序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
61 Amphibious pumping vehicle US15586493 2017-05-04 US10124638B2 2018-11-13 Ian Nuhn
An amphibious pumping vehicle has a floatable vehicle body, a ground engaging propulsion structure, a fluid pump, a plurality of fluid nozzles comprising a first fluid nozzle connected by a fluid conduit to the fluid pump and at least one second fluid nozzle connected to the fluid conduit, a valve structure in the fluid conduit, the plurality of fluid nozzles and the valve structure co-operating to provide directional control and motive power for the vehicle when floating, and a power source configured to provide power to both the ground engaging propulsion structure and the fluid pump.
62 SEALING ARRANGEMENT FOR A VEHICLE US15758696 2016-06-21 US20180216737A1 2018-08-02 Björn HELLHOLM; Max THORÉN; Pär SÖDERBERG; Anders SÖDERHOLM
The present invention relates to an amphibious vehicle comprising a vehicle frame and a cab supported by said vehicle frame, said cab being connected to said vehicle frame via hinge means so as to allow tilting of said cab about said hinge means between a closed position and an open position, wherein said vehicle comprises a sealing arrangement comprising sealing means arranged to provide liquid tight sealing between the cab and the vehicle frame in said closed position, wherein in the closed position, the sealing arrangement is arranged to provide a confined space for protecting components of said vehicle enclosed inside said space.
63 VEHICLE AND ENGINE UNIT US15815720 2017-11-17 US20180141425A1 2018-05-24 Junji UEZU
A vehicle includes, an engine including a crankshaft, a crankcase which is configured to accommodate the crankshaft therein, and a centrifugal clutch which is arranged coaxially with the crankshaft, and a propeller shaft to which rotational power output from the engine and changed in speed is transmitted, the propeller shaft passing through the crankcase and intersecting the crankshaft in plan view, at least a part of the propeller shaft being located between the centrifugal clutch and a support wall portion of the crankcase configured to support the crankshaft and above a lower end of the centrifugal clutch.
64 Amphibious marsh craft US15494928 2017-04-24 US09931899B2 2018-04-03 John B. Coast
A tracked, amphibious vehicle, comprising at least two, spaced, elongated pontoons disposed generally parallel to one another. A platform structure can be supported by and structurally connects the pontoons, the platform structure including a transom, a lowermost generally horizontally extending panel above a free clearance area under a bottom panel and between the pontoons through which terrain and debris can pass. A hydraulic drive system can propel the vehicle, said drive system including left and right hydraulic motors mounted on the pontoons. At least one series of longitudinally spaced bogie wheels for supporting said vehicle can be mounted along the bottom of the pontoons. A continuous, endless belt can encircle each pontoon and engages the bogie wheels. Ground-engaging cleats assembled on the outer surface of each belt and covering the pontoon bottom provide traction to the vehicle. Gearing interfaces the motor with the endless belts. A supplemental, marine drive assembly includes: a hydraulic motor having a rotary device, shaft, with an axis, a propeller shaft having an axis wherein the motor axis and propeller axis are aligned, a universal joint connecting the hydraulic motor to the transom, and a housing including a sleeve that contains the propeller shaft, a first vertical plate connected to the sleeve and a second vertical plate connected to the sleeve below the first plate.
65 POWERTRAIN FOR AN AMPHIBIAN US15568323 2016-04-21 US20180079267A1 2018-03-22 Alan Timothy Gibbs
The present invention provides, with reference to FIG. 1, a power train for an amphibian operable in land and marine modes. The power train comprises a prime mover, a first land propulsion device, a first marine propulsion device and a speed change transmission. The prime mover is arranged to drive the first land propulsion device through/via the speed change transmission in land mode. The prime mover, or at least a portion thereof, is located between the speed change transmission and a rearward most part of the amphibian, with the speed change transmission located spaced ahead of, in front of, the prime mover.
66 Vehicle assembly for propulsion over water and land US15337431 2016-10-28 US09738129B2 2017-08-22 Andrew Raymond Dovel
A vehicle (20) consisting of a frame (22) with a pair of paddles (72) extending longitudinally and rotatably supported by the frame (22) in pendulum fashion for swinging movement between an extended position engaging the surface and a retracted position moved vertically out of engagement with the surface. A pair of foot platforms (74) are operatively connected to the paddles (72). A pair of depressors (84) interconnects the foot platforms (74) and the paddles (72) to rotate the paddles (72) between the extended position and the retracted position. The paddles (72) include a propulsion bar (86) and an oar (88) connected by a lost-motion connection to slide relative to one another between the extended position and the retracted position. The oars (88) have a fin-shape to propel the vehicle (20) over water and include a striker (90) to propel the vehicle (20) over land. The vehicle (20) allows movement over a surface of water and land using an elliptical motion similar to the natural motion of walking.
67 Amphibious marsh craft US14859822 2015-09-21 US09630465B2 2017-04-25 John B. Coast
A tracked, amphibious vehicle, provides at least two, spaced, elongated pontoons disposed generally parallel to one another. A platform structure can be supported by and structurally connects the pontoons, the platform structure including a transom and a lowermost generally horizontally extending panel. A continuous, endless belt can encircle each pontoon engaging bogie wheels on the pontoon. A supplemental, marine drive assembly includes a hydraulic motor having a shaft with an axis, a propeller shaft having an axis, wherein the motor axis and propeller axis are aligned. A universal joint connects the hydraulic motor to the transom. A housing includes a sleeve that contains the propeller shaft.
68 Connector for transferring at least one fluid US14905848 2014-07-02 US09618125B2 2017-04-11 Andrey Atanasov Kolakov
A connector (1) for transferring a fluid or for applying a pneumatic pressure from an inlet conduit (2) to an outlet conduit (3) that may rotate with respect to the inlet conduit (2), in which the connector (1) comprises a rotating shaft (17) defining the outlet conduit (3) therein, which has an inlet opening (70), said rotating shaft (17) defining a rotational axis (S-S) and comprising a sealing disc (19) extending radially from said rotating shaft; an insertion chamber (5) to which said inlet conduit (2) is sealingly securable, said chamber leading towards said inlet opening (70) of the outlet conduit (3); at least one first cylinder-piston unit (100) comprising a cylinder (9) and a piston (21) slidable in said cylinder (9), said piston (21) having a sealing surface (22) facing the sealing disc (19), and said cylinder (9) being fluidically connected or connectable to said insertion chamber (5); said piston (21) being configured to be selectively actuated between a sealing position in which the sealing surface (22) is at a minimum distance or in contact with the sealing disc (19), in which a fluidic seal is carried out between said insertion chamber (5) and said inlet opening (70) of the outlet conduit (3) of the rotating shaft (17), and a non-sealing position in which the sealing surface (19) is moved away from the sealing disc (19), in which a fluidic seal is absent between said insertion chamber (5) and said inlet opening (70) of the rotating shaft of the outlet conduit (3) of the rotating shaft (17).
69 Multiple environment unmanned vehicle US14484138 2014-09-11 US09580172B2 2017-02-28 Clinton G. Hobart; William D. Morse; Robert James Bickerstaff
A MEUV that is able to navigate aerial, aquatic, and terrestrial environments through the use of different mission mobility attachments is disclosed. The attachments allow the MEUV to be deployed from the air or through the water prior to any terrestrial navigation. The mobility attachments can be removed or detached by and from the vehicle during a mission.
70 Amphibian US12914736 2010-10-28 US09555678B2 2017-01-31 Alan Timothy Gibbs
The present invention provides, with reference to FIG. 1, an amphibian for use in land and marine modes comprising: a planing hull; three wheel stations, two of the three wheel stations being front wheel stations provided one on each side of and in the front half of the amphibian, and the third wheel station being a rear wheel station provided in a central region in the rear half of the amphibian; at least one wheel provided at each wheel station, each wheel being movable between a protracted land mode position and a retracted marine mode position; land propulsion means to propel the amphibian on land in the land mode, the land propulsion means comprising at least one of the wheels; and marine propulsion means to propel the amphibian on water in the marine mode, the marine propulsion means comprising at least two impellers or propellers provided one on each side of the rear wheel station.
71 Amphibian hull US14126011 2012-06-13 US09415649B2 2016-08-16 Alan Timothy Gibbs; Eric John Carlson
An amphibian operable in land and marine modes includes a hull, having a discontinuity, and a retractable wheel or track drive assembly at least partially located in the discontinuity. A wheel or track drive of the at least one retractable wheel or track drive assembly is retracted above a lowest point of the hull when operating in marine mode, and the wheel or track drive is protracted below the lowest point when operating in land mode. The hull is a planing V hull having a forward bow section defining a frontal bow surface/area across a beam of the hull. The discontinuity is provided in the forward bow section, and the wheel or track drive of the retractable wheel or track drive assembly is located ahead of and in front of at least a portion of the frontal bow area when protracted.
72 CONNECTOR FOR TRANSFERRING AT LEAST ONE FLUID US14905848 2014-07-02 US20160152099A1 2016-06-02 ANDREY ATANASOV KOLAKOV
A connector (1) for transferring a fluid or for applying a pneumatic pressure from an inlet conduit (2) to an outlet conduit (3) that may rotate with respect to the inlet conduit (2), in which the connector (1) comprises a rotating shaft (17) defining the outlet conduit (3) therein, which has an inlet opening (70), said rotating shaft (17) defining a rotational axis (S-S) and comprising a sealing disc (19) extending radially from said rotating shaft; an insertion chamber (5) to which said inlet conduit (2) is sealingly securable, said chamber leading towards said inlet opening (70) of the outlet conduit (3); at least one first cylinder-piston unit (100) comprising a cylinder (9) and a piston (21) slidable in said cylinder (9), said piston (21) having a sealing surface (22) facing the sealing disc (19), and said cylinder (9) being fluidically connected or connectable to said insertion chamber (5); said piston (21) being configured to be selectively actuated between a sealing position in which the sealing surface (22) is at a minimum distance or in contact with the sealing disc (19), in which a fluidic seal is carried out between said insertion chamber (5) and said inlet opening (70) of the outlet conduit (3) of the rotating shaft (17), and a non-sealing position in which the sealing surface (19) is moved away from the sealing disc (19), in which a fluidic seal is absent between said insertion chamber (5) and said inlet opening (70) of the rotating shaft of the outlet conduit (3) of the rotating shaft (17).
73 AMPHIBIOUS MARSH CRAFT US14859822 2015-09-21 US20160082798A1 2016-03-24 John B. Coast
A tracked, amphibious vehicle, comprising at least two, spaced, elongated pontoons disposed generally parallel to one another. A platform structure can be supported by and structurally connects the pontoons, the platform structure including a transom, a lowermost generally horizontally extending panel above a free clearance area under a bottom panel and between the pontoons through which terrain and debris can pass. A hydraulic drive system can propel the vehicle, said drive system including left and right hydraulic motors mounted on the pontoons. At least one series of longitudinally spaced bogie wheels for supporting said vehicle can be mounted along the bottom of the pontoons. A continuous, endless belt can encircle each pontoon and engages the bogie wheels. Ground-engaging cleats assembled on the outer surface of each belt and covering the pontoon bottom provide traction to the vehicle. Gearing interfaces the motor with the endless belts. A supplemental, marine drive assembly includes: a hydraulic motor having a rotary device, shaft, with an axis, a propeller shaft having an axis wherein the motor axis and propeller axis are aligned, a universal joint connecting the hydraulic motor to the transom, and a housing including a sleeve that contains the propeller shaft, a first vertical plate connected to the sleeve and a second vertical plate connected to the sleeve below the first plate.
74 Wading vehicle control system US14004937 2012-03-15 US09227479B2 2016-01-05 Nigel Clarke; Edward Hoare; Thuy-Yung Tran
A vehicle having a system for determining that there is a possibility that the vehicle has or is about to enter water at a vehicle wading depth. In response to determining that there is a possibility that the vehicle has or is about to enter water at a vehicle wading depth, the system is configured to implement one or more vehicle control strategies. The system comprises at least one remote sensor configured to remotely detect the presence of water about or ahead of the vehicle.
75 Amphibian Hull US14126011 2012-06-13 US20150087194A1 2015-03-26 Alan Timothy Gibbs; Eric John Carlson
An amphibian operable in land and marine modes includes a hull, having a discontinuity, and a retractable wheel or track drive assembly at least partially located in the discontinuity. A wheel or track drive of the at least one retractable wheel or track drive assembly is retracted above a lowest point of the hull when operating in marine mode, and the wheel or track drive is protracted below the lowest point when operating in land mode. The hull is a planing V hull having a forward bow section defining a frontal bow surface/area across a beam of the hull. The discontinuity is provided in the forward bow section, and the wheel or track drive of the retractable wheel or track drive assembly is located ahead of and in front of at least a portion of the frontal bow area when protracted.
76 Relating to amphibians US12674897 2008-08-22 US08888543B2 2014-11-18 Alan Timothy Gibbs
An amphibian (1) for use on land and water, comprising: a hull having a planing surface (2), and at least one retractable suspension apparatus (4) movable from a vehicle supporting position to a retracted position, comprising for each wheel (5), upper and lower suspension arms (8, 9) that are pivotably connected at inboard ends to a support structure within the hull; and are pivotably connected at outboard ends to a suspension upright (7). Upright (7) extends from a first, upper connection past a second, lower connection to a location (10) for a wheel hub mounting. The suspension upright when deployed in land use extends externally of the hull across a side face (2A) of the planing surface; while lower suspension arm (9) remains above the top of planing surface (2) throughout use of the amphibian on land. This suspension arrangement allows the hull to have no cutouts in its planing surface.
77 IMPROVEMENTS IN OR RELATING TO AMPHIBIANS US12999997 2009-06-19 US20110275256A1 2011-11-10 Alan Timothy Gibbs; Anthony Roy Mudd; James Neville Randle
A three- or four-wheeled amphibian (1) comprises hull (2), body (3), front steered wheel (11) or wheels (11, 11′), and rear wheel (9) or wheels (9, 9′). Each steered wheel is connected to the amphibian by a retractable suspension assembly (10, 10′). Upper and lower suspension arms (14 and 15) have pivotal connections (17) and (18) to inner upright arm (16). Retraction rams (28) are connected to body (3), and can retract the wheels for use on water and protract them for use on land. Wheels (11, 11′) also lean on cornering. The pivotal connections (17, 18) for wheel retraction are also used to facilitate leaning. This may be allowed through rotation of drop link (31) around pivot (32). A motor and gearbox assembly (30) may be attached to body (3) to provide controlled lean when cornering, and to keep the amphibian (1) upright when stationary. Leaning may be powered, or user-initiated. Powered lean correction may be provided.
78 IMPROVEMENTS IN OR REALATING TO AMPHIBIANS US12674897 2008-08-22 US20110189908A1 2011-08-04 Alan Timothy Gibbs
An amphibian (1) for use on land and water, comprising: a hull having a planing surface (2), and at least one retractable suspension apparatus (4) movable from a vehicle supporting position to a retracted position, comprising for each wheel (5), upper and lower suspension arms (8, 9) that are pivotably connected at inboard ends to a support structure within the hull; and are pivotably connected at outboard ends to a suspension upright (7). Upright (7) extends from a first, upper connection past a second, lower connection to a location (10) for a wheel hub mounting. The suspension upright when deployed in land use extends externally of the hull across a side face (2β) of the planing surface; while lower suspension arm (9) remains above the top of planing surface (2) throughout use of the amphibian on land. This suspension arrangement allows the hull to have no cutouts in its planing surface.
79 WHEEL SUSPENSION AND RETRACTION APPARATUS US12522417 2008-01-15 US20100136858A1 2010-06-03 Jonathan Austin King; Neil G. Jenkins
A wheel suspension and retraction apparatus (2) for an amphibious vehicle comprises a suspension unit having transverse upper and lower suspension links (4, 8); spring and damper unit (12), and suspension upright (6) supporting wheel (10), and pivotally connected to outboard ends of links (4 and 8). The wheel retraction mechanism has a retraction linkage (14, 16, 18), pivotably connectable to the vehicle, and an actuator (38) for moving the wheel suspension between a protracted position for land use and a retracted position for use on water. The retraction mechanism supports the suspension unit spaced apart transversely from the vehicle. Tie bar (16) is connected to upper retraction arm (14) at an intermediate location (30) to ensure a large angle of tilt on retraction, to ensure that the wheel is retracted above hull line (156). The wheel suspension does not have to be compressed on retraction.
80 Articulated amphibious vehicle US12291964 2008-11-14 US20090124143A1 2009-05-14 Ronald W. Kanerva
An articulated amphibious vehicle includes a boat in the front and a rear propulsion unit pivotally connected by an articulation mechanism to the boat. The rear propulsion unit comprises an engine mechanically coupled to a pair of drive tracks for propelling the vehicle. Steering and throttle devices are provided in the boat to enable the operator to turn and power the rear propulsion unit, to thereby steer and control the vehicle. The articulated amphibious vehicle can travel over water, snow, ice, marsh, bogs, swamp, soft wet terrain or even hard terrain (preferably by adding wheels to the boat). Because it can traverse such a wide variety of environments, this “track boat” is more versatile than conventional air boats or conventional all-terrain vehicles.
QQ群二维码
意见反馈