首页 / 专利库 / 变压器和转换设备 / 传感器 / 一种工业机器人变参数刚度辨识与建模方法

一种工业机器人变参数刚度辨识与建模方法

阅读:112发布:2023-12-20

专利汇可以提供一种工业机器人变参数刚度辨识与建模方法专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种工业 机器人 变参数 刚度 辨识与建模方法,属于 工业机器人 刚度辨识技术领域。该方法将机器人有效 工作空间 划分为多个立方体区域,针对某个加工区域的作业任务通过对 末端执行器 在该区域多 位置 、多 姿态 下施加不同 载荷 ,根据载荷与末端形变的关系,辨识获取该区间的 机器人关节 刚度,实现机器人在加工过程中不同作业区间下的刚度精确控制。本发明方法能实现机器人作业过程刚度性能准确评估,从而精确预测受载加工过程中的末端 变形 ,进而达到提高加工 精度 和 质量 的效果,满足机器人在 铣削 、制孔等高精加工领域的应用要求。,下面是一种工业机器人变参数刚度辨识与建模方法专利的具体信息内容。

1.一种工业机器人变参数刚度辨识与建模方法,其特征在于,包括步骤如下:
步骤1:在给定型号工业机器人有效工作范围内,按照给定的最大步长将整个作业空间划分成一系列的立方体网格;
步骤2:使用上述步骤1中划分的一个立方体网格的八个顶点以及网格空间的中心点的理论坐标来控制机器人进行定位,在各个位置选择不少于3个机器人可达姿态
步骤3:六维传感器安装在末端法兰盘上,通过机器人末端挂载一定重量的刚性载荷,获得在力传感器坐标系下各目标位姿处的负载大小与方向;通过机器人法兰盘上安装的一组靶标,采用激光跟踪仪测量并读取机器人末端负载前后两组靶标的位置坐标信息,通过基于奇异值分解的最小二乘法拟合得到法兰盘位姿在加载负载前后的转换关系;通过力传感器坐标系与法兰盘坐标系的转换矩阵将机器人末端测得的所受载荷矢量转换到法兰盘坐标系下;建立机器人运动学D-H模型,并通过微分变换法建立机器人雅可比矩阵;结合负载信息、末端位姿变化矩阵及雅克比矩阵,利用机器人静刚度模型实现满足该网格空间作业任务的机器人关节刚度辨识;
步骤4:按照上述步骤3中网格空间内的辨识方法实现全空间内所有网格的关节刚度辨识,建立全作业空间的刚度模型。
2.根据权利要求1所述的工业机器人变参数刚度辨识与建模方法,其特征在于,所述步骤1中将机器人末端有效作业空间划分为立体网格来作为机器人采样点的规划基准。
3.根据权利要求1所述的工业机器人变参数刚度辨识与建模方法,其特征在于,所述步骤2中根据作业类型选定机器人绕末端旋转轴向,模拟机器人实际作业姿态。
4.根据权利要求1所述的工业机器人变参数刚度辨识与建模方法,其特征在于,所述步骤4中对各个网格空间的关节刚度分别进行辨识,并采用各个网格空间内辨识结果实现全作业空间的机器人刚度建模。
5.根据权利要求1所述的工业机器人变参数刚度辨识与建模方法,其特征在于,所述步骤3具体包括:
(31)记录该网格空间的各个顶点处机器人的不同姿态下法兰盘上的三个靶球在受力前后的位置变化;
(32)通过最小二乘法拟合三个靶球所在平面的位姿变化矩阵,看作法兰盘位姿的变化矩阵;
(33)建立机器人运动学模型与雅可比矩阵;
(34)结合位姿变化矩阵、力传感器读数以及机器人运动学模型,实现该网格空间下的刚度辨识。

说明书全文

一种工业机器人变参数刚度辨识与建模方法

技术领域

[0001] 本发明属于机器人刚度辨识技术领域,具体涉及一种工业机器人变参数刚度辨识与建模方法,能实现机器人作业刚度准确建模与评估。

背景技术

[0002] 工业机器人作为典型的柔性平台,具有高度运动灵活性,可以高效完成复杂的空间定姿,同时能够在高性能控制器支持下迅速调整作业轨迹和设备状态,是高端制造业尤其是航空航天等高附加值制造装配领域的核心加工装备。但是工业机器人受其串联结构固有特性的影响,其刚度仅有数控机床的1/50~1/20,弱刚性的结构特点导致工业机器人对工作载荷的耐受能偏低,从而会影响机器人加工轨迹精度和产品表面质量,难以满足精度要求高、装配过程复杂的高附加值产品的制造装配需求。
[0003] 针对机器人弱刚性问题,需对机器人刚度特性与刚度建模方法开展研究,机器人关节刚度辨识是机器人刚度建模的关键一环。在文献“Abele E,Weigold M,Rothenbücher S.Modeling and identification of an industrial  robot for machining applications.Ann CIRP,2007,56(1):387–390”中,Adele E等人在测量五自由度的机器人各关节的关节刚度时,将其他关节死,通过测量目标关节在末端负载下的变形获得其关节刚度,然而这种近似简化处理得到的刚度模型准确性不高。
[0004] 在文献“Shih-Feng Chen and  Imin Kao.Conservative Congruence Transformation for Joint and Cartesian Stiffness Matrices of Robot Hands and Figures.The International Journal of Robotics Research,2000,(19)9:835-847”中Chen等人建立了机器人关节柔性与笛卡尔柔性之间的映射关系,实现了机器人刚度的理论计算,并指出末端刚度与机器人的姿态直接相关。在此基础上Claire Dumas与Stephane Caro等在文献“Claire Dumas,Stephane Caro,Sebastien Garnier and Benoit Furet.Joint stiffness identification of six-revolute industrial serial robots.Robotics and Computer-Integrated Manufacturing,2011,27:881-888”中研究了机器人运动学特性,并通过不同姿态下在机器人末端施加静载荷,测量机器人变形,可以拟合辨识得到工业机器人六个关节的刚度系数。但是在实际应用中,该方法存在以下不足:
[0005] (1)在执行点位作业任务(如制孔)时,机器人关节电机处于抱闸状态,机器人处于连续轨迹作业(如铣削)时,关节电机不抱闸,没有考虑抱闸对关节刚度辨识结果的影响;
[0006] (2)机器人关节可以简化为扭簧模型,关节刚度的本质非线性特征导致对应不同机器人姿态下的关节度,辨识出的关节刚度也会有区别,即一组关节刚度辨识结果并不能很好的满足全工作空间的刚度模型的精度要求。

发明内容

[0007] 针对于上述现有技术的不足,本发明的目的在于提供一种工业机器人变参数刚度辨识与建模方法,以解决现有技术中针对静刚度辨识结果对全作业空间适用性不高导致机器人刚度建模准确度不理想的问题;实现了工业机器人的刚度建模精度的有效提升与机器人作业状态下末端受载变形的精确预测。
[0008] 为达到上述目的,本发明采用的技术方案如下:
[0009] 本发明的一种工业机器人变参数刚度辨识与建模方法,包括步骤如下:
[0010] 步骤1:在给定型号工业机器人有效工作范围内,按照给定的最大步长将整个作业空间划分成一系列的立方体网格;
[0011] 步骤2:使用上述步骤1中划分的一个立方体网格的八个顶点以及网格空间的中心点的理论坐标来控制机器人进行定位,在各个位置选择不少于3个机器人可达姿态,法兰盘上安装的六维力传感器测量所挂负载的大小与方向,用激光跟踪仪测量在所有位姿下负载前后机器人末端的位姿变化;
[0012] 步骤3:通过采集的不同位姿下的末端载荷与变形情况,实现满足该网格空间作业任务的机器人关节刚度辨识;
[0013] 步骤4:按照上述步骤3中网格空间内的辨识方法实现全空间内所有网格的关节刚度辨识,建立全作业空间的刚度模型。
[0014] 进一步地,所述步骤1中将机器人末端有效作业空间划分为立体网格来作为机器人采样点的规划基准。
[0015] 进一步地,所述步骤2中利用激光跟踪仪测量装在机器人法兰盘上的一组靶球位置,来拟合得到机器人的末端位姿变化,通过安装在机器人法兰盘上的六维力传感器实现末端载荷的实时采集。
[0016] 所述步骤2中选取一个立方体网格的八个顶点以及网格空间的中心点的理论坐标来控制机器人进行定位,考虑了一个网格空间中的典型位置的代表性与分布全面性。
[0017] 进一步地,所述步骤2中根据作业类型选定机器人绕末端旋转轴向,模拟机器人实际作业姿态,考虑了采样姿态选择的多样性与可靠性。
[0018] 进一步地,所述步骤3中通过基于奇异值分解的最小二乘法拟合得到法兰盘位姿在加载负载前后的转换关系。
[0019] 进一步地,所述步骤3中对机器人静刚度模型做出结构变换,得到给定姿态下机器人末端变形和末端载荷的关系,并通过微分变换对机器人雅可比矩阵求解。
[0020] 进一步地,所述步骤4中对各个网格空间的关节刚度分别进行辨识,并采用各个网格空间内辨识结果实现全作业空间的机器人刚度建模。
[0021] 进一步地,所述步骤3具体包括:
[0022] (31)记录该网格空间的各个顶点处机器人的不同姿态下法兰盘上的三个靶球在受力前后的位置变化;
[0023] (32)通过最小二乘法拟合三个靶球所在平面的位姿变化矩阵,看作法兰盘位姿的变化矩阵;
[0024] (33)建立机器人运动学模型与雅可比矩阵;
[0025] (34)结合位姿变化矩阵、力传感器读数以及机器人运动学模型,实现该网格空间下的刚度辨识。
[0026] 本发明的有益效果:
[0027] 1、本发明针对不同型号的工业机器人,都可以确定划分网格空间的最优步长,减少了工作量,有利于工业机器人快速地投入作业;
[0028] 2、本发明提出根据作业空间分布的变参数关节刚度辨识方法,考虑了机器人关节刚度的非线性特征,建立的刚度模型更接近机器人实际刚度特征;
[0029] 3、本发明可以大幅提高机器人全作业空间的刚度建模的准确性,提高了对机器人切削作业中的末端变形量的预测能力,从而提升机器人作业精度,拓展了机器人在高精加工领域的应用。附图说明
[0030] 图1为机器人作业网格空间划分示意图;
[0031] 图2网格空间机器人刚度辨识采样位姿示意图;
[0032] 图3对25个试验点的定位补偿效果示意图。

具体实施方式

[0033] 为了便于本领域技术人员的理解,下面结合实施例与附图对本发明作进一步的说明,实施方式提及的内容并非对本发明的限定。
[0034] 本发明技术方案所需刚度辨识设备主要包括:工业机器人、激光跟踪仪(或其他定位获取传感器)、六维力传感器等。
[0035] 参照图1所示,本发明的一种工业机器人变参数刚度辨识与建模方法,包括步骤如下:
[0036] 步骤1:将激光跟踪仪置于合适位置,以方便测量。利用激光跟踪仪测量并建立包括机器人基坐标系Base、法兰盘坐标系Flange、工具坐标系Tool、六维力传感器坐标系Force的坐标系系统,按照给定的最大步长将机器人有效作业空间划分为一系列立方体网格;
[0037] 步骤2:用上述步骤1中划分的一个立方体网格的八个顶点以及网格空间的中心点(见图2中Tag1到Tag9,其中Xi、Yi、Zi分别为末端位置对应的姿态下工具坐标系Tool的三个方向轴)的理论位置坐标来控制机器人进行定位,每个顶点位置的初始姿态按照图2中所示,相交于Tag5点处的三条立方体的边的方向分别定义为初始目标位姿的X、Y、Z轴方向,即与Base坐标系的三个轴方向平行。
[0038] 在各个位置分别选择另外三个姿态,为简化操作,通过延工具坐标系某一轴线方向(如作业轴方向即目标点坐标的X方向)选择合适的角度步长旋转一定次数,获得在该作用位置的合适数目的一系列姿态,定义新的目标点位姿相对初始位姿旋转角为θ=j*Δθ,j=1,2,3,其中Δθ作为样本选择步长,绕选定轴向旋转一个角度θ产生一个新的机器人姿态,以X轴为例引入旋转变化矩阵Rot(x,θ):
[0039]
[0040] 则通过Tagnew=Rot(x,θ)Tag计算得到该位置处新的末端位姿在笛卡尔坐标系下的信息,Tag与Tagnew分别为旋转之后的末端位姿信息,最终得到9个目标位置处的所有目标位姿信息,沿着Y轴和Z轴的旋转变化如下所示:
[0041]
[0042] 步骤3:在该网格空间内的辨识机器人关节刚度,六维力传感器安装在末端法兰盘上,通过在力传感器上挂载一定重量的刚性载荷,获得在力传感器坐标系下各目标位姿处的负载大小与方向;
[0043] 通过机器人法兰盘上安装的3个靶标,采用激光跟踪仪测量并间接获得机器人末端在受力前后变形的读取,读取加载负载前后两组靶标的位置坐标信息,通过基于奇异值分解的最小二乘法拟合得到法兰盘位姿在加载负载前后的转换关系:
[0044] p'=R*p+t
[0045] 其中p和p'分别表示受力前后读取的点组坐标信息,R与t分别表示旋转矩阵与平移矩阵,
[0046]
[0047] 其中pi和p′i分别为各靶球受力前后的位置坐标,pm与p'm为平均值;通过奇异值分T解H,得到H=UDV ,其中D是一个对角矩阵,U和V是正交矩阵,可以得到法兰盘受力变形的旋转矩阵与位移矩阵:R=VUT,t=p'm-R*pm。
[0048] 利用机器人静刚度模型辨识机器人关节刚度,其计算公式表达为:F=KD=J-TKθJ-1D,其中F与D为机器人末端法兰盘受到的广义载荷矩阵与末端变形矩阵,K与Kθ分别为机器人末端刚度矩阵与机器人关节刚度矩阵,J为机器人雅可比矩阵。通过力传感器坐标系与法兰盘坐标系的转换矩阵将机器人末端测得的所受载荷矢量转换到法兰盘坐标系下,修改上式形式为:D=JKxJTF=AKx,其中 到 是机器人6个
关节刚度的倒数,A是与作用力矩阵和雅可比矩阵相关的矩阵,表示为:
[0049]
[0050] 其中,Fi为外力F的第i行,雅可比矩阵通过建立机器人运动学D-H模型,通过微分变换法建立机器人雅可比矩阵,由于工业机器人的关节都为转动关节,则雅可比矩阵J的第i列按下式计算:
[0051]
[0052] 式中,Jli为机器人雅可比矩阵第i列的转动变换,Jai为机器人雅可比矩阵第i列的移动变换,n、o、a、P分别为各连杆到末端连杆的变换 的四个列矢量,nz、oz、az分别为n、o、a的列矩阵的第三行值。
[0053] 通过上述计算过程实现了机器人在一个网格空间的关节刚度辨识。
[0054] 步骤4:按照上述操作过程,实现机器人作业空间各网格的关节刚度辨识,选择各网格空间的刚度辨识结果进行刚度建模,机器人末端作业位置在不同网格区间分布时,选择与其匹配的机器人刚度模型,实现高作业适应性的机器人作业刚度精确控制。
[0055] 下面以KUKA-KR500工业机器人为例来说明本发明的具体实施方法:
[0056] 首先,使用机器人建立坐标系系统,在600mm×1200mm×600mm的空间内,按照150mm为网格步长,将机器人作业空间划分为128个空间立体网格;
[0057] 其次,在离线编程软件里规划并确定所有网格9个目标位置的机器人位姿坐标信息,如图2中通过将初始姿态绕工具坐标系Y轴分别旋转±10°获得不同的三个位姿,模拟一定范围内的曲面加工任务;
[0058] 再次,通过在空载状态下对目标位姿采样,并通过激光跟踪仪记录法兰盘上靶球的位置;在末端通过固连的方式安装50KG负载模拟机器人作业过程的末端受力,在负载状态下重新完成目标位姿采样,并通过激光跟踪仪记录法兰盘上靶球的在机器人负载状态下的位置信息;
[0059] 最后,处理采集到的负载信息和位姿信息,通过刚度辨识算法计算获得各网格空间的机器人刚度,实现机器人全作业空间的变参数关节刚度辨识和机器人刚度精确建模。
[0060] 在刚度建模的基础上,在加工过程中结合六维力传感器对传感器在线实测,可以实现机器人加工状态下的定位误差在线预测与补偿,随机取25个机器人末端位姿,确定这些点位的所在分布网格空间,实现机器人这些位姿的负载状态下的定位补偿,结果如图3所示,补偿后的误差由2~3mm提高到1mm以内,精度提升达到60%以上。
[0061] 本发明具体应用途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进,这些改进也应视为本发明的保护范围。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈