahren zu deren Betrieb EP12164473.6 2012-04-17 EP2653670A1 2013-10-23 Reznik, Daniel; Stiesdal, Henrik

Gegenstand der Erfindung ist eine Anlage zur Speicherung und Abgabe von thermischer Energie sowie ein Verfahren zu deren Betrieb. Diese Anlage weist einen Wärmespeicher (14) und einen Kältespeicher (16) auf. Erfindungsgemäß ist vorgesehen, dass der Wärmespeicher (14) und der Kältespeicher (16) in zwei getrennten Endladekreisläufen (40, 52) entladen werden, wobei die thermische Energie beispielsweise über einen Generator (G) in elektrische Energie umgesetzt wird. Hierbei kann vorteilhaft die Restwärme aus dem Prozess im Kreislauf (40) über einen ersten Wärmetauscher (51) dem Prozess im Kreislauf (52) zugeführt werden, wodurch der Gesamtwirkungsgrad vorteilhaft verbessert wird. Vorteilhaft kann weiterhin die Wärme aus dem Wärmespeicher (14) über einen Abhitze-Dampferzeuger (68) in den ersten Kreislauf (40) übertragen werden. Der Wärmespeicher (14) und der Kältespeicher (16) können beispielsweise mit überschüssiger Energie aus dem elektrischen Netz über einen Motor (M) aufgeladen werden. Hierdurch können beispielsweise überschüssige Energiereserven alternativer Energieressourcen gespeichert werden.

174 Energiespeichervorrichtung sowie Verfahren zur Speicherung von Energie EP11183274.7 2011-09-29 EP2574865A1 2013-04-03 Brunhuber, Christian; Graeber, Carsten; Zimmermann, Gerhard

Die Erfindung betrifft eine Energiespeichervorrichtung (1) zur Speicherung thermischer Energie, mit einem Ladekreislauf (2) für ein Arbeitsgas (3), umfassend einen Verdichter (4), einen Wärmespeicher (5) und eine Expansionsturbine (6), wobei der Verdichter (4) austrittsseitig mit dem Eintritt der Expansionsturbine (6) über eine erste Leistung (7) für das Arbeitsgas (3) verbunden ist, und der Wärmespeicher (5) in die erste Leitung (7) geschaltet ist. Erfindungsgemäß ist der Verdichter (4) und die Expansionsturbine (6) auf einer gemeinsamen Welle (14) angeordnet, und der Wärmetauscher des Wärmespeichers (5) derart ausgelegt, dass das in der Expansionsturbine (6) entspannte Arbeitsgas (3) weitgehend den thermodynamischen Zustandsgrößen des Arbeitsgases (3) vor Eintritt in den Verdichter (4) entspricht. Dabei wird nur ein Teil der Wärmeenergie auf den Wärmespeicher (5) übertragen. Das der Expansionsturbine (6) zugeführte Arbeitsgas (3) bleibe relativ warm.

175 Rankine cycle integrated with organic rankine cycle and absorption chiller cycle EP11189313.7 2011-11-16 EP2455591A2 2012-05-23 Lehar, Matthew Alexander; Freund, Sebastian; Frey, Thomas Johannes; Ast, Gabor; Huck, Pierre Sebastien; Muehlbauer, Monika

A power generation system is provided. The system comprises a first Rankine cycle-first working fluid circulation loop (231) comprising a heater (212), an expander (218), a heat exchanger (222), a recuperator (230), a condenser (234), a pump (242), and a first working fluid; integrated with a) a second Rankine cycle-second working fluid circulation loop (245) comprising a heater (246), an expander (252), a condenser (256), a pump (260), and a second working fluid comprising an organic fluid; and b) an absorption chiller cycle (228) comprising a third working fluid circulation loop comprising an evaporator, an absorber, a pump, a desorber, a condenser, and a third working fluid comprising a refrigerant. In one embodiment, the first working fluid comprises CO2. In one embodiment, the first working fluid comprises helium, air, or nitrogen.

176 THERMISCHE KRAFTWERKSANLAGE, INSBESONDERE SOLARTHERMISCHE KRAFTWERKSANLAGE EP10705312.6 2010-01-20 EP2394109A2 2011-12-14 DANOV, Vladimir
The invention relates to a thermal power plant, in particular a solar thermal power plant (1), comprising a gas turbine device, in which a medium circulating in a circuit (3) and heated by thermal energy is conducted through a turbine (4) in order to produce electric energy, and subsequently into a capacitor (5) cooled by a cooling device (6) in order to liquefy the medium, wherein the cooling device (6) is designed as a solar-operated cooling device (6) having a closed coolant circuit (7).
177 Energieerzeugerkopplung EP09013112.9 2009-10-16 EP2386728A1 2011-11-16 Köster, Olaf; Zaschke, Martin; Bauer, Christian

Die Erfindung betrifft einer Energieerzeugerkopplung zur Erzeugung von Elektroenergie mit wenigstens einer geothermischen Energieerzeugungsanlage und wenigstens einem Heizkraftwerk, wie z. B. einem Biogas- und/oder Biogülle-Heizkraftwerk oder einem Blockheizkraftwerk für Bioöl beziehungsweise Biopellet mit wenigstens einem Wärmetauscher, der zur Erwärmung eines Austauschmediums durch die Abwärme des Heizkraftwerkes vorgesehen ist.

Die Erfindung zeichnet sich dadurch aus, dass eine Abgasleitung für das Austauschmedium eines ersten wärmetauschers mit wenigstens einer in das Erdreich führenden Einspeisungsleitung der geothermischen Energieerzeugungsanlage verbunden ist beziehungsweise die Einspeisungsleitung bildet.

178 HYBRID POWER SYSTEM FOR CONTINUOUS RELIABLE POWER AT LOCATIONS INCLUDING REMOTE LOCATIONS EP04799363.9 2004-11-17 EP1700010A2 2006-09-13 BRONICKI, Lucien, Y.
The present inventive subject matter is drawn to a hybrid ultra reliable power generating system for supplying continuous reliable power comprising: a primary power unit producing electric power that is supplied to a load. Also a secondary power unit is included in the form of a closed cycle vapor turbine (CCVT) system which is heated by rejected heat of the primary power unit, wherein the vaporizer of the CCVT is heated by rejected heat of the primary power unit. In an example of a particular embodiment of the present invention, the present inventive subject matter is drawn to an apparatus that combines a fuel efficient primary power generation unit system such as a high temperature fuel cell with a secondary power unit that is a very high reliability closed cycle vapor turbine (CCVT) which operates according to a Rankine cycle using organic working fluid that is capable of producing approximately 5 - 15% of the electric power that is produced by the primary power unit and which is heated by rejected heat of the primary power unit, wherein working fluid in the vaporizer of the CCVT is heated by heat rejected by the primary power unit.
179 HIGH EFFICIENCY POWER GENERATION EP94925752 1994-08-08 EP0721542A4 1998-02-11 SIMPKIN WILLIAM E
A closed-loop Brayton-cycle topping system (10) operates at maximum temperatures greatly in excess of conventional steam Rankine-cycle. The topping system (10) can thus act as an addition to the Rankine-cycle base system (11). Carbon-carbon composite is used to make the Brayton-cycle topping system's turbine rotor and piping for ducting the working fluid between a "firebox" (25) and the Brayton-cycle topping system's turbine (30). An inert gas working fluid is used to provide a nonoxidizing environment for the carbon-carbon. A shielding-cooling-insulating system provides a structural cooling loop which permits use of conventional metal for containment and ducting of high-temperature working fluids. In a system heated by fossil fuel, tubular ceramic heat exchanger elements capable of withstanding high temperatures are used. All energy put into the topping system (10) is productively utilised either in the topping system (10) as shaft power output or by the base system (11) as input.
180 SYSTEM FOR RECOVERING THERMAL ENERGY PRODUCED IN PYROMETALLURGICAL PROCESS PLANTS OR SIMILAR, TO CONVERT SAME INTO, OR GENERATE, ELECTRICAL ENERGY US15771749 2015-11-03 US20180347410A1 2018-12-06 Carlos Alberto Hernandez Abarca
The invention relates to a system for recovering thermal energy produced in pyrometallurgical process plants and converting said thermal energy into electrical energy. The system is characterised in that it comprises at least one heat transfer chamber (1) comprising a gas interface section (1A), for separating the subsystem from the corrosive power of, and incrustation generated by, the gases from the heat source or duct (5). The system also comprises a section (1B) for connecting to a Stirling engine (2), which is a thermal engine and which, by means of the cyclical compression and expansion of a gaseous working fluid, at different temperature levels, produces a net conversion of thermal energy into mechanical energy.
QQ群二维码
意见反馈