首页 / 专利库 / 微电子学 / 外延生长 / 异质外延 / 一种增强型AlN/AlGaN/GaN HEMT器件

一种增强型AlN/AlGaN/GaN HEMT器件

阅读:242发布:2020-05-08

专利汇可以提供一种增强型AlN/AlGaN/GaN HEMT器件专利检索,专利查询,专利分析的服务。并且本实用新型属于 半导体 器件领域,公开了一种增强型AlN/AlGaN/GaN HEMT器件。所述器件包括衬底、GaN 沟道 层、AlGaN超薄势垒层、非晶SiO2层、单晶AlN层、漏金属 电极 、源金属电极和栅金属电极。本实用新型的增强型器件是在GaN和超薄AlGaN 异质结 的 基础 上,在栅下区域插入非晶SiO2层后,在异质结上 外延 单晶AlN层。栅下非晶SiO2层能够隔离强极性单晶AlN层对AlGaN超薄势垒层的极化增强效应,耗尽栅下二维 电子 气,使器件关断,实现增强型器件。同时栅下的非晶SiO2和单晶AlN可作为栅下介质层,有利于降低栅 泄漏 电流 ,提高器件击穿 电压 。(ESM)同样的 发明 创造已同日 申请 发明 专利,下面是一种增强型AlN/AlGaN/GaN HEMT器件专利的具体信息内容。

1.一种增强型AlN/AlGaN/GaN HEMT器件,其特征在于:所述器件包括:衬底、GaN沟道层、AlGaN超薄势垒层、非晶SiO2层、单晶AlN层、漏金属电极、源金属电极和栅金属电极,其中:
所述衬底、GaN沟道层和AlGaN超薄势垒层由下至上依次层叠;
所述非晶SiO2层覆盖在AlGaN超薄势垒层上表面的部分区域;
所述漏金属电极和源金属电极分别位于AlGaN超薄势垒层上表面未被非晶SiO2层覆盖的两侧区域,漏金属电极和源金属电极与AlGaN超薄势垒层之间形成欧姆接触
所述单晶AlN层覆盖在AlGaN超薄势垒层上表面未被源漏金属电极覆盖的区域,并覆盖非晶SiO2层;
所述栅金属电极位于非晶SiO2层上方单晶AlN层的上表面,栅金属电极与AlGaN超薄势垒层之间形成肖特基接触。
2.根据权利要求1所述的一种增强型AlN/AlGaN/GaN HEMT器件,其特征在于:所述衬底为衬底。
3.根据权利要求1所述的一种增强型AlN/AlGaN/GaN HEMT器件,其特征在于:所述GaN沟道层的厚度为1~5μm;所述非晶SiO2层的厚度为5~15nm;所述单晶AlN层的厚度为15~
25nm。
4.根据权利要求1所述的一种增强型AlN/AlGaN/GaN HEMT器件,其特征在于:所述AlGaN超薄势垒层的厚度为5~7nm,Al元素的摩尔含量为25%~30%。
5.根据权利要求1所述的一种增强型AlN/AlGaN/GaN HEMT器件,其特征在于:所述漏金属电极和源金属电极的材料由Ti、Al、Ni、Au四层金属组成;所述栅金属电极的材料由Ni、Au两层金属组成。
6.根据权利要求1所述的一种增强型AlN/AlGaN/GaN HEMT器件,其特征在于:所述栅金属电极位于靠近源金属电极的一侧。

说明书全文

一种增强型AlN/AlGaN/GaN HEMT器件

技术领域

[0001] 本实用新型属于半导体器件领域,具体涉及一种增强型AlN/AlGaN/GaN HEMT器件。

背景技术

[0002] 在化合物半导体电子器件中,高电子迁移率晶体管(HEMT)是应用于高频大功率场合最主要的电子器件。这种器件依靠Ⅲ族氮化物半导体的自发极化和压电极化效应,在异质结界面形成具有量子效应的二维电子气(2DEG)导电沟道,2DEG的密度、迁移率和饱和速率等决定了器件的电流处理能。其中,基于GaN及相关Ⅲ-Ⅴ族氮化物材料(AlN、InN)的HEMT器件是目前化合物半导体电子器件的研究热点。与第二代半导体GaAs相比,GaN具有宽禁带、临界击穿电场高、电子饱和速度高、热导率高、抗辐照能力强等优势,因此GaN HEMT具有优异的高频、耐压、耐高温、耐恶劣环境特性,被大量应用在射频微波以及功率开关等领域。
[0003] AlGaN/GaN异质结界面处的自发极化及压电极化,使得常见的AlGaN/GaN异质结之间能够产生浓度大约为1013cm-2的面电荷密度,因此GaN HEMT器件是天然的耗尽型器件。这种耗尽型器件在射频微波应用中要使用负的开启电压,使电路结构变得复杂而且电路的防误启的保护功能也会受到影响,降低电路的安全性,因此有必要开展增强型GaN HEMT器件的研究,简化电路设计和降低制备成本,这对大规模微波射频电路应用来说具有重大意义。同时在数字电路中,增强型和耗尽型GaN HEMT相结合,可以集成为直接耦合型场效应晶体管逻辑(DCFL)电路,这些单片集成的增强型/耗尽型(E/D Mode)GaN HEMTs逻辑单元可以用在混合信号电路和直流-直流(DC-DC)转换电路上,在反相器、环形振荡器的设计中,使电路设计更简单。
[0004] 常见的实现增强型器件的方法有氟离子注入技术、凹槽栅技术和p型栅技术。
[0005] 氟离子注入是在栅金属沉积之前,通过反应离子刻蚀(RIE)或者感应耦合等离子刻蚀(ICP)将氟离子注入栅下势垒层,注入的F离子通常受到来自相邻原子(Al、Ga或N)的排斥力而在间隙位置处于稳定,由于氟在所有元素中具有最强的电负性,因此在间隙位置处的单个氟离子会捕获自由电子并形成负的固定电荷,形成一个附加的势垒,提高势垒高度,产生阈值电压的大幅度正移。但是氟离子注入不可避免的会造成2DEG沟道中存在少量氟离子,导致沟道载流子迁移率减低,同时对势垒层造成晶格损伤。
[0006] 凹槽栅结构是对栅下势垒层进行刻蚀,只降低栅下极化电荷密度而尽可能不影响沟道电荷,在保证较高输出电流的情况下实现增强型。但在实际制备中,在工艺上难以精准刻蚀势垒层,同时刻蚀过程中会引入晶格损伤,降低被刻蚀区域的电子迁移率,增大栅电流,影响器件的功率特性,严重时会造成器件失效。
[0007] p型栅技术是在未人为掺杂的AlGaN势垒层和栅极金属之间引入一层p型掺杂的GaN或AlGaN外延层,抬升整个异质结的导带从而耗尽栅极下方沟道中的2DEG,使器件由耗尽型转变为增强型。由于p型外延层选择性生长难度大,所以目前实现p型栅技术的常用方法是在势垒层上生长一层p-AlGaN或p-GaN,并使用ICP刻蚀掉栅源和栅漏之间p型外延层。因此,p型栅技术也同样存在难以控制刻蚀精度的问题,刻蚀不充分或刻蚀过度都会降低沟道下的二维电子气浓度,减小输出电流。
[0008] 可以看出,虽然以上方法均能实现增强型器件,但均会或多或少地对器件造成损伤,从而引起输出电流密度下降、栅泄漏电流增大、器件稳定性降低,甚至造成器件失效,这也是难以实现高阈值电压大饱和电流增强型器件的主要原因。因此,开发一种无损、可控、稳定的制备增强型器件的技术,能够实现在提高阈值电压的同时,保持高的输出电流密度,这对于GaN HEMT器件在电子电力领域的应用具有重大意义。实用新型内容
[0009] 针对以上现有技术存在的缺点和不足之处,本实用新型的目的在于提供一种增强型AlN/AlGaN/GaN HEMT器件。
[0010] 本实用新型目的通过以下技术方案实现:
[0011] 一种增强型AlN/AlGaN/GaN HEMT器件,包括:衬底、GaN沟道层、AlGaN超薄势垒层、非晶SiO2层、单晶AlN层、漏金属电极、源金属电极和栅金属电极,其中:
[0012] 所述衬底、GaN沟道层和AlGaN超薄势垒层由下至上依次层叠;
[0013] 所述非晶SiO2层覆盖在AlGaN超薄势垒层上表面的部分区域;
[0014] 所述漏金属电极和源金属电极分别位于AlGaN超薄势垒层上表面未被非晶SiO2层覆盖的两侧区域,漏金属电极和源金属电极与AlGaN超薄势垒层之间形成欧姆接触
[0015] 所述单晶AlN层覆盖在AlGaN超薄势垒层上表面未被源漏金属电极覆盖的区域,并覆盖非晶SiO2层;
[0016] 所述栅金属电极位于非晶SiO2层上方单晶AlN层的上表面,栅金属电极与AlGaN超薄势垒层之间形成肖特基接触。
[0017] 优选地,所述衬底为衬底。
[0018] 优选地,所述GaN沟道层的厚度为1~5μm。
[0019] 优选地,所述AlGaN超薄势垒层的厚度为5~7nm,Al元素的摩尔含量为25%~30%。
[0020] 优选地,所述非晶SiO2层的厚度为5~15nm。
[0021] 优选地,所述单晶AlN层的厚度为15~25nm。
[0022] 优选地,所述漏金属电极和源金属电极的材料由Ti、Al、Ni、Au四层金属组成。
[0023] 优选地,所述栅金属电极位于靠近源金属电极的一侧(即栅金属电极距离源金属电极的距离小于栅金属电极距离漏金属电极的距离)。
[0024] 优选地,所述栅金属电极的材料由Ni、Au两层金属组成。
[0025] 上述增强型AlN/AlGaN/GaN HEMT器件可通过如下方法制备得到:
[0026] 步骤1,在衬底上依次外延GaN沟道层和AlGaN超薄势垒层;
[0027] 步骤2,在AlGaN超薄势垒层上生长非晶SiO2层;
[0028] 步骤3,在非晶SiO2层上进行光刻、湿法腐蚀,保留栅下SiO2层(即栅金属电极下方区域的SiO2层);
[0029] 步骤4,在步骤3所得基片的表面沉积单晶AlN层;
[0030] 步骤5,在单晶AlN层上进行光刻、刻蚀,形成台面隔离;
[0031] 步骤6,在单晶AlN层上再次进行光刻,暴露出漏金属电极和源金属电极区域,通过刻蚀去除漏金属电极和源金属电极区域下的单晶AlN层;
[0032] 步骤7,通过蒸、剥离、退火形成漏金属电极和源金属电极;
[0033] 步骤8,通过光刻、蒸镀、剥离,在非晶SiO2层上方单晶AlN层的上表面形成栅金属电极。
[0034] 进一步地,步骤1中所述外延GaN沟道层和AlGaN超薄势垒层采用金属有机化学气相沉积(MOCVD)进行生长制备,生长温度为850~950℃。
[0035] 进一步地,步骤2中所述非晶SiO2层采用等离子增强化学气相沉积(PECVD)生长制备,生长温度为230~320℃。
[0036] 进一步地,步骤3中所述湿法腐蚀采用质量分数比为HF:HN4F=1:7-1:5的缓冲化物刻蚀剂(BOE)溶液浸泡10s~20s进行湿法腐蚀。
[0037] 进一步地,步骤4中所述单晶AlN层采用脉冲激光沉积(PLD)生长制备,生长温度为800~900℃。
[0038] 进一步地,步骤5中所述刻蚀采用感应耦合等离子(ICP)进行刻蚀,刻蚀反应气体为Cl2和BCl3混合气体,压强为5~7mTorr,上射频功率为200~300W,下射频功率为50~100W,刻蚀时间为100~150s。
[0039] 进一步地,步骤6中所述刻蚀采用感应耦合等离子(ICP)进行刻蚀,刻蚀反应气体为Cl2和BCl3混合气体,压强为5~7mTorr,上射频功率为200~300W,下射频功率为50~100W,刻蚀时间为10~20s。
[0040] 进一步地,步骤7中所述退火的气氛为N2,退火温度为800~900℃,保温时间为20~40s,升温速率为15~20℃/s。
[0041] 本实用新型的原理为:本实用新型的增强型器件是在GaN和超薄AlGaN异质结的基础上,在栅下区域插入非晶SiO2层后,在异质结上外延单晶AlN层。由于在GaN沟道层外延的AlGaN势垒层厚度仅为5~7nm,超薄AlGaN势垒层产生的自发极化效应很微弱,且AlGaN的晶格常数小于GaN,外延的超薄势垒层处于应力弛豫状态,不产生压电极化,因此GaN和超薄AlGaN异质结界几乎无二维电子气(2DEG)产生。在GaN和超薄AlGaN异质结上沉积单晶AlN层后,一方面沉积的AlN具有很强的自发极化效应;另一方面AlN的晶格常数小于AlGaN,AlGaN受到压应力作用,产生压电极化,因此沉积单晶AlN后的GaN和超薄AlGaN异质结在自发极化和压电极化的共同作用下,产生高浓度的二维电子气。而在栅下插入非晶SiO2层无法对超薄AlGaN势垒层的压电极化产生影响,同时阻断了单晶AlN自发极化对异质结的作用,因此栅下区域仍几乎无二维电子气产生,在零栅偏压下器件处于关断状态,实现增强型器件。另外,沉积的单晶AlN层和SiO2层还能作为优质的栅介质层,有利于降低栅泄漏电流,提高器件击穿电压
[0042] 本实用新型的器件及制备方法具有如下优点及有益效果:
[0043] (1)本实用新型器件的栅下非晶SiO2层能够隔离强极性单晶AlN层对AlGaN超薄势垒层的极化增强效应,耗尽栅下二维电子气,使器件关断,实现增强型器件。
[0044] (2)本实用新型器件栅下的非晶SiO2层和单晶AlN层可同时作为器件的栅介质层,有利于降低栅泄漏电流、提高器件击穿电压。
[0045] (3)本实用新型的器件在制备过程中无需对栅下势垒层进行干法刻蚀、离子注入等难以精准控制的处理,避免了晶格损伤带来的器件输出饱和电流密度小、器件不稳定等问题,可控性高、重复性好,有利于实现高阈值电压大饱和电流增强型器件。附图说明
[0046] 图1是本实用新型实施例中增强型AlN/AlGaN/GaN HEMT器件的结构示意图;
[0047] 图2~9是本实用新型实施例中增强型AlN/AlGaN/GaN HEMT器件的制备工艺流程图;其中,1为衬底、2为GaN沟道层、3为AlGaN超薄势垒层、4为非晶SiO2层、5为单晶AlN层、6为漏金属电极、7为源金属电极、8为栅金属电极。
[0048] 图10为本实用新型实施例1中增强型AlN/AlGaN/GaN HEMT器件测得的器件转移特性曲线图;
[0049] 图11为本实用新型实施例1中增强型AlN/AlGaN/GaN HEMT器件测得的器件输出特性曲线图。

具体实施方式

[0050] 下面结合实施例及附图对本实用新型作进一步详细的描述,但本实用新型的实施方式不限于此。
[0051] 实施例1
[0052] 本实施例的一种增强型AlN/AlGaN/GaN HEMT器件,其结构示意图如图1所示。包括:衬底1、GaN沟道层2、AlGaN超薄势垒层3、非晶SiO2层4、单晶AlN层5、漏金属电极6、源金属电极7和栅金属电极8,其中:
[0053] 所述衬底1、GaN沟道层2和AlGaN超薄势垒层3由下至上依次层叠;
[0054] 所述非晶SiO2层4覆盖在AlGaN超薄势垒层3上表面的部分区域;
[0055] 所述漏金属电极6和源金属电极7分别位于AlGaN超薄势垒层3上表面未被非晶SiO2层4覆盖的两侧区域,漏金属电极6和源金属电极7与AlGaN超薄势垒层3之间形成欧姆接触
[0056] 所述单晶AlN层5覆盖在AlGaN超薄势垒层3上表面未被源漏金属电极覆盖的区域,并覆盖非晶SiO2层4;
[0057] 所述栅金属电极8位于非晶SiO2层4上方单晶AlN层5的上表面,栅金属电极8与AlGaN超薄势垒层3之间形成肖特基接触。
[0058] 本实施例的增强型AlN/AlGaN/GaN HEMT器件通过如下方法制备:
[0059] 步骤1,利用金属有机物化学气相沉积MOCVD工艺在硅衬底上外延厚度为5μm的GaN沟道层和厚度为6nm的AlGaN超薄势垒层,其中Al元素的摩尔含量为25%,生长温度为850℃,结果如图2所示;
[0060] 步骤2,利用等离子增强化学气相沉积工艺在AlGaN超薄势垒层上生长厚度为5nm的非晶SiO2层,生长温度为230℃,结果如图3所示;
[0061] 步骤3,在非晶SiO2层上涂正胶、坚膜、曝光、显影,暴露出栅金属电极以外的区域后,放入质量分数比为HF:HN4F=1:7的缓冲氧化物刻蚀剂中浸泡10s,去除栅外区域SiO2层,保留栅下SiO2层,结果如图4所示;
[0062] 步骤4,利用脉冲激光沉积技术在步骤3得到的基片表面沉积厚度为15nm的单晶AlN层,生长温度为800℃,结果如图5所示;
[0063] 步骤5,在单晶AlN层上进行光刻、感应耦合等离子(ICP)刻蚀,形成台面隔离,结果如图6所示,其中刻蚀反应气体为Cl2和BCl3混合气体,压强为5mTorr,上射频功率为200W,下射频功率为50W,刻蚀时间为150s;
[0064] 步骤6,在所述单晶AlN层上再次进行光刻,暴露出源漏金属电极区域,通过ICP刻蚀去除源漏金属电极区域下的单晶AlN层,其中刻蚀反应气体为Cl2和BCl3混合气体,压强为5mTorr,上射频功率为200W,下射频功率为50W,刻蚀时间为40s,结果如图7;
[0065] 步骤7,通过蒸镀Ti/Al/Ni/Au金属材料、剥离、快速热退火形成所述漏金属电极和源金属电极,其中退火气氛为N2,退火温度为800℃,保温时间为40s,升温速率为15℃/s,结果如图8所示;
[0066] 步骤8,通过光刻、蒸镀Ni/Au金属材料、剥离,在非晶SiO2层上方单晶AlN层的上表面形成所述栅金属电极,完成器件制作,结果如图9所示。
[0067] 本实施例制备的增强型AlN/AlGaN/GaN HEMT器件测得的器件转移特性曲线和输出特性曲线分别如图10和图11所示,所得器件阈值电压为1V,在栅极电压为4V时,输出饱和电流密度为700mA/mm,器件实现增强型,同时保持高输出饱和电流密度。
[0068] 实施例2
[0069] 本实施例的一种增强型AlN/AlGaN/GaN HEMT器件,其结构示意图如图1所示,包括:衬底1、GaN沟道层2、AlGaN超薄势垒层3、非晶SiO2层4、单晶AlN层5、漏金属电极6、源金属电极7和栅金属电极8,其中:
[0070] 所述衬底1、GaN沟道层2和AlGaN超薄势垒层3由下至上依次层叠;
[0071] 所述非晶SiO2层4覆盖在AlGaN超薄势垒层3上表面的部分区域;
[0072] 所述漏金属电极6和源金属电极7分别位于AlGaN超薄势垒层3上表面未被非晶SiO2层4覆盖的两侧区域,漏金属电极6和源金属电极7与AlGaN超薄势垒层3之间形成欧姆接触;
[0073] 所述单晶AlN层5覆盖在AlGaN超薄势垒层3上表面未被源漏金属电极覆盖的区域,并覆盖非晶SiO2层4;
[0074] 所述栅金属电极8位于非晶SiO2层4上方单晶AlN层5的上表面,栅金属电极8与AlGaN超薄势垒层3之间形成肖特基接触。
[0075] 本实施例的增强型AlN/AlGaN/GaN HEMT器件通过如下方法制备:
[0076] 步骤1,利用金属有机物化学气相沉积MOCVD工艺在硅衬底上外延厚度为5μm的GaN沟道层和厚度为5nm的AlGaN超薄势垒层,其中Al元素的摩尔含量为25%,生长温度为900℃,结果如图2所示;
[0077] 步骤2,利用等离子增强化学气相沉积工艺在AlGaN超薄势垒层上生长厚度为10nm的非晶SiO2层,生长温度为300℃,结果如图3所示;
[0078] 步骤3,在非晶SiO2层上涂正胶、坚膜、曝光、显影,暴露出栅金属电极以外的区域后,放入质量分数比为HF:HN4F=1:7的缓冲氧化物刻蚀剂中浸泡15s,去除栅外区域SiO2层,保留栅下SiO2层,结果如图4所示;
[0079] 步骤4,利用脉冲激光沉积技术在步骤3得到的基片表面沉积厚度为20nm的单晶AlN层,生长温度为850℃,结果如图5所示;
[0080] 步骤5,在单晶AlN层上进行光刻、感应耦合等离子(ICP)刻蚀,形成台面隔离,结果如图6所示,其中刻蚀反应气体为Cl2和BCl3混合气体,压强为6mTorr,上射频功率为250W,下射频功率为70W,刻蚀时间为120s;
[0081] 步骤6,在所述单晶AlN层上再次进行光刻,暴露出源漏金属电极区域,通过ICP刻蚀去除源漏金属电极区域下的单晶AlN层,其中刻蚀反应气体为Cl2和BCl3混合气体,压强为6mTorr,上射频功率为250W,下射频功率为70W,刻蚀时间为30s,结果如图7;
[0082] 步骤7,通过蒸镀Ti/Al/Ni/Au金属材料、剥离、快速热退火形成所述漏金属电极和源金属电极,其中退火气氛为N2,退火温度为850℃,保温时间为30s,升温速率为15℃/s,结果如图8所示;
[0083] 步骤8,通过光刻、蒸镀Ni/Au金属材料、剥离,在非晶SiO2层上方单晶AlN层的上表面形成所述栅金属电极,完成器件制作,结果如图9所示。
[0084] 本实施例制备的增强型AlN/AlGaN/GaN HEMT器件测得的器件转移特性曲线和输出特性曲线结果与实施例1类似,证明依照该实施例所制得的器件性能稳定。
[0085] 实施例3
[0086] 本实施例的一种增强型AlN/AlGaN/GaN HEMT器件,其结构示意图如图1所示,包括:衬底1、GaN沟道层2、AlGaN超薄势垒层3、非晶SiO2层4、单晶AlN层5、漏金属电极6、源金属电极7和栅金属电极8,其中:
[0087] 所述衬底1、GaN沟道层2和AlGaN超薄势垒层3由下至上依次层叠;
[0088] 所述非晶SiO2层4覆盖在AlGaN超薄势垒层3上表面的部分区域;
[0089] 所述漏金属电极6和源金属电极7分别位于AlGaN超薄势垒层3上表面未被非晶SiO2层4覆盖的两侧区域,漏金属电极6和源金属电极7与AlGaN超薄势垒层3之间形成欧姆接触;
[0090] 所述单晶AlN层5覆盖在AlGaN超薄势垒层3上表面未被源漏金属电极覆盖的区域,并覆盖非晶SiO2层4;
[0091] 所述栅金属电极8位于非晶SiO2层4上方单晶AlN层5的上表面,栅金属电极8与AlGaN超薄势垒层3之间形成肖特基接触。
[0092] 本实施例的增强型AlN/AlGaN/GaN HEMT器件通过如下方法制备:
[0093] 步骤1,利用金属有机物化学气相沉积MOCVD工艺在硅衬底上外延厚度为5μm的GaN沟道层和厚度为7nm的AlGaN超薄势垒层,其中Al元素的摩尔含量为30%,生长温度为950℃,结果如图2所示;
[0094] 步骤2,利用等离子增强化学气相沉积工艺在AlGaN超薄势垒层上生长厚度为15nm的非晶SiO2层,生长温度为320℃,结果如图3所示;
[0095] 步骤3,在非晶SiO2层上涂正胶、坚膜、曝光、显影,暴露出栅金属电极以外的区域后,放入质量分数比为HF:HN4F=1:5的缓冲氧化物刻蚀剂中浸泡20s,去除栅外区域SiO2层,保留栅下SiO2层,结果如图4所示;
[0096] 步骤4,利用脉冲激光沉积技术在步骤3得到的基片表面沉积厚度为25nm的单晶AlN层,生长温度为900℃,结果如图5所示;
[0097] 步骤5,在单晶AlN层上进行光刻、感应耦合等离子(ICP)刻蚀,形成台面隔离,结果如图6所示,其中刻蚀反应气体为Cl2和BCl3混合气体,压强为7mTorr,上射频功率为300W,下射频功率为100W,刻蚀时间为100s;
[0098] 步骤6,在所述单晶AlN层上再次进行光刻,暴露出源漏金属电极区域,通过ICP刻蚀去除源漏金属电极区域下的单晶AlN层,其中刻蚀反应气体为Cl2和BCl3混合气体,压强为7mTorr,上射频功率为300W,下射频功率为100W,刻蚀时间为20s,结果如图7;
[0099] 步骤7,通过蒸镀Ti/Al/Ni/Au金属材料、剥离、快速热退火形成所述漏金属电极和源金属电极,其中退火气氛为N2,退火温度为900℃,保温时间为20s,升温速率为20℃/s,结果如图8所示;
[0100] 步骤8,通过光刻、蒸镀Ni/Au金属材料、剥离,在非晶SiO2层上方单晶AlN层的上表面形成所述栅金属电极,完成器件制作,结果如图9所示。
[0101] 本实施例制备的增强型AlN/AlGaN/GaN HEMT器件测得的器件转移特性曲线和输出特性曲线结果与实施例1类似,证明依照该实施例所制得的器件性能稳定。
[0102] 上述实施例为本实用新型较佳的实施方式,但本实用新型的实施方式并不受上述实施例的限制,其它的任何未背离本实用新型的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本实用新型的保护范围之内。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈