序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
101 Audio compass for motion tracking US11872450 2007-10-15 US07952961B2 2011-05-31 Jamal Haque; Andrew W. Guyette; Edward R. Prado; Keith A. Souders
A method for tracking motion using an audio compass is disclosed. The method comprises receiving motion sensor data indicating seismic activity recorded by at least two seismic sensors, and converting the received motion sensor data into audio signals for interpretation at an audio compass. The method uses the audio compass to determine a current distance to the seismic activity based on an interpreted signal intensity of the audio signals. The method further uses the audio compass to identify a current position of the audio compass relative to the seismic activity.
102 Method for frequency-driven generation of a multiresolution decomposition of the input to wave-based sensing arrays US11278424 2006-04-02 US07423587B2 2008-09-09 Rolf Mueller
A method for generating a multiresolution decomposition of an array signal by a bank of spatial bandpass filters is disclosed. The signal processing operation is implemented through the use of the directivities of the individual array elements and does not degrade the spatial or temporal resolution of the array.
103 System for detecting, tracking, and reconstructing signals in spectrally competitive environments US11546599 2006-10-12 US07372774B1 2008-05-13 Charles A. Uzes
A system applicable to acoustic, seismic, electromagnetic, hydrodynamic, and shock waves utilizing a map between signal time series and signal vectors defining the mathematical wave field model characterizing the signal's wave field. This map is developed from wave models relating field values to those on surfaces and corresponding uniqueness theorems. The system should allow for improved resolving power in bearing and elevation for discrimination of sources; detection and direction finding for signals below the average background level; detection based upon resolving power and signal vector characteristics rather than signal to noise ratio; reconstruction of signals of resolved sources for their transmitted information content; and multiple modes of operation. Adaptive incorporation of known undesired signals into the noise background and/or treatment of asymmetric background noise fields is permitted through use of a noise metric-based map yielding signal direction in the presence of diffraction effects.
104 Method for Frequency-Driven Generation of a MultiResolution Decomposition of the Input to Wave-Based Sensing Arrays US11278424 2006-04-02 US20070229353A1 2007-10-04 Rolf Mueller
A method for generating a multiresolution decomposition of an array signal by a bank of spatial bandpass filters is disclosed. The signal processing operation is implemented through the use of the directivities of the individual array elements and does not degrade the spatial or temporal resolution of the array.
105 Subarray matching beamformer apparatus and method US10182664 2001-01-08 US20060241914A1 2006-10-26 Thomas Barnard; Manuel Fernandez
A method of beam forming an array (60), by computer processing a cross covariance (30), of the reference sub array seismic signal data signal (120), by having an unknown shape comprising receiving acoustic signals (120), via the aray (100), and computing the date (20) and segmenting the array into an initial segment of a known shape and at least a second segment (44), and beam forming the initial segment to provide a beam formed output (60), and using the beam formed output to obtain weights (24), for the second segment of the array.
106 System for detecting, tracking, and reconstructing signals in spectrally competitive environments US11200264 2005-08-09 US07123548B1 2006-10-17 Charles A. Uzes
A system applicable to acoustic, seismic, electromagnetic, hydrodynamic, and shock waves utilizing a map between signal time series and signal vectors defining the mathematical wave field model characterizing the signal's wave field. This map is developed from wave models relating field values to those on surfaces and corresponding uniqueness theorems. The system should allow for improved resolving power in bearing and elevation for discrimination of sources; detection and direction finding for signals below the average background level; detection based upon resolving power and signal vector characteristics rather than signal to noise ratio; reconstruction of signals of resolved sources for their transmitted information content; and multiple modes of operation. Adaptive incorporation of known undesired signals into the noise background and/or treatment of asymmetric background noise fields is permitted through use of a noise metric-based map yielding signal direction in the presence of diffraction effects.
107 Sound source localization system, and sound reflecting element US10801440 2004-03-16 US20040228215A1 2004-11-18 Osamu Ichikawa; Masafumi Nishimura
Enables the estimation of a sound source position at an angle in a system with a small number of microphones, which was conventionally difficult to perform, and improve the precision of estimating the sound source position. By forming a reflecting surface RS as an enveloping surface of a spheroid in which a position of sound collecting means and a sound source position are the focal points, a major reflected wave having a delay amount corresponding to a sound source position is generated, and the delay amount between the direct wave and the reflected wave is checked, whereby the sound source position is acquired and estimated.
108 Acousto-optic weapon location system and method US09292082 1999-04-14 US06215731B1 2001-04-10 Thomas Smith
An weapon localization system for determining the location of hostile weapon fire. In one embodiment, the weapon localization system includes acoustical detection means for detecting energy of a first frequency originating from said hostile weapon fire; and for transmitting a first set of data describing the location of said hostile weapon fire; optical detection means for detecting energy of a second frequency originating from said hostile weapon fire, and for transmitting a second set of data describing the location of said hostile weapon fire; and processing means coupled to said acoustical and said optical detection means for receiving said first and said second set of data and for determining whether said location of said first set of data match said location of second set of data and for generating a signal output if said match occurs.
109 Spatial sound steering system US09221664 1998-12-23 US06185152B2 2001-02-06 Albert Shen
An apparatus and method for determining directionality of acoustic signals arriving from an acoustic source is disclosed. A plurality of reflectors for modifying the acoustic signals and a transducer located proximate to the reflectors is used. A notch detector detects and identifies spectral notches in the modified acoustic signals. A device then determines the direction of the acoustic source. In one embodiment, a microphone system capable of detecting three-dimensional sound is provided. The microphone system comprises an elliptical-shaped microphone enhancer having at least two reflectors located different distances apart from a microphone located in the center of the ellipse. The reflectors have asymmetric ridges which cause interference patterns in the signals received by the microphone, conceptually analogous to the patterns generated by the pinnae of the human ear.
110 Advanced vertical array beamformer US133852 1998-08-13 US6009045A 1999-12-28 Tsih C. Yang; Kwang B. Yoo
The advanced vertical array beamformer signal processor accomplishes acoustic beamforming of an underwater vertical array used in shallow water utilizing matched beam processing to suppress generated noise and/or ship radiated noise thereby increasing the detectability of a submerged source emitting only a low noise signal. The processor exploits the difference of the signal arrival angle of both active and passive signals with that of the wind generated noise and ship radiated noise which is prominent in downward refractive sound speed profiles. After filtering the undesired noise, the processor uses the depth of the source as a clue for detection; the processor is an energy detector focused on the returns of a deep source.
111 Trajectory matched passive detection system US787834 1997-01-23 US5777949A 1998-07-07 Robert B. MacLeod; Walter T. Schneider
A passive target detection system for use with a moving platform which indes a module for postulating modeled target signals based upon a number of factors including at least one factor selected from the group consisting of signal beam pattern, frequency, non-linear signal progression and carrier movement; a receiver for receiving signals from a target; and a comparison unit for comparing the signals with the modeled target signals, for determining location of the target.
112 Method and system for near real-time analysis and display of electrocardiographic signals US236724 1994-06-14 US5474078A 1995-12-12 William H. Hutson
The multidimensional ECG processing and display system of the present invention is used with an electrocardiographic (ECG) monitoring system. Input ECG data from multiple, sequential time intervals is collected and formatted into a two-dimensional matrix. The two-dimensional matrix is decomposed using singular value decomposition (SVD) to obtain its corresponding singular values and singular vectors, a compressed form of the matrix. The singular vectors are analyzed and filtered to identify and enhance signal components of interest. Selected singular vectors are transformed into their frequency domain representations by the Fast Fourier Transform (FFT), or related techniques. Certain data elements in the two-dimensional matrix are enhanced or diminished by modifying the singular values within groups of singular vectors to enhance certain objects that are associated with the ECG data and to diminish other features within the data. The enhanced data is expanded back into its original form and features in the ECG data are displayed as opaque objects within a transparent data cube.
113 Multi-dimensional signal processing and display US367787 1994-12-30 US5455806A 1995-10-03 William H. Hutson
A multi-dimensional acoustic data processing and display system arranges acoustic data in a three-dimensional matrix. The three-dimensional matrix is compressed using singular value decomposition into singular vectors and singular values. A historical database is created and maintained and is also concatenated with the three-dimensional data. This database allows reverberation and noise to be diminished and other, weaker features in the data to be enhanced. Once the data is compressed, the data can be analyzed efficiently. The singular vectors are partitioned into one or more groups on the basis of their singular values or other criteria. Certain of the compressed data elements are enhanced or diminished by modifying the singular values within each of the groups of singular vectors. Selected singular vectors are processed further by other techniques for further enhancement, detection, isolation, feature extraction and classification. The compressed and enhanced data is then expanded back into three-dimensional form for display or for other processing.
114 Multi-dimensional signal processing and display US978245 1992-11-18 US5245587A 1993-09-14 William H. Hutson
A multi-dimensional acoustic data processing and display system arranges acoustic data in a three-dimensional matrix. The three-dimensional matrix is compressed using singular value decomposition into singular vectors and singular values. A historical database is created and maintained and is also concatenated with the three-dimensional data. This database allows reverberation and noise to be diminished and other, weaker features in the data to be enhanced. Once the data is compressed, the data can be analyzed efficiently. The singular vectors are partitioned into one or more groups on the basis of their singular values or other criteria. Certain of the compressed data elements are enhanced or diminished by modifying the singular values within each of the groups of singular vectors. Selected singular vectors are processed further by other techniques for further enhancement, detection, isolation, feature extraction and classification. The compressed and enhanced data is then expanded back into three-dimensional form for display or for other processing.
115 Method of measuring directional spectra of surface gravity waves US744527 1991-08-13 US5243565A 1993-09-07 Tokuo Yamamoto
A new method for measurement of the directional spectra of surface gravity (water) waves. Measurements are made at a single point by orthogonally mounted seismometers buried below the seabed surface and a pressure sensor resting on the seafloor or buried below the seabed. The maximum entropy principle is used to find the directional distribution function for the waves traveling through the sediments as measured by the seismometers. This function is combined with the frequency spectra of the ocean surface waves to form the directional spectra of the surface gravity waves. The method produced high directional resolution for instruments that were adequately coupled with the seabed. The method is also capable of detecting objects moving through water, such as surface ships and submarines.
116 Integrated passive acoustic and active marine aquatic apparatus and method US744505 1991-08-14 US5168473A 1992-12-01 Jorge M. Parra
One or more passive transducers for converting sounds, including bio-soundwaves from a living aquatic animal source traveling in a body of water, to electrical signals, is combined with an active sonar (echo sounding) to form an integrated marine acoustic system. Moreover, a common display can be used and coupled with a satellite (GPS) or loran position locator so that a fishing vessel carrying the apparatus can have its position displayed on an electronically reproduced chart or map of an area along with the fish location, including an indication of the direction of fish movement, and fish species.
117 Seismo-acoustic detection, identification, and tracking of stealth aircraft US924707 1986-10-29 US4811308A 1989-03-07 Howard E. Michel
An aircraft detection system which detects and tracks aircraft using: arrays of seismic and acoustic sensors, a set of junction circuits, a set of subarray circuits, several slave computers, and a master computer. Each junction circuit relays detected signals from several adjacent sensors to a subarray circuit and command signals to each of the sensors to adjust the gain of their output signals. Each subarray circuit receives and unites the outputs of several adjacent junction circuits into a subarray which has a particular geographical location in the array of sensors. Each slave computer forwards detected signals from single subarray circuit to the master computer, and relays command signals back to each individual sensor. Each subarray is able to track the seismic or acoustic signature of an aircraft as it travels across the regular distribution of sensors. Each subarray is thereby able to define an azimuth to the target aircraft. Collectively the information from several subarrays yields several azimuths from which the position of the aircraft may be located by triangulation of the azimuths.
118 Improved data analysis system US25597 1970-03-25 US4754282A 1988-06-28 David J. Edelblute; Gerald L. Kinnison
A data analysis system accepts time related data samples which are develo from sets of common wavefronts incident upon a plurality of sensors. The data samples are converted from analog-to-digital form and the Fourier transforms relative to the frequency components are generated. The frequency components of the Fourier transforms are in turn cross-correlated for developing matrices of all possible correlations for each frequency component and then the matrices are integrated over a determinable time period. The resultant integrated matrices are compared with signals representative of an incident plane wave power as a function of its angles of arrival at a sensor array and of its frequency, producing output signals of relative strength indicative of the direction of the origin of the data samples.
119 Sonar apparatus US821717 1986-01-23 US4661938A 1987-04-28 Charles H. Jones; John W. Kesner
A passive sonar system which forms multiple receiver beams for detection of possible targets. The transducer array for the system includes a plurality of pairs of transducers, the transducers of each pair lying along a generally radial line emanating from a central point. The output signal from the outer transducer of each pair is delayed by 90.degree. or .lambda./4C relative to the inner transducer, and the delayed signal is combined with the output signal from the other transducer of the pair in a summing amplifier so that only one signal per transducer pair need be sampled by a multiplexer for transmission via a coaxial cable to beamformer apparatus. The concept is applicable to groups of transducers with more than just a pair, i.e., with three or more transducers. Appropriate additional delays are provided with all of the output signals and delayed output signals of a group being received by a single summing amplifier.
120 Method and apparatus for random array beamforming US532854 1983-09-16 US4559605A 1985-12-17 Keith Norsworthy
A beamforming method and apparatus utilizing a plurality of sensing elements which are free to take up random positions. Each sensing element generates output signals in response to sensed radiation. The signals are fed to a data process or which generates Fourier frequency components of each output signal and selects a Fourier frequency component for each given radiation frequency to form a group of frequency components. The data processor performs a spatial convolution, interpolation and spatial Fourier transform followed by an averaging procedure in order to obtain an output signal which is indicative of the far field radiation power as a function of angle thus providing the desired beamforming information.
QQ群二维码
意见反馈