首页 / 专利库 / 医疗设备 / 药物洗脱球囊 / 包含洗脱塞拉集宁化合物的水凝胶材料

包含洗脱塞拉集宁化合物的凝胶材料

阅读:853发布:2020-07-02

专利汇可以提供包含洗脱塞拉集宁化合物的凝胶材料专利检索,专利查询,专利分析的服务。并且一种 水 凝胶 聚合物 包括塞拉集宁化合物。所述塞拉集宁化合物具有在至少3天时产生0.1-100μg/ml范围的释放速率的疏水性/亲水性。,下面是包含洗脱塞拉集宁化合物的凝胶材料专利的具体信息内容。

1.一种塞拉集宁洗脱凝胶材料,包含:
水凝胶聚合物
掺入所述水凝胶聚合物并与其非共价结合的塞拉集宁模拟化合物,所述塞拉集宁模拟化合物包含甾醇主链和多个阳离子基,其中,所述塞拉集宁模拟化合物包括附接于所述甾醇主链的疏水性取代基。
2.如权利要求1中所述的塞拉集宁洗脱水凝胶材料,其中,所述塞拉集宁模拟化合物在
3天、一周或一个月时和/或在3天、一周和/或一个月的时间段内以0.1-100μg/ml、0.5-50μg/ml或1-10μg/m1的速率在过量的水中从所述水凝胶洗脱。
3.如权利要求1或2中所述的塞拉集宁洗脱水凝胶材料,其中,所述水凝胶材料进一步包含至少50%、90%或99%重量计的水。
4.如权利要求3中所述的塞拉集宁洗脱水凝胶材料,其中,所述水包含盐水。
5.如权利要求1或2所述的塞拉集宁洗脱水凝胶材料,其中,所述水凝胶聚合物包括聚乙烯醇、丙烯酸盐聚合物、聚化乙烯、polyAMPS、聚乙烯吡咯烷、聚丙烯酰胺、树脂、琼脂糖、甲基纤维素、透明质酸、水解聚丙烯腈、或它们的组合。
6.如权利要求5所述的塞拉集宁洗脱水凝胶材料,其中,所述水凝胶聚合物包括聚丙烯酸钠。
7.如权利要求1或2所述的塞拉集宁洗脱水凝胶材料,其中,所述水凝胶包括疏水区。
8.如权利要求1所述的塞拉集宁洗脱水凝胶材料,所述塞拉集宁模拟化合物具有如式I的结构:
其中,
q=0且p=1;
R3、R7和R12独立地包括阳离子基团;以及
R17为具有具有至少11个原子链的疏水基的疏水性取代基。
9.如权利要求8中所述的塞拉集宁洗脱水凝胶材料,其中,所述疏水性取代基连接到式I的塞拉集宁的R17位点。
10.如权利要求1或9中所述的塞拉集宁洗脱水凝胶材料,其中,疏水性取代基包括至少
9个碳的碳链。
11.包含根据权利要求1所述的水凝胶材料的医疗装置。
12.如权利要求11中所述的医疗装置,其中,所述医疗装置选自由组织移植物导管、旁路移植物、起搏器或除纤颤器导线、吻合夹、动脉闭合装置、卵圆孔未闭闭合装置和药物输送球囊组成的组。
13.如权利要求12中所述的医疗装置,其中,所述医疗装置选自由植入物和气管内管组成的组。
14.如权利要求11中所述的医疗装置,其中,所述组织移植物选自由骨针、骨螺钉、末梢支架、和动-静脉移植物组成的组。
15.如权利要求14中所述的医疗装置,其中,所述医疗装置是冠状动脉支架。
16.如权利要求11所述的医疗装置,其中,所述水凝胶材料涂覆于基底上。
17.如权利要求11中所述的医疗装置,其中,将所述水凝胶材料制成接触镜片。
18.权利要求16所述的医疗装置,其中,所述水凝胶包括硅树脂。
19.如权利要求11到18中任一项所述的医疗装置,其中,选择所述塞拉集宁模拟化合物的类型和浓度以提供足以在生理条件下抑制金黄色葡萄球菌类MRSA或VRSA生长的MIC。
20.一种制作塞拉集宁洗脱水凝胶材料的方法,包括:
提供水凝胶聚合物;以及
将塞拉集宁模拟化合物掺入所述水凝胶聚合物以便将所述塞拉集宁化合物非共价结合到所述水凝胶聚合物,所述塞拉集宁化合物包含甾醇主链和多个阳离子基,其中,所述塞拉集宁模拟化合物包括附接于所述甾醇主链的疏水性取代基。
21.权利要求20所述的方法,其中,所述塞拉集宁模拟化合物以足以在3天、一周或一个月时和/或在3天、一周和/或一个月的时间段内在过量的水中以0.1-100μg/ml、0.5-50μg/ml或1-10μg/m1的速率从所述水凝胶洗脱的浓度包括在所述水凝胶材料中。
22.如权利要求20或21中所述的方法,其中,所述塞拉集宁模拟化合物通过灌输溶解于溶剂中的所述塞拉集宁模拟化合物而掺入所述水凝胶材料。
23.如权利要求20或21中所述的方法,其中,将所述塞拉集宁模拟化合物掺入无水的水凝胶聚合物。
24.如权利要求20或21中所述的方法,其中,所述水凝胶材料为在塞拉集宁存在时由一个或多个单体聚合而成,从而将所述塞拉集宁掺入所述水凝胶聚合物,其中所述塞拉集宁与所述一个或多个单体中的至少一个非共价结合。

说明书全文

包含洗脱塞拉集宁化合物的凝胶材料

[0001] 相关申请的交叉引用
[0002] 本申请要求2011年7月20日提交的、发明名称为“用于阻止细菌生物膜形成的含塞拉集宁(ceragenin)的水凝胶”的美国临时专利申请号61/572,714和2012年5月3日提交的、发明名称为“包含洗脱塞拉集宁化合物的水凝胶材料”的美国临时专利申请号61/642,431的权益,二者均通过引用并入本文。

背景技术

[0003] 1.发明领域
[0004] 本发明涉及水凝胶材料。所述材料包括水凝胶聚合物,其掺有可控制地从所述水凝胶聚合物洗脱的塞拉集宁化合物。所述水凝胶材料可制成接触镜片。
[0005] 2.相关技术
[0006] 水凝胶聚合物为可吸收和保持相对于其自身质量而言非常大量的液体的聚合物。在去离子水和蒸馏水中,水凝胶聚合物可吸收自身重量的500倍(其自身体积的30-60倍)。
水凝胶聚合物吸收水的能取决于被吸收的水溶液的离子浓度。盐溶液吸收小于蒸馏水。
例如,水凝胶聚合物吸收大约聚合物重量的50倍的0.9%的盐溶液。
[0007] 总的吸收能力和膨胀能力由用于制作所述聚合物的交联剂的类型和交联程度(degree)进行控制。水凝胶聚合物一般在引发剂的存在下通过使与氢化钠混合的丙烯酸聚合以形成聚丙烯酸钠盐(有时称为聚丙烯酸钠)制成。
[0008] 发明概述
[0009] 本发明涉及包括水凝胶聚合物的水凝胶材料,其随时间可控制地从所述水凝胶聚合物洗脱塞拉集宁化合物。所述塞拉集宁的受控制的洗脱可以以对于使所述水凝胶材料抗微生物同时仍然维持所述水凝胶材料所需性能而言所需范围内的释放速率发生数天、数周或数月。在一个实施方案中,所述水凝胶可掺入医疗装置或在其上形成涂层。例如,所述水凝胶可涂覆于植入式医疗装置上或配制成接触镜片。
[0010] 塞拉集宁化合物为抗微生物化合物,其具有与甾醇主链连接的阳离子基。所述化合物模拟天然存在的抗微生物肽类的三维结构并提供杀灭微生物的天然机制。
[0011] 根据本发明的一个实施方案,将塞拉集宁化合物掺入水凝胶材料并且选择所述水凝胶聚合物和所述塞拉集宁化合物的疏水性/亲水性以使所述塞拉集宁化合物非共价结合到所述水凝胶聚合物。所述非共价结合防止当置于水或其它流体介质中时所述塞拉集宁化合物立即全部释放。所述非共价结合允许所述塞拉集宁化合物随时间释放。在一个实施方案中,所述非共价结合在三天、一周或一个月时和/或在至少3天、一周或一个月的时间段内产生0.1-100μg/ml、0.5-50μg/ml或1-10μg/ml的释放速率。
[0012] 令人惊讶和出乎意料地,已发现通过使用疏水性/亲水性相互作用将所述塞拉集宁非共价结合到水凝胶,所述塞拉集宁化合物可优先在微生物的存在下洗脱。换句话说,所述塞拉集宁可以以比没有微生物存在时的洗脱速率更快的速率从所述水凝胶“消耗掉”或去除。数据意外地显示,进入所述水凝胶的微生物被吸引至所述塞拉集宁化合物。因为所述塞拉集宁为非共价结合,所以所述微生物将不会固定在水凝胶聚合物的表面,其被认为是避免生物膜的聚集并允许塞拉集宁的持续洗脱和/或杀灭微生物。在微生物的存在下增加的所述塞拉集宁的洗脱或消耗的速率为非常理想和令人惊讶和意想不到的结果。
[0013] 所述塞拉集宁化合物可通过(i)在所述塞拉集宁化合物的存在下使水凝胶聚合物聚合,(ii)将所述塞拉集宁与水凝胶聚合物密切混合(例如,以干燥形式),和/或(iii)用溶解于溶剂中的所述塞拉集宁化合物灌输水凝胶聚合物而掺入所述水凝胶聚合物。
[0014] 此外,已发现,如本发明中使用的所述塞拉集宁出人意外地越过正常菌群优先杀灭有害微生物,其意味着所述塞拉集宁可以相对于其他抗微生物剂而言较低的浓度使用同时取得相同或更好的效力。该特征避免了现有技术抗微生物剂的许多有害效应,其中许多倾向于杀灭“好的微生物”。
[0015] 所述塞拉集宁可洗脱凝胶可掺入或形成医疗装置例如有待植入人类或其它动物的医疗装置。例如,所述水凝胶可涂覆于医疗装置上。在另一个实施方案中,包含塞拉集宁洗脱化合物的水凝胶可制成眼科产品例如接触镜片。所述水凝胶材料由于为医学治疗或维持产品例如眼科产品的保存期限所需要的随时段的控释而对医疗装置特别有利。例如,所述眼科产品可在有接触镜片浸没其中的盐溶液中在足以满足最大细菌载量的规定要求的浓度下可控制地释放塞拉集宁化合物数周甚至数月。
[0016] 本发明的这些及其它特征将从以下描述和所附权利要求书中变得更加显而易见,或者可通过如下文中所述的本发明的实践而领会。附图简介
[0017] 为了进一步阐明本发明的上述和其它优点,将参考在附图中示出的其特定实施方案来提供本发明的更具体的描述。应理解,这些附图仅描绘了本发明的实施方案且因此并不认为其限制了本发明的范围。本发明将通过使用附图用附加的特征和细节来描述和说明,在附图中:
[0018] 图1示出塞拉集宁化合物实例。
[0019] 图2为具有水凝胶涂层的基底(substrate)的示意图;
[0020] 图3为显示在磷酸盐缓冲液中从水凝胶洗脱塞拉集宁的曲线图;
[0021] 图4为显示从高压灭菌后的水凝胶洗脱塞拉集宁的曲线图;
[0022] 图5为显示在磷酸盐缓冲液和大豆胰蛋白酶培养基中从水凝胶洗脱塞拉集宁的曲线图;
[0023] 图6为显示在缓冲液和106CFU的金黄色葡萄球菌(S.aureus)中从水凝胶洗脱塞拉集宁的曲线图;
[0024] 图7为显示在缓冲液和106CFU的绿脓杆菌(P.aeruginosa)中从水凝胶洗脱塞拉集宁的曲线图。
[0025] 具体描述
[0026] I.塞拉集宁
[0027] 塞拉集宁化合物,本文也称为阳离子甾族抗微生物化合物(CSA),为合成产生的小分子化合物,其包括具有与主链附接的各种带电基团(例如,胺和阳离子基团)的甾醇主链。所述主链可用于将所述胺或胍基定位在所述甾醇主链的一个表面或平面上。例如,显示在主链的一个表面或平面上有伯基的化合物的方案示于以下方案I:
[0028]
[0029] 塞拉集宁为阳离子和两性的,以与所述主链连接的官能团为基础。它们为表面两性的,具有疏水性表面和多聚阳离子表面。在不希望束缚于任何特定理论的情况下,本文所述抗微生物塞拉集宁化合物起到抗微生物剂(如抗细菌剂、抗真菌剂和抗病毒剂)的作用。例如,据信,本文所述抗微生物塞拉集宁化合物通过结合细菌和其它微生物的外部细胞膜并插入所述细胞膜中形成允许对所述微生物的存活起决定性的离子泄漏的孔并导致受感染的微生物死亡而起到抗细菌剂的作用。另外,本文所述抗微生物塞拉集宁化合物也可使细菌对其它抗生素敏感。例如,在所述抗微生物塞拉集宁化合物的浓度低于相应最低抑菌浓度时,所述塞拉集宁化合物通过增加细菌的外膜的渗透性而使细菌变得对其它抗生素更敏感。
[0030] 所述带电基团负责破坏细菌的细胞膜,并且在没有所述带电基团的情况下,所述塞拉集宁化合物将不能破坏所述膜以引起细胞死亡或敏化。本文所述可掺入复合材料的式I的塞拉集宁化合物的许多实例示于图1中。
[0031] II.水凝胶聚合物
[0032] 用于本发明的水凝胶聚合物包括适合于在其中有最小化微生物载量需要的产品中使用的任何水凝胶。例如,本发明的水凝胶可为用于制备医疗装置、医疗装置涂层、组织支架、伤口敷料、接触镜片的水凝胶。
[0033] 合适的水凝胶聚合物的实例包括但不限于聚乙烯醇、聚丙烯酸钠、丙烯酸盐聚合物、聚氧化乙烯、聚(2-丙烯酰胺-2-甲基-1-丙磺酸() polyAMPS)、聚乙烯吡咯烷、聚丙烯酰胺、树脂、琼脂糖、甲基纤维素、透明质酸、水解聚丙烯腈、它们的组合。所述水凝胶可为共聚物。所述共聚物可包括疏水性和亲水性单元。
[0034] 在一个实施方案中,所述水凝胶适合于制造接触镜片。亲水性接触镜片可由基于丙烯酸或甲基丙烯酸的亲水性衍生物、亲水性乙烯单体例如乙烯吡咯烷酮等等的交联聚合物形成。所述水凝胶优选包括由疏水性的嵌段或单体做成的疏水区。
[0035] 合适的接触镜片水凝胶的实例公开于美国专利8,011,784中,其通过引用并入本文。
[0036] 所述水凝胶聚合物可制成具有适合于矫正视力的形状和结构的接触镜片。本领域的技术人员熟悉可提供视力矫正的水凝胶聚合物的形状和结构。其它装置也可由所述水凝胶制成包括伤口愈合装置例如组织支架和伤口敷料。
[0037] III.洗脱塞拉集宁化合物
[0038] 选择与所述水凝胶聚合物结合的塞拉集宁化合物以非共价结合到所述水凝胶聚合物,以使得在溶剂例如水或盐的存在下所述塞拉集宁随时间从所述水凝胶释放并且优选在微生物存在时优先释放或消耗。
[0039] 本领域的技术人员将认识到,取得理想结合所需要的疏水性/亲水性将取决于与特定塞拉集宁化合物配对的水凝胶聚合物的类型。因为塞拉集宁具有甾醇主链,其可提供高度的疏水性,所以在一些实施方案中可优选使用包括疏水区(例如,疏水性嵌段或单体)的水凝胶。所述塞拉集宁化合物可具有赋予与所述水凝胶聚合物的疏水区非共价结合所需量的疏水性部分。在一个实施方案中,所述塞拉集宁化合物可具有具有至少9个的碳氢链的到甾醇主链的侧链
[0040] 所述塞拉集宁化合物可具有如式I所示的结构:
[0041]
[0042] 其中,环A、B、C和D形成稠合环系统并且所述四个稠合环的2或3个上的R基的至少一个具有阳离子基。图I的其它R基可具有各种各样不同的功能,从而提供具有从水凝胶洗脱所需性能的塞拉集宁化合物。
[0043] 在优选的实施方案中,p=1且q=0且至少R3、R7和R12独立地包括与所述稠合环系统连接的阳离子基并且R17为包括为给予所述塞拉集宁化合物以所需疏水/亲水特性而选择的疏水基的疏水性取代基,其允许所述塞拉集宁化合物非共价结合于水凝胶聚合物并随时间洗脱和/或选择性暴露于微生物。所述R17取代基可为疏水性的,但仍包括一个或多个杂原子(O或N)通过具有与其连接的足够数目的碳原子以形成疏水基。所述疏水基可为分支的、取代的或未取代的并且所述分支可发生在所述杂原子(例如二基胺)。所述疏水性取代基当q=0时优选连接在R17,以及当q=1时优选连接在R18,但是也可附接在式I的所述D环上的其它位点或环A、B或C上的位置的R基上。当疏水性取代基具有附接于烃基的杂原子的疏水基时,所述疏水基可具有1-20个碳原子,优选8、9、10、11、12或更多的碳原子以及20、18、16或更少的碳原子或其范围之内。所述疏水基也可包括疏水性部分例如三甲基硅烷。所述疏水基可包括一个或多个烃基,每个具有4个或更多、6个或更多、8个或更多、10个或更多或者12个或更多的碳。所述疏水基可通过连接到所述杂原子的烃基而与所述甾醇结构附接。所述键合可为酯、乙醚、胺或酰胺。当需要水解作用和/或需要不带电荷以赋予更大的疏水性时优选酯键。在那里所述杂原子包括胺,所述疏水基优选二烃基。如本文所述的具有疏水基的合适的疏水性取代基的实例为C13-烃基氨基-C5-烃基和二-(C1-C20)烃基氨基-(C1-C10)-烃基,其可在R17或R18(式I)与所述D环共价结合。
[0044] 可在本文所述实施方案中使用的式I化合物的许多实例示于图1中。用于产生将从水凝胶洗脱的组合物的塞拉集宁的合适的实例包括但不限于CSA-13、CSA-131、CSA-132、CSA-133、CSA-134、CSA-135、CSA-137和CSA-138。这些化合物因它们的相对高的疏水性而可能是有利的。在R17上具有较短链碳氢基团的CSA的实例包括但不限于CSA-136、CSA-142、CSA-146、CSA-90和CSA44,其也显示于图1中。
[0045] 再次参照式I,更具体地说,稠合环A、B、C和D的每一个独立地为饱和的,或为完全或部分不饱和的,条件是A、B、C和D的至少两个为饱和的,其中环A、B、C和D形成环系统;m、n、p和q的每一个独立地为0或1;R1直至R4、R6、R7、R11、R12、R15、R16和R18的每一个独立地选自由氢、羟基、取代或未取代的(C1-C10)烃基、(C1-C10)羟烃基、(C1-C10)烃氧基-(C1-C10)烃基、(C1-C10)烃基羧基-(C1-C10)烃基、(C1-C10)烃基氨基-(C1-C10)烃基、(C1-C10)烃基氨基-(C1-C10)烃基氨基、(C1-C10)烃基氨基-(C1-C10)烃基氨基-(C1-C10)烃基氨基、取代或未取代的(C1-C10)氨基烃基、取代或未取代的芳基、取代或未取代的芳氨基-(C1-C10)烃基、(C1-C10)卤代烃基、C2-C6烯基、C2-C6炔基、氧代、附接于第二类固醇连接的连接基团、取代或未取代的(C1-C10)氨基烃氧基、取代或未取代的(C1-C10)氨基烃氧基-(C1-C10)烃基、取代或未取代的(C1-C10)氨基烃基羧基、取代或未取代的(C1-C10)氨基烃基氨基羰基、取代或未取代的(C1-C10)氨基烃基甲酰胺基、H2N-HC(Q5)-C(0)-0—、H2N—HC(Q5)-C(0)—N(H)—、(C1-C10)叠氮烃氧基、(C1-C10)氰基烃氧基、P.G.-HN—HC(Q5)-C(0)—0—、(C1-C10)胍基烃氧基、(C1-C10)季铵盐烃基羧基和(C1-C10)胍基烃基羧基组成的组,其中Q5为任何氨基酸的侧链(包括甘氨酸的侧链,即H),P.G.为氨基保护基,并且当稠合环A、B、C或D的其中之一为不饱和时,R5、R8、R9、R10、R13和R14的每一个独立地被缺失的以便完成该位点的碳原子的价键,或者选自由氢、羟基、取代或未取代的(C1-C10)烃基、(C1-C10)羟烃基、(C1-C10)烃氧基-(C1-C10)烃基、取代或未取代的(C1-C10)氨基烃基、取代或未取代的芳基、(C1-C10)卤代烃基、C2-C6烯基、C2-C6炔基、氧代、附接于第二类固醇连接的连接基团、取代或未取代的(C1-C10)氨基烃氧基、取代或未取代的(C1-C10)氨基烃基羧基、取代或未取代的(C1-C10)氨基烃基氨基羰基、H2N—HC(Q5)-C(0)—0—、H2N—HC(Q5)-C(0)—N(H)—、(C1-C10)叠氮烃氧基、(C1-C10)氰基烃氧基、P.G.-HN—HC(Q5)-C(0)—0—、(C1-C10)胍基烃氧基、和(C1-C10)胍基烃基羧基组成的组,其中,Q5为任何氨基酸的侧链,PG.为氨基保护基,条件是R1-4、R6、R7、R11、R12、R15、R16、R17和R18中的至少两个或三个独立地选自由取代或未取代的(C1-C10)氨基烃基、取代或未取代的(C1-C10)氨基烃氧基、(C1-C10)烃基羧基-(C1-C10)烃基、(C1-C10)烃基氨基-(C1-C10)烃基氨基、(C1-C10)烃基氨基-(C1-C10)烃基氨基(C1-C10)烃基氨基、取代或未取代的(C1-C10)氨基烃基羧基、取代或未取代的芳氨基(C1-C10)烃基、取代或未取代的(C1-C10)氨基烃氧基(C1-C10)氨基烃基氨基羰基、取代或未取代的(C1-C10)氨基烃基氨基羰基、取代或未取代的(C1-C10)氨基烃基羧酰胺、(C1-C10)季铵盐烃基羧基、H2N-HC(Q5)-C(0)-0—、H2N-HC(Q5)-C(0)—N(H)—、(C1-C10)叠氮烃氧基、(C1-C10)氰基烃氧基、P.G.-HN-HC(Q5)-C(0)—O—、(C1-C10)胍基烃氧基和(C1-C10)胍基烃基羧基组成的组;或者它们的药学上可接受的盐。具体CSA化合物的另外的实例在2012年11月3日提交的申请人同时待审的美国专利申请第13/288,902号中有公开,其通过引用并入本文。
[0046] 如本文使用的“环”可为杂环或碳环。如本文使用的术语“饱和的”指的是稠合环中的各原子被氢化或被取代由此填满各原子的化合价的式I的稠合环。如本文使用的术语“不饱和的”指的是其中稠合环的各原子的化合价未被氢或其它取代基填满的式I的稠合环。例如,所述稠合环中的相邻碳原子可彼此双键结合。不饱和性还可包括缺失以下对中的至少一个并且在这些缺失的位点用双键完成所述环碳原子的化合价;例如R5和R9;R8和R10;以及R13和R14。
[0047] 本文使用的术语“未取代的”指的是各原子被氢化由此填满各原子的化合价的部分。
[0048] 本文使用的术语“卤代”指的是卤素原子例如氟、氯、溴或碘。
[0049] 氨基酸侧链的实例包括但不限于H(甘氨酸)、甲基(丙氨酸)、—CH2—(C=0)—NH2(天冬酰胺)、—CH2—SH(半胱氨酸)和-CH(OH)-CH3(苏氨酸)。
[0050] 烃基为可被取代或未被取代的分支或未分支的碳氢基团。分支的烃基的实例包括异丙基、仲丁基、异丁基、叔丁基、仲戊基、异戊基、叔戊基、异己基。取代烃基可具有一个、两个、三个或更多的取代基,其可相同或不同,每个替代氢原子。取代基为卤素(例如F、Cl、Br和I)、羟基、受保护的羟基、氨基、受保护的氨基、羧基、受保护的羧基、氰基、甲基磺酰基、烃氧基、酰氧基、硝基和低级卤代烃基。
[0051] 本文使用的术语“取代的”是指具有一个、两个、三个或更多取代基的部分,其可为相同的或不同的,每个替代氢原子。取代基的实例包括但不限于卤素(例如F、Cl、Br和I)、羟基、受保护的羟基、氨基、受保护的氨基、羧基、受保护的羧基、氰基、甲基磺酰基、烃氧基、烃基、芳基、芳烃基、酰氧基、硝基和低级卤代烃基。
[0052] 芳基为C6_20芳环,其中所述环由碳原子组成(例如C6-C14,C6_10芳基)。卤代烃基的实例包括氟甲基、二氯甲基、三氟甲基、1,1-二氟乙基和2,2-二溴乙基。
[0053] 芳烃基为含6-20个碳原子的基团,其具有至少一个芳环和与该环连接的至少一个烃基或亚烃基链。芳烃基的实例为苄基。
[0054] 连接基团为用于将一个化合物连接到另一个的二价部分。例如,连接基团可将第二化合物连接到式I的化合物上。连接基团的实例为(C1-C10)烃氧基-(C1-C10)烃基。
[0055] 氨基保护基是本领域技术人员所已知的。通常,保护基的种类并非关键性的,条件是它对于在所述化合物的其它位点上的任何后续反应的条件来说是稳定的,并且可在适当的点脱除而未不利地影响所述分子的其余部分。此外,保护基可在实质性合成转化完成后被另一个基团取代。明显地,当一种化合物与本文所公开的化合物的区别仅在于本文所公开的化合物的一个或多个保护基被不同的保护基所代替时,那么那个化合物在本发明的范围之内。进一步的实例和条件参见T.W.Greene《, 有机化学中的保护基》(第1版,1981,第2版,1991)。
[0056] 技术人员将认识到,本文所述各种塞拉集宁化合物保留存在于类固醇的某些立体化学特性和电子特性。如本文使用的术语“单面”指的是具有相同立体化学取向使得它们从所述分子的一侧突出的稠合甾醇主链上的取代基。例如,结合在式I的R3、R7和R12的取代基可以全部为13-取代的或a-取代的。所述部分R3、R7和R12的构型对于与细胞膜的相互作用来说可能是重要的。
[0057] 化合物包括但不限于具有在任何碳位点共价附接于甾醇主链或骨架的阳离子基(例如胺或胍基团)的化合物,例如胆酸。在各种实施方案中,基团共价附接于所述甾醇主链的R3、R7和R12位点的任何一个或多个。在另外的实施方案中,基团不存在于所述甾醇骨架的R3、R7和R12位点中的任何一个或多个。
[0058] 还可使用其它环系统,例如5-元稠合环。还涉及具有5-元环和6-元环的组合的主链的化合物。阳离子官能团(例如胺或胍基团)可通过至少一个、两个、三个、四个或更多的原子与所述主链分离。
[0059] 具有疏水性取代基的塞拉集宁可使用申请人的美国专利6,767,904中描述的技术来制备,经过使用更长链的烃基的修改以形成更疏水的取代基。例如,代替使用辛基胺以形成在R17的官能团(式I,其中q=0),可使用相应的更长链的胺。
[0060] IV.塞拉集宁非共价掺入水凝胶聚合物
[0061] 掺入水凝胶聚合物的塞拉集宁化合物可与所述聚合物非共价连接。一旦与水分接触,所述塞拉集宁可从所述聚合物浸出或洗脱。塞拉集宁通常可溶于水中,并且塞拉集宁可与水凝胶聚合物连接以控制释放速率。适当的对水凝胶聚合物和塞拉集宁结构的选择允许塞拉集宁的延长时间的释放。
[0062] 例如,可调整从R1(7 式I)上的杂原子(例如N)伸出的基团以允许从水凝胶聚合物的不同的洗脱速率。示例性的基团包括脂类、疏水性链(例如脂肪族的)、亲水性(例如聚氧化乙烯)的,或者与所述聚合物相互作用的任何链为允许改变洗脱速率的方式。较长的链长会将所述塞拉集宁保持在所述聚合物基质内(尤其是疏水性区域)。在一个实施方案中,所述塞拉集宁化合物可具有附接于所述甾醇基(式I)的D环的至少9个碳。例如,至少9个碳的碳链可连接于式I的R17基,或者甾醇主链的C24碳或其它类似的碳。
[0063] 掺入所述水凝胶聚合物的特定塞拉集宁可为水溶液中可溶的或部分可溶的。此外,当与水和适当的表面活性剂混合时塞拉集宁可以凝胶或乳剂的形式使用。基于氧化乙烯和/或氧化丙烯的嵌段共聚物,尤其是普朗尼克(Pluronic)型表面活性剂,特别用于此目的。普朗尼克为BASF(在美国德克萨斯州阿瑟港有办事处的企业)的产品。
[0064] 塞拉集宁化合物可在水凝胶材料或产品制造期间的任何合适的步骤掺入水凝胶聚合物中。例如,在一个实施方案中,聚合物可通过沉浸、喷涂、印刷或涂覆等接触到塞拉集宁的溶液。在一个实施方案中,所述溶剂为导致所述水凝胶膨胀的溶剂并且所述溶剂和塞拉集宁被施加到无水形式的水凝胶,从而导致水凝胶聚合物膨胀。合适的膨胀溶剂包括短链醇类例如乙醇、甲醇、异丙醇等等。若需要,用于掺入所述塞拉集宁的溶剂可被去除,例如,通过蒸发。如果必要的话,所述水凝胶可通过利用强制热、烘炉干燥、室温下空气干燥、微波干燥、或者使用加热的干燥鼓、真空室等进行干燥。在一些制造系统中,正常的空气流动和温度可充分地干燥所述基底而无需独立的干燥过程。
[0065] 已知塞拉集宁化合物可溶于水。或者,塞拉集宁化合物也可溶于这样的材料,如乙醇(以及其它醇类)、丙二醇、丙三醇和多元醇,或者它们的混合物,可与水或不与水一起用于将塞拉集宁化合物掺入水凝胶材料。此外,塞拉集宁可作为凝胶、乳剂、悬浮液和以干燥的形式掺入。
[0066] 在另一个实施方案中,塞拉集宁在水凝胶形成期间掺入水凝胶聚合物。水凝胶聚合物通常可由单体的聚合制成。在这些过程中,所述塞拉集宁可在聚合期间被包括在单体混合物中。在最终聚合物中的所述塞拉集宁可非共价掺入所述聚合物并在与溶剂例如水接触时将相应地洗脱。
[0067] V.洗脱
[0068] 当所述塞拉集宁化合物掺入水凝胶材料时,选择所述水凝胶聚合物和所述塞拉集宁化合物的疏水性/亲水性以使所述塞拉集宁化合物与所述水凝胶聚合物非共价结合。所述非共价结合防止所述塞拉集宁化合物在溶剂的存在下立即全部释放。不如说,所述结合允许所述塞拉集宁化合物在溶剂的存在下随时间释放。
[0069] 所述非共价结合取决于所述水凝胶材料和所述塞拉集宁两者的组合物,并因此需要一起选择以产生需要的洗脱。所述选择通常通过选择具有特定应用所需化学和机械性能的特定水凝胶材料来进行。例如,如果所述水凝胶涂覆于有待植入血管组织的医疗装置上,那么选择与血管组织和血液相容的水凝胶。如果所述水凝胶用于制成接触镜片,那么选择与眼睛相容并且与将所述水凝胶制成能矫正视力的形状的需要相容的水凝胶。所述水凝胶材料的疏水性/亲水性因此在某种程度上受所述特定应用的约束。
[0070] 选择所述塞拉集宁化合物以提供与特定水凝胶的非共价结合。可选择所述塞拉集宁为具有非共价结合所述水凝胶的官能团的R基团。例如,基于水凝胶的聚丙烯酸酯可在聚合物基质中具有一定百分比的疏水基和亲水基并且可选择所述塞拉集宁化合物为具有非共价结合所述水凝胶的疏水基的疏水性R17基以产生数天或数周内相对一致的洗脱。
[0071] 在某些情况下,所述溶剂也可影响洗脱。在一个实施方案中,所述溶剂为水。水凝胶材料中溶剂的量可比所述水凝胶聚合物的更大。在一个实施方案中,所述水凝胶材料为至少50%、90%或99%重量的溶剂。在一些实施方案中,所述溶剂可为盐水。
[0072] 在一个实施方案中,选择所述水凝胶聚合物和塞拉集宁化合物以产生在水或盐水中提供在三天、一周或一个月时的0.1-100μg/ml、0.5-50μg/ml或1-10μg/m1的释放速率的非共价结合。在一个实施方案中,前述洗脱速率保持在前述范围内至少3天、一周或一个月。这些洗脱速率部分通过阻止所述化合物快速释放的非共价结合而取得,其产生更多的在后来的时间可得的化合物。
[0073] 如上所述,已意外地发现,水凝胶中非共价结合的塞拉集宁在微生物存在时选择性地洗脱。这是出人意料和意想不到的结果,其使得与其它材料例如共价结合于聚合物表面的塞拉集宁相比使用水凝胶-塞拉集宁化合物特别有利。
[0074] 在一个实施方案中,所述塞拉集宁化合物根据其疏水性进行选择。用于从具有疏水基的聚合物洗脱所需的疏水性为具有大于6.5、7.5、8.5或在某些情况下甚至大于10的CLogP值的化合物。图1中的化合物提供了各种化合物的CLogP值。
[0075] 本领域的技术人员将认识到,特定水凝胶和塞拉集宁化合物的选择将取决于特定的应用并且本领域的技术人员可使用本文提供的教导和实施例做出适当的选择。
[0076] VI.医疗装置和涂层
[0077] 本文所述水凝胶可用于各种应用中,包括但不限于医疗装置、涂层、绷带、植入物、组织支架等等。图2为包括基底110和水凝胶涂层120的医疗装置100的示意图。
[0078] 所述基底110可由适于支撑和/或粘附水凝胶材料的任何材料制成。所述基底可为聚合的、金属的、合金、无机的和/或有机的。在一个实施方案中,所述基底为生物可相容的或生物可吸收的材料。合适的生物可相容的金属材料包括但不限于不锈、钽、合金(包括镍钛合金)和钴合金(包括钴-铬-镍合金)。合适的非金属的生物可相容的材料包括但不限于聚酰胺、聚烯烃(即聚丙烯、聚乙烯等)、不能吸收的聚酯(即聚对苯二甲酸乙二酯)和生物可吸收的脂肪族聚酯(即乳酸、乙醇酸、丙交酯、乙交酯、对-二氧环己酮、三亚甲基碳酸酯、ε-己内酯等等和这些的组合的均聚物和共聚物)。
[0079] 所述基底的厚度将取决于所述装置和材料但是可为0.1、1.0、10mm或更大和/或100、10或1mm或更小和/或其范围之内。
[0080] 水凝胶涂层120的厚度通常小于基底110的厚度。水凝胶涂层120可具有0.01、0.1、1.0或10mm或更大和100、10、1.0或0.1mm或更小或其范围之内的厚度。
[0081] 所述涂层120可为连续的或不连续的。所述涂层可使用诸如浸渍涂覆、旋转涂覆等等的技术施加于所述基底。
[0082] 可由包含塞拉集宁洗脱化合物的水凝胶制成的或可有水凝胶涂覆其上的医疗装置的实例包括但不限于骨植入物、骨针、骨螺钉、组织移植物、气道装置例如气管内管、可植入装置例如冠状动脉支架、末梢支架、导管、动-静脉移植物、旁路移植物、起搏器和除纤颤器导线、吻合夹、动脉闭合装置、卵圆孔未闭闭合装置和药物输送球囊。所述水凝胶可涂覆其上或形成该装置的结构的任何部分,并且优选在外表面上,并且更优选在接触组织的外表面或组织空气界面上(当所述装置被植入时)。
[0083] VII.通过pH稳定塞拉集宁
[0084] 在一个实施方案中,塞拉集宁化合物可具有将阳离子取代基附接到甾醇基的可水解键合(例如酯键)。这些键合的水解使所述塞拉集宁失去活性。为了使所述塞拉集宁稳定,可加入酸以取得小于6、5.5、5或4.5且可选地大于2、2.5或3或其范围的pH值。使用之前的稳定性对于产生理想的保存期限来说很重要,并且使用期间和使用后的不稳定可能是防止塞拉集宁在生物系统中长期积累所期望的。
[0085] 如上文所讨论的,调节水凝胶聚合物的中和程度以提高所述塞拉集宁的稳定性可能是有利的。所述水凝胶聚合物的中和程度可在其制造工艺期间或其后调节。作为选择,所述塞拉集宁可悬浮或溶解于酸性溶液中;并且当将所述塞拉集宁悬浮液或溶液加入所述水凝胶聚合物时,所述水凝胶的中和程度将因此而被调节。
[0086] VIII.实施例
[0087] 为了更好地理解塞拉集宁化合物可从水凝胶洗脱以防止细菌定植的机制,我们测定了CSA-138从适于在接触镜片中使用的水凝胶洗脱的速率。为了定量从所述水凝胶洗脱的塞拉集宁的量,我们使用了使用质量标记内标的LC/MS。然而,该方法仅给出约2μg/ml的检测极限,并且我们能以低于所述检测极限的恒定的洗脱速率有效地杀灭细菌。例如,所述洗脱在从CSA-138已以1%掺入其中的镜片洗脱的五天内降到检测极限以下,然而所述塞拉集宁似乎仍然在提供合适的杀灭率。
[0088] 为了降低CSA-138的检测极限,我们制备了CSA-138的放射性标记变体(CSA-138T2),将其掺入接触镜片,并且使用闪烁计数定量其从镜片的洗脱。
[0089] 实施例1
[0090] 在测试前将包含1%CSA-138的镜片存放于0.5mL的磷酸盐缓冲液(PBS)中。在进行洗脱研究前,将一副镜片高压灭菌处理45min。为了洗脱研究,将镜片悬浮于2ml等份的PBS、10%TSB生长培养基、含106CFU金黄色葡萄球菌的10%TSB生长培养基或者含106CFU绿脓杆菌的10%TSB生长培养基中。相应的等份试样(包括细菌接种物)每24h进行更换。每24h取出样品并使用闪烁计数分析CSA-138的存在。生成标准曲线以将每分钟计数与CSA-138的浓度相关联。所有实验一式三份地进行。
[0091] 尽管每天观察到一些变化,但是在悬浮于PBS的镜片的洗脱概况中观察到了可辨认的趋势(图3)。正如预期的,在第一天的洗脱相当高(大约2.2μg/ml)。在接下来的19天的过程中,每日洗脱从每天将近1.6μg/ml变化至1.4μg/ml。
[0092] 用在研究开始前进行高压灭菌处理的镜片观察到类似的洗脱曲线,只是洗脱的材料的起始量有点儿下降(图4)。这种洗脱的下降可能是由于在高压灭菌过程中到存储溶液的增强的洗脱。在所述研究的进程中(从第2天到第20天),洗脱的CSA-138的量从每天将近1.4μg/ml变化至1.2μg/ml。
[0093] 据预计,水溶液的渗透度的增加将降低CSA-13的溶解度并减慢洗脱。我们测定了在PBS中的10%TSB中的洗脱概况,并且正如预期的洗脱降低(图5),符合用已高压灭菌的镜片所看到的。
[0094] 因为杀灭率似乎发生在如此低的浓度,所以我们假设细菌的存在影响CSA-138从镜片的洗脱。为了测试这种假设,将镜片与金黄色葡萄球菌或绿脓杆菌一起孵育,并监测洗脱。这些实验分别进行9天和8天。CSA-138的洗脱大幅度波动并到了比细菌不存在时高得多的程度(图6和7)。由于这些变化,所述实验相对于没有细菌的洗脱实验缩短。尽管在细菌存在下的洗脱有着很大的变化,但是对比有和没有细菌的样品的洗脱差异来测定的显著性是可能的。在第一天后,差异产生0.05的p值,并且有许多天所述p值低于0.01。这些结果证明细菌影响CSA-138从镜片的洗脱。
[0095] 金黄色葡萄球菌和绿脓杆菌的CSA-138的MIC值分别为0.5和1.0μg/ml。CSA-138从镜片的洗脱产生正好能消除所引入的接种物的浓度。高压灭菌所述镜片,周围溶液的渗透度增加,以及细菌的存在适度地影响洗脱概况。
[0096] 如果采取图5所给出的洗脱概况并延伸所述趋势直到CSA-138的洗脱下降至低于1μg/ml,那么这将需要大约40天(在第二天到第20天之间,洗脱从每天1.4μg/ml降低至每天1.2μg/ml;从每天1.2至1.0μg/ml的降低预计将需要另外19天)。因此,预计CSA-138的洗脱将足以消除细菌的合理接种物多达40天。正如以前的报道中提到的,CSA-138从镜片的洗脱可连续30天防止金黄色葡萄球菌的定植以及19天防止绿脓杆菌的定植。这些研究用相对高水平的接种物(106CFU)进行,并且预期30天后的CSA-138的洗脱将足以消除较小的接种物。
[0097] CSA-138的结构优化已产生了有效的抗微生物剂,其与接触镜片的材料连接并以消除革兰氏阳性和阴性细菌的大量接种物所必需的浓度洗脱。考虑到镜片通常接触的细菌数目,有可能使用较低浓度的CSA-138同时持续防止镜片上的细菌生长。
[0098] 为了本发明的目的,“生理条件”为其中所述pH值、温度和盐浓度通常适合于维持生命的含水条件(例如,对于许多但不是所有装置来说,生理条件常为pH值接近7,温度接近37℃,以及盐浓度接近150mM)。
[0099] 本发明可在不脱离其精神或本质特征的情况下以其它具体形式呈现。所述实施方案在所有方面都应被认为仅是说明性的而不是限制性的。因此,本发明的范围由所附权利要求而不是前面的描述来表示。在所述权利要求的等同物的含义和范围内的所有变化都在其范围之内。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈