首页 / 国际专利分类库 / 电学 / 基本电气元件 / 电开关;继电器;选择器;紧急保护装置 / 静电继电器;电附着继电器 / .{使用微机械的} / ..具有步进驱动的,例如在驱动期间,在不同的时间或不同的弹簧常数下,将驱动电压施加到不同的电极组
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
101 Method and arrangement for controlling micromechanical element EP01660059.5 2001-04-02 EP1146532A3 2004-09-01 Ryhänen, Tapani; Ermolov, Vladimir

The invention relates to a controlling of micromechanical elements. Especially the invention relates to the controlling of the micromechanical switches. According to a method for controlling at least one micromechanical element a first control signal and a second control signal are fed to the micromechanical element. The second control signal is arranged to set the micromechanical element to an active state and the first control signal is arranged to hold the micromechanical element in the active state. An arrangement for controlling at least one micromechanical element (402) contains at least means for generating at least a first control signal and a second control signal, means for raising a voltage level of at least the second control signal and means for feeding the first control signal and the second control signal with raised voltage level to the micromechanical element. By means of the invention lower voltage levels can be used in micromechanical applications.

102 Mikromechanisches Relais mit verbessertem Schaltverhalten EP00121231.5 2000-09-29 EP1156504A3 2003-12-10 Faul, Robert; Drost, Andreas; Pradel, Helmut

Die vorliegende Erfindung betrifft ein mikromechanisches Relais mit verbesserten Schalteigenschaften, bei dem der Kontaktbügel zur Überbrückung eines Schaltkontaktes beabstandet vom freien Ende eines einseitig eingespannten, mikromechanischen, beweglichen Biegebalkenelementes an diesem angeordnet ist. Beidseitig des Kontaktbügels sind am beweglichen Element Steuerelektroden vorgesehen, die in Zusammenwirkung mit gegenüberliegenden Steuerelektroden am Substrat sowie entsprechenden Steuersignalen das Öffnen und Schließen des Kontaktes bewirken.

Sowohl durch die beidseitige Anordnung der Steuerelektrodengebiete als auch die erweiterten und beispielsweise getrennten Ansteuerungsmöglichkeiten der Steuerelektroden beidseitig des Kontaktbügels bzw. der entsprechenden Steuerelektroden am Substrat lässt sich ein verbessertes Schaltverhalten erzielen.

103 VARIABLE CAPACITOR AND ASSOCIATED FABRICATION METHOD EP00993453.0 2000-11-28 EP1157396A1 2001-11-28 COWEN, Allen, Bruce; DHULER, Vijayakumar, Rudrappa; HILL, Edward, Arthur; KOESTER, David, Alan; MAHADEVAN, Ramaswamy
A variable capacitor having low loss and a correspondingly high Q is provided. In addition to a substrate, the variable capacitor includes at least one substrate electrode and a substrate capacitor plate that are disposed upon the substrate and formed of a low electrical resistance material, such as HTS material or a thick metal layer. The variable capacitor also includes a bimorph member extending outwardly from the substrate and over the at least one substrate electrode. The bimorph member includes first and second layers formed of materials having different coefficients of thermal expansion. The first and second layers of the bimorph member define at least one bimorph electrode and a bimorph capacitor plate such that the establishment of a voltage differential between the substrate electrode and the bimorph electrode moves the bimorph member relative to the substrate electrode, thereby altering the interelectrode spacing as well as the distance between the capacitor plates. As such, the capacitance of the variable capacitor can be controlled based upon the relative spacing between the bimorph member and the underlying substrate. A method is also provided for micromachining or otherwise fabricating a variable capacitor having an electrode and a capacitor plate formed of a low electrical resistance material such that the resulting variable capacitor has low loss and a correspondingly high Q. The variable capacitor can therefore be employed in high frequency applications, such as required by some tunable filters.
104 Mikromechanisches Relais mit verbessertem Schaltverhalten EP00121231.5 2000-09-29 EP1156504A2 2001-11-21 Faul, Robert; Drost, Andreas; Pradel, Helmut

Die vorliegende Erfindung betrifft ein mikromechanisches Relais mit verbesserten Schalteigenschaften, bei dem der Kontaktbügel zur Überbrückung eines Schaltkontaktes beabstandet vom freien Ende eines einseitig eingespannten, mikromechanischen, beweglichen Biegebalkenelementes an diesem angeordnet ist. Beidseitig des Kontaktbügels sind am beweglichen Element Steuerelektroden vorgesehen, die in Zusammenwirkung mit gegenüberliegenden Steuerelektroden am Substrat sowie entsprechenden Steuersignalen das Öffnen und Schließen des Kontaktes bewirken.

Sowohl durch die beidseitige Anordnung der Steuerelektrodengebiete als auch die erweiterten und beispielsweise getrennten Ansteuerungsmöglichkeiten der Steuerelektroden beidseitig des Kontaktbügels bzw. der entsprechenden Steuerelektroden am Substrat lässt sich ein verbessertes Schaltverhalten erzielen.

105 Method and arrangement for controlling micromechanical element EP01660059.5 2001-04-02 EP1146532A2 2001-10-17 Ryhänen, Tapani; Ermolov, Vladimir

The invention relates to a controlling of micromechanical elements. Especially the invention relates to the controlling of the micromechanical switches. According to a method for controlling at least one micromechanical element a first control signal and a second control signal are fed to the micromechanical element. The second control signal is arranged to set the micromechanical element to an active state and the first control signal is arranged to hold the micromechanical element in the active state. An arrangement for controlling at least one micromechanical element (402) contains at least means for generating at least a first control signal and a second control signal, means for raising a voltage level of at least the second control signal and means for feeding the first control signal and the second control signal with raised voltage level to the micromechanical element. By means of the invention lower voltage levels can be used in micromechanical applications.

106 Vibration type MEMS switch and fabricating method thereof EP05014807.1 2005-07-07 EP1619710B1 2012-03-21 Lee, Moon-chul; Park, Tae-sik; Jeong, Hee-moon
107 SPRING STRUCTURE FOR MEMS DEVICE EP05807167.1 2005-10-24 EP1807856B1 2011-12-07 STEENEKEN, Peter G.; VAN BEEK, Jozef Thomas Martinus; RIJKS, Theo
A MEM device has a movable element (30), a pair of electrodes (e1, e2) to move the movable element, one electrode having an independently movable section (e3), resiliently coupled to the rest of the respective electrode to provide additional resistance to a pull in of the electrodes. This can enable a higher release voltage Vrel, and thus reduced risk of stiction. Also, a ratio of Vpi to Vrel can be reduced, and so a greater range of voltage is available for movement of the movable element. This enables faster switching. The area of the independently movable section is smaller than the rest of the electrode, and the spring constant of the resilient coupling is greater than that of the flexible support. Alternatively, the movable element can have a movable stamp section resiliently coupled and protruding towards the substrate to provide an additional resistance to pull in when it contacts the substrate.
108 Method and arrangement for controlling micromechanical element EP01660059.5 2001-04-02 EP1146532B1 2009-10-14 Ryhänen, Tapani; Ermolov, Vladimir
109 A COLLAPSING ZIPPER VARACTOR WITH INTER-DIGIT ACTUATION ELECTRODES FOR TUNABLE FILTERS EP06739741.4 2006-03-24 EP1864307A1 2007-12-12 CHOU, Tsung-Kuan
A microelectromechanical (MEMS) switch is disclosed. The MEMS switch includes a substrate (205), a plurality of actuation electrodes (230) mounted on the substrate, a plurality of bottom electrodes (210) mounted on the substrate, a capacitor (cl, c2, c3) having subcomponents e.g. dielectric layers (330), mounted on the two or more bottom electrodes (210) and a top bendable electrode (215) mounted on the substrate. The top electrode (215) collapses a first magnitude towards the actuation electrodes (230) whenever a first voltage is applied to one or more of the actuation electrodes (230) and collapses a second magnitude towards the actuation electrodes (230) whenever a second voltage is applied to the actuation electrodes (230).
110 Micro electromechanical device with reduced self-actuation EP05103893.3 2005-05-10 EP1722386A1 2006-11-15 Rottenberg, Xavier; Tilmans, Hendrikus A.C.

A micro electromechanical device comprising a first and a second conductor, the first conductor defining a plane and the second conductor having a collapsible portion extending at a predetermined distance above said plane and above the first conductor, said collapsible portion during use of the device being attracted by the first conductor as a result of an RF induced force, the orthogonal projection of said collapsible portion onto said plane defining a principal actuation area, said collapsible portion being movable between a distant position further from the principal actuation area to a proximate position closer to the principal actuation area, the movement of the collapsible portion being actuatable by applying an attraction force in said principal actuation area, said collapsible portion showing a variable actuation liability in longitudinal direction with a region of maximum actuation liability where the attraction force to be applied for actuation is a minimum over the whole principal actuation area, the first conductor being laterally offset from said region of maximum actuation liability by a predetermined distance, so that actuation of the collapsible portion by means of the first conductor requires a higher attraction force than said minimum.

111 Vibration type MEMS switch and fabricating method thereof EP05014807.1 2005-07-07 EP1619710A3 2006-09-20 Lee, Moon-chul; Park, Tae-sik; Jeong, Hee-moon

A vibration type MEMS switch and a method of fabricating the vibration type MEMS switch. The vibration type MEMS switch includes a vibrating body supplied with an alternating current voltage of a predetermined frequency to vibrate in a predetermined direction; and a stationary contact point spaced apart from the vibrating body along a vibration direction of the vibrating body. When a direct current voltage with a predetermined magnitude is applied to the stationary contact point, a vibration margin of the vibrating body is increased, the vibrating body contacts the stationary contact point and the vibration type MEMS switch is turned on. A first substrate is bonded to a second substrate to isolate the vibrating body in a sealed vacuum space. The vibration type MEMS switch is turned on and/off by a resonance.

112 MICRO-COMMUTATEUR ELECTROSTATIQUE POUR COMPOSANT A FAIBLE TENSION D'ACTIONNEMENT EP03786074.9 2003-11-27 EP1565922B1 2006-08-16 ROBERT, Philippe
The invention relates to an electrostatic microswitch which is intended to connect two strip conductors (4, 5) which are disposed on a support. According to the invention, the two strip conductors are connected by means of a contact pad (6) which is provided on deformable means (3) which are made from an insulating material and which can be deformed in relation to the support under the effect of an electrostatic force generated by control electrodes. The aforementioned contact pad connects the ends (14, 15) of the two strip conductors (4, 5) when the deformable means are sufficiently deformed. Moreover, the control electrodes are distributed over the deformable means and the support in two electrode assemblies, namely: (i) a first assembly of electrodes (101, 102, 33, 53) which is intended to generate a first electrostatic force in order to initiate the deformation of the deformable means, and (ii) a second assembly of electrodes (101, 102, 7, 8) which is intended to generate a second electrostatic force in order to continue the deformation of the deformable means (3), such that the contact pad (6) connects the ends (14, 15) of the two strip conductors.
113 Vibration type MEMS switch and fabricating method thereof EP05014807.1 2005-07-07 EP1619710A2 2006-01-25 Lee, Moon-chul; Park, Tae-sik; Jeong, Hee-moon

A vibration type MEMS switch and a method of fabricating the vibration type MEMS switch. The vibration type MEMS switch includes a vibrating body supplied with an alternating current voltage of a predetermined frequency to vibrate in a predetermined direction; and a stationary contact point spaced apart from the vibrating body along a vibration direction of the vibrating body. When a direct current voltage with a predetermined magnitude is applied to the stationary contact point, a vibration margin of the vibrating body is increased, the vibrating body contacts the stationary contact point and the vibration type MEMS switch is turned on. A first substrate is bonded to a second substrate to isolate the vibrating body in a sealed vacuum space. The vibration type MEMS switch is turned on and/off by a resonance.

114 Electrostatic micro-relay, radio device and measuring device using the electrostatic micro-relay, and contact switching method EP02252164.5 2002-03-26 EP1246216A3 2004-07-21 Seki, Tomonori, c/o Omron Corporation

Signal lines (5a, 5b) formed on a fixed substrate 1 are arranged on the same straight line. A movable substrate (2) is elastically supported on the fixed substrate (1) through beam portions (11) provided at two positions which are point-symmetrical with each other with a movable contact (16) centered thereon. At least portions opposing the signal lines (5a, 5b) are removed from the movable substrate (2). The movable contact (16) is elastically supported at two points that are orthogonal to the straight line on which the signal lines (5a, 5b) are arranged and do not face the signal lines (5a, 5b). A pair of protrusions 17 are formed at positions at which after closing the contacts, if a voltage were applied between the fixed electrode 4 and the movable electrode 12 without the protrusion, the fixed substrate 1 and the movable substrate 2 would contact each other following the contact between the fixed contact 7 and the movable contact 16, in a point-symmetrical manner with the movable contact 16 centered thereon. With this arrangement, it is possible to provide an electrostatic micro-relay which has a simple and small-size structure that is easily manufactured at low costs, and is superior in high-frequency characteristics with a suitable contact release force.

115 Electrostatic micro-relay, radio device and measuring device using the electrostatic micro-relay, and contact switching method EP02252164.5 2002-03-26 EP1246216A2 2002-10-02 Seki, Tomonori, c/o Omron Corporation

Signal lines (5a, 5b) formed on a fixed substrate 1 are arranged on the same straight line. A movable substrate (2) is elastically supported on the fixed substrate (1) through beam portions (11) provided at two positions which are point-symmetrical with each other with a movable contact (16) centered thereon. At least portions opposing the signal lines (5a, 5b) are removed from the movable substrate (2). The movable contact (16) is elastically supported at two points that are orthogonal to the straight line on which the signal lines (5a, 5b) are arranged and do not face the signal lines (5a, 5b). A pair of protrusions 17 are formed at positions at which after closing the contacts, if a voltage were applied between the fixed electrode 4 and the movable electrode 12 without the protrusion, the fixed substrate 1 and the movable substrate 2 would contact each other following the contact between the fixed contact 7 and the movable contact 16, in a point-symmetrical manner with the movable contact 16 centered thereon. With this arrangement, it is possible to provide an electrostatic micro-relay which has a simple and small-size structure that is easily manufactured at low costs, and is superior in high-frequency characteristics with a suitable contact release force.

116 마이크로 기계식 소자를 제어하기 위한 방법 KR1020087015610 2001-04-12 KR100871098B1 2008-11-28 리해넨타파니; 에르몰로프블라디미르
본 발명은 마이크로 기계식 소자들의 제어에 관한 것이다. 특히 본 발명은 마이크로 기계식 스위치들의 제어에 관한 것이다. 적어도 하나의 마이크로 기계식 소자를 제어하기 위한 방법에 따라 제1 제어 신호 및 제2 제어 신호가 상기 마이크로 기계식 소자에 공급된다. 상기 제2 제어 신호는 상기 마이크로 기계식 소자를 액티브 상태로 세팅하도록 정해지고 상기 제1 제어 신호는 상기 마이크로 기계식 소자를 액티브 상태로 유지하도록 정해진다. 적어도 하나의 마이크로 기계식 소자(402)를 제어하기 위한 장치는 적어도 제1 제어 신호 및 제2 제어 신호를 발생시키는 수단, 적어도 상기 제2 제어 신호의 전압 레벨을 높이는 수단, 및 상기 제1 제어 신호 및 높아진 전압 레벨을 갖는 상기 제2 제어 신호를 상기 마이크로 기계식 소자에 공급하는 수단을 적어도 포함한다. 본 발명에 의하여 더 낮은 전압 레벨들이 마이크로 기계식 응용들에 사용될 수 있다.
117 비선형적 복원력의 스프링을 가지는 MEMS 소자 KR1020010009955 2001-02-27 KR100738064B1 2007-07-12 심동하
비선형적 복원력을 가지는 스프링 요소가 적용된 MEMS 소자에 관해 개시된다. 개시된 소자는: 기판 상에 형성되는 지지요소와; 지지요소에 의해 기판의 상방에 위치하여 기판에 대해 상대적인 운동을 하는 운동요소와; 상기 운동요소를 상기 지지체에 대해 탄력적 현가하는 스프링요소와; 상기 기판에 대한 상기 운동요소의 상대적 운동을 유발시키는 구동요소와; 상기 구동요소에 의해 운동요소가 운동을 할 때에 이를 지지하는 상기 스프링 요소가 소정량의 탄성변형이 이루어 졌을 때 스프링 요소의 반발력을 비선형적으로 증가시키는 반발력 변경 요소를; 구비한다. 이러한 MEMS 소자는 비선형적 반발력을 가지는 스프링요소를 이용하여 운동요소의 위치제어를 할 경우 위치 제어의 범위를 늘일 수 있다. 그리고 운동요소의 스틱션이 발생했을 경우 비선형적인 반발력을 가지는 스프링에 의해 큰 복원력을 얻을 수 있으며 공정 중 또는 동작 중에 발생할 수 있는 스틱션을 방지할 수 있다. 이러한 본 발명의 MEMS 소자는 종래의 MEMS 소자에 비해 신뢰성이 매우 높다. MEMS, 비선형, 스프링
118 MEMS 스위치 및 그 제조 방법 KR1020040107858 2004-12-17 KR100661176B1 2006-12-26 신형재; 김규식; 권순철; 이상훈; 김재흥
개시된 MEMS 스위치는 기판과, 기판상의 양측에 형성되고 스위칭접점부를 갖는 복수의 신호라인과, 기판상에 형성되며 복수의 신호라인의 사이에 형성된 복수의 고정전극과, 기판의 중앙을 중심으로 시소 운동하는 이너작동부재와, 이너작동부재의 시소운동에 연동되어 시소운동하는 아우터작동부재와, 이너작동부재의 상면 양단에 형성되되 그 단부가 아우터작동부재의 상부에 오버랩되도록 돌출 형성된 가압로드, 및 가압로드가 가압되는 위치인 아우터작동부재의 하면에 형성되어 신호라인의 스위칭접점부와 접촉되는 접촉부재를 포함한다. 이러한 구성을 통해 스위칭접점부의 스위칭 동작성을 향상시켜 삽입손실이 발생되는 것을 줄이고, 스틱션을 효과적으로 해소함과 아울러서 저전압 구동이 가능하다. MEMS, 스위치, 스틱션(Stiction), 삽입손실. 신호라인, 전극
119 진동형 멤스 스위치 및 그 제조방법 KR1020040056579 2004-07-20 KR1020060009119A 2006-01-31 이문철; 정희문; 박태식
진동형 멤스 스위치가 개시된다. 본 스위치는, 교류전압이 인가되면 소정 방향으로 진동하는 진동체 및 진동체의 진동방향을 따라 소정거리 이격된 위치에 형성되는 고정접점을 포함한다. 이에 따라, 고정접점에 소정크기의 직류전압이 인가되면, 진동체의 진동폭이 증가하여 고정접점에 접촉하게 됨으로써 스위치가 온되게 된다. 한편, 진동체를 사이에 두고 소정의 제1기판 및 제2기판을 상호 접합시켜, 진동체를 진공상태의 밀폐된 공간에 고립시키는 것이 바람직하다. 본 발명에 따르면, 공진현상을 이용하여 스위치를 온/오프시키므로, 저전압으로도 안정적인 스위칭 동작을 수행할 수 있게 된다. 멤스, 스위치, 공진, 진동체
120 마이크로 기계식 소자를 제어하기 위한 방법 KR1020087015610 2001-04-12 KR1020080077233A 2008-08-21 리해넨타파니; 에르몰로프블라디미르
The invention relates to a controlling of micromechanical elements. Especially the invention relates to the controlling of the micromechanical switches. According to a method for controlling at least one micromechanical element a first control signal and a second control signal are fed to the micromechanical element. The second control signal is arranged to set the micromechanical element to an active state and the first control signal is arranged to hold the micromechanical element in the active state. An arrangement for controlling at least one micromechanical element (402) contains at least means for generating at least a first control signal and a second control signal, means for raising a voltage level of at least the second control signal and means for feeding the first control signal and the second control signal with raised voltage level to the micromechanical element. By means of the invention lower voltage levels can be used in micromechanical applications.
QQ群二维码
意见反馈