序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 微阵列系统和用于制备微阵列的方法 CN200780028982.3 2007-08-03 CN101529227B 2011-05-25 陶谛德; 刘文佐; 黄建国
用于制备微阵列的方法。该方法包括使微珠的群沉积在具有至少一个基准点的基材上的步骤。所述群由至少两个亚群、优选多个亚群组成,每个亚群包含能够与至少一种靶分析物特异性结合的已知活性剂。将所述亚群依次且以彼此分立的时间段沉积。该方法也包括在沉积每个亚群后对基材成像的步骤。随后使用基准点作为参考比较图像从而确定每个微珠的位置,并且旨在基于各图像之间的差异识别所述亚群及其已知活性剂。还披露了使用所述微阵列的系统。
2 微阵列系统和用于制备微阵列的方法 CN200780028982.3 2007-08-03 CN101529227A 2009-09-09 陶谛德; 刘文佐; 黄建国
用于制备微阵列的方法。该方法包括使微珠的群沉积在具有至少一个基准点的基材上的步骤。所述群由至少两个亚群、优选多个亚群组成,每个亚群包含能够与至少一种靶分析物特异性结合的已知活性剂。将所述亚群依次且以彼此分立的时间段沉积。该方法也包括在沉积每个亚群后对基材成像的步骤。随后使用基准点作为参考比较图像从而确定每个微珠的位置,并且旨在基于各图像之间的差异识别所述亚群及其已知活性剂。还披露了使用所述微阵列的系统。
3 微阵列基底、微阵列、流体系统及其制备方法 CN201410364934.3 2014-07-29 CN104345153A 2015-02-11 郑波; 冯汇
申请提供了微阵列基底,其包含表面被聚多巴胺修饰的含氟聚合物膜片,其中聚多巴胺用于固定生物分子或细胞。本申请还提供了包含上述微阵列基底的微阵列、用于制备上述微阵列基底的流体系统以及制备上述微阵列基底和微阵列的方法,其中利用微流体系统将多巴胺溶液分配至含氟聚合物膜片表面,进而在其上形成聚多巴胺微斑点阵列作为例如生化反应的反应部位。
4 采用次级离子质谱法(SIMS)高灵敏度检测和定量生物分子的改进方法 CN201080046969.2 2010-09-15 CN102640000A 2012-08-15 C·里波尔; V·诺里斯; G·勒让; A·德洛纳
发明涉及采用SIMS来检测并定量样品中多种生物分子的存在或不存在的改进方法以及用于所述方法的阵列。
5 微阵列基底、微阵列、流体系统及其制备方法 CN201410364934.3 2014-07-29 CN104345153B 2017-05-10 郑波; 冯汇
申请提供了微阵列基底,其包含表面被聚多巴胺修饰的含氟聚合物膜片,其中聚多巴胺用于固定生物分子或细胞。本申请还提供了包含上述微阵列基底的微阵列、用于制备上述微阵列基底的流体系统以及制备上述微阵列基底和微阵列的方法,其中利用微流体系统将多巴胺溶液分配至含氟聚合物膜片表面,进而在其上形成聚多巴胺微斑点阵列作为例如生化反应的反应部位。
6 蛋白质或胜肽的印刷方法、及蛋白质或胜肽阵列、功能性蛋白质或功能性胜肽的鉴定方法 CN201510626865.3 2011-08-25 CN105418764A 2016-03-23 一木隆范; 马尼许毕亚尼; 塩野博文
发明具有如下步骤:(a)将微凹版与基板重迭的步骤,所述微凹版是由微小凹部构成,于所述微小凹部内具有核酸与无细胞蛋白质合成系统;(b)在所述微小凹部内,根据所述核酸,进行转录反应与蛋白质或胜肽合成反应;(c)将在所述微小凹部内合成的所述蛋白质或胜肽固定在所述基板上。
7 采用次级离子质谱法(SIMS)高灵敏度检测和定量生物分子的改进方法 CN201080046969.2 2010-09-15 CN102640000B 2016-01-20 C·里波尔; V·诺里斯; G·勒让; A·德洛纳
发明涉及采用SIMS来检测并定量样品中多种生物分子的存在或不存在的改进方法以及用于所述方法的阵列。
8 密度生化阵列芯片 CN201180050914.3 2011-08-31 CN103180496B 2015-04-01 布赖恩·P·斯泰克
发明提供了用于生化阵列的阵列芯片,其中,所述芯片包括根据第一节距的附着位点排列的场区域和具有根据第二节距排列的单一维度点图形的至少一个示踪区域,其中,所述第二节距稍稀疏并且为非整数的多个第一节距,从而单一维度Moiré求平均数可以应用在所述示踪区域,因此实现芯片与具有更高密度的附着位点的光学仪器的对准。
9 蛋白质或胜肽的印刷方法、及蛋白质阵列或胜肽阵列、以及功能性蛋白质或功能性胜肽的鉴定方法 CN201180041500.4 2011-08-25 CN103221539A 2013-07-24 一木隆范; 马尼许.毕亚尼; 塩野博文
发明具有如下步骤:(a)于由具有特定开口形状的微小凹部构成的微凹版中,于所述微小凹部内准备核酸与无细胞蛋白质合成系统的步骤;(b)以与在所述微小凹部中合成的下述蛋白质或胜肽相接触的方式将基板与所述微凹版重迭的步骤;(c)于所述微小凹部内,使用所述无细胞蛋白质合成系统,由所述核酸来合成蛋白质或胜肽,并将所述蛋白质或胜肽沿着所述微小凹部所具有的特定开口形状固定在所述基板上的步骤。
10 密度生化阵列芯片 CN201180050914.3 2011-08-31 CN103180496A 2013-06-26 布赖恩·P·斯泰克
发明提供了用于生化阵列的阵列芯片,其中,所述芯片包括根据第一节距的附着位点排列的场区域和具有根据第二节距排列的单一维度点图形的至少一个示踪区域,其中,所述第二节距稍稀疏并且为非整数的多个第一节距,从而单一维度Moiré求平均数可以应用在所述示踪区域,因此实现芯片与具有更高密度的附着位点的光学仪器的对准。
11 Method of manufacturing a microarray system, and microarray JP2009522740 2007-08-03 JP4866462B2 2012-02-01 コク、ジョンソン エン、キアン; トラウ、ディーター; リウ、ウェン−ツォ
A process for making a micro-array. The process comprises the step of depositing a population of microbeads on a substrate having at least one fiducial. The population being comprised of at least two sub-populations, preferably multiple sub-populations, each comprising a known active agent capable of specific binding with at least one target analyte. The said subpopulations are deposited sequentially and at discrete periods of each other. The process also comprises the step of making images of the substrate after deposition of each subpopulation. The images are then compared using the fiducial as a reference to thereby determine the location of each microbead and to identify the subpopulation, and its known active agent, based on differences between each image. Also disclosed in a system for using the microarray.
12 Detection of differences in nucleic acid sequences using ligase detection reaction in addressable arrays JP53016497 1997-02-05 JP4294732B2 2009-07-15 ケンプ,マリア; ザービ,モニブ; ハマー,ロバート・ピー; バラニー,ジョージ; バラニー,フランシス; ブロック,ヘルマン
The present invention describes a method for identifying one or more of a plurality of sequences differing by one or more single base changes, insertions, deletions, or translocations in a plurality of target nucleotide sequences. The method includes a ligation phase, a capture phase, and a detection phase. The ligation phase utilizes a ligation detection reaction between one oligonucleotide probe, which has a target sequence-specific portion and an addressable array-specific portion, and a second oligonucleotide probe, having a target sequence-specific portion and a detectable label. After the ligation phase, the capture phase is carried out by hybridizing the ligated oligonucleotide probes to a solid support with an array of immobilized capture oligonucleotides at least some of which are complementary to the addressable array-specific portion. Following completion of the capture phase, a detection phase is carried out to detect the labels of ligated oligonucleotide probes hybridized to the solid support. The ligation phase can be preceded by an amplification process. The present invention also relates to a kit for practicing this method, a method of forming arrays on solid supports, and the supports themselves.
13 Detection of nucleic acid sequence difference using ligase detection reaction with addressable array JP2007260054 2007-10-03 JP2008064765A 2008-03-21 BARANY FRANCIS; BARANY GEORGE; HAMMER ROBERT P; KEMPE MARIA; BLOK HERMAN; ZIRVI MONIB
<P>PROBLEM TO BE SOLVED: To identify one or more of a plurality of sequences differing by one or more single base changes, insertions, deletions, or translocations in a plurality of target nucleotide sequences. <P>SOLUTION: The method includes a ligation phase, a capture phase, and a detection phase. The ligation phase utilizes a ligation detection reaction between a first oligonucleotide probe, which has a target sequence-specific portion and an addressable array-specific portion, and a second oligonucleotide probe, having a target sequence-specific portion and a detectable label. After the ligation phase, the capture phase is carried out by hybridizing the ligated oligonucleotide probes to a solid support with an array of immobilized capture oligonucleotides at least some of which are complementary to the addressable array-specific portion. Following completion of the capture phase, a detection phase is carried out to detect the labels of ligated oligonucleotide hybridized to the solid support. The ligation phase can be preceded by an amplification process. The present invention also relates to a kit for practicing this method, a method of forming arrays on solid supports, and the supports themselves. <P>COPYRIGHT: (C)2008,JPO&INPIT
14 Microarray and spotting equipment JP2006510816 2005-03-04 JP4024828B2 2007-12-19 良一 今中; 忠男 杉浦; 小太郎 湊
15 Ligand - tagged ligand array in order to identify the target interaction JP2000534680 1999-02-26 JP2002505119A 2002-02-19 グレナ シー. バーマー,
(57)【要約】 本発明は、一般に、高処理能スクリーニング方法に関する。 より詳細には、本発明は、リガンドのタグ化アレイを使用して、複数のリガンドと相互作用する複数のタンパク質または化合物を同時に同定するために容易に使用され得るスクリーニング方法を提供する。
16 BARCODED RAPID ASSAY PLATFORM USEFUL FOR EFFICIENT ANALYSIS OF CANDIDATE MOLECULES AND METHODS OF MAKING AND USING THE PLATFORM US15942351 2018-03-30 US20180284123A1 2018-10-04 James R. Heath; Amy M. McCarthy; Jungwoo Kim
Disclosed are devices, compositions, and methods useful for assessing properties of compounds and molecules, such a binding, kinetic, and enzymatic properties, simultaneously for multiple compounds or molecules and/or under multiple conditions, efficiently, rapidly, and combinations of these. By using certain features alone or together in the save device or assay, the disclosed devices, compositions, and methods provide improvements over, and solve problems present in, prior assay devices and methods.
17 Microarray substrate, microarray, microfluidic system and methods for preparing the same US14446017 2014-07-29 US09897602B2 2018-02-20 Bo Zheng; Hui Feng
A microarray substrate including a piece of fluoropolymer whose surface is modified with polydopamine, in which the polydopamine forms an array of microspots on the surface of the fluoropolymer piece, and allows immobilization of molecules or cells. A microarray including the substrate, a microfluidic system designed for dispensing reagents onto selected locations on the surface of substrates, and a method for preparing the substrate and the microarray, in which a dopamine solution is dispensed onto the fluoropolymer piece using the microfluidic system, and forms an array of polydopamine microspots serving as the reaction sites for microarray analysis.
18 COMBINATORIC ENCODING METHODS FOR MICROARRAYS US15281129 2016-09-30 US20170038371A1 2017-02-09 Dieter TRAU
A method for determining a presence or absence of one or more target analytes in a sample includes contacting the sample with an array of particles comprising at least first and second particle subsets disposed therein with a known particle number ratio with respect to each other. The first particle subset has at least one binding site configured to bind with a first target analyte and the second particle subset has at least one binding site configured to bind with a second, different target analyte. Changes are detected in a detectable signal emitted by the particles after contacting the sample with the array. A number of the particles that emit the change in the detectable signal are counted and this number is compared to the known particle number ratio of the subsets so as to determine the presence or absence of the one or more of the target analytes.
19 Combinatoric encoding methods for microarrays US14409511 2013-07-19 US09486770B2 2016-11-08 Dieter Trau
A method of encoding a microarray includes depositing a first batch of particles on a substrate. The first batch of particles comprises a mixture of at least two sub-batches of the particles. Each of the sub-batches is capable of binding to a different, specific target analyte. Information necessary for decoding the microarray is provided prior to or during the depositing and includes a unique particle number ratio of the sub-batches. If more than one batch of particles is deposited, an image can be taken of the first batch prior to depositing subsequent batches to provide information about the position of the particles in the first batch of particles. These depositing and imaging steps can be sequentially repeated for the subsequent batches. Such a microarray having multiple batches can be decoded using the information about the position of the particles and the known particle number ratios of the sub-batches.
20 MICROARRAY SYSTEM AND A PROCESS FOR DETECTING TARGET ANALYTES USING THE SYSTEM US15182626 2016-06-15 US20160291006A1 2016-10-06 Dieter Trau; Wen-Tso Liu; Kian Kok Johnson NG
A process for identifying one or more target analytes present in a sample includes contacting a microarray with the sample. The microarray has at least two microbead subpopulations with randomly distributed spatial positions, each of the subpopulations comprising microbeads having a known active agent capable of binding with a respective target analyte. After contacting the microarray with the sample, the spatial positions of the microbeads which have undergone a change that is indicative of a respective one of the active agents being bound to a corresponding one of the target analytes are determined. At least one of the microbead subpopulations which has undergone the change is identified by comparing the determined spatial positions to recorded spatial positions of the microbeads of the microbead subpopulations stored in an encoding/decoding data table. The target analytes are identified based on the known active agents belonging to the at least one identified microbead subpopulation.
QQ群二维码
意见反馈