首页 / 国际专利分类库 / 化学;冶金 / 水泥;混凝土;人造石;陶瓷;耐火材料 / 石灰;氧化镁;矿渣;水泥;其组合物,例如:砂浆、混凝土或类似的建筑材料;人造石{ / 砂浆、混凝土、人造石或陶瓷的后 处理;天然石的处理(在成型前对 材料的调整入 C04B40/00; 在表 面上采用液体或其它流动材料的 一般入 B05; 研磨或抛光入 B24; 处理或加工粘土或其它陶瓷组合 物、矿渣或含有粘结料混合物之成 型物品的设备或工艺方法入 B28B11/00; 加工石料或石类材料入B28D; 冷釉料之外的釉料入 C03C8/00; 蚀刻、表面增亮或酸洗组合物入C09K 13/00)
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
101 一种陶瓷片处理工艺 CN201610060599.7 2016-01-29 CN105565859A 2016-05-11 杨莉
一种陶瓷片处理工艺,步骤如下:(1)蒸馏清洗:将陶瓷片放置在100%纯水中清洗,烘干;(2)洗:将清洗过的陶瓷片放置在40-50%丙酮中浸泡,烘干;(3)洗:将酮洗过陶瓷片置于40-50%酸钠溶液中浸泡,烘干;(4)酸洗:将步骤(3)中烘干的陶瓷片放置在8-12%硫酸溶液内浸泡,烘干;本发明的有益效果是:硬度大,耐磨性能极好,重量轻,表面吸附强,是未经处理的陶瓷片的表面吸附力的10-20,通过胶水与橡胶结合后非常牢固、耐用。
102 一种陶瓷片处理工艺 CN201610060040.4 2016-01-29 CN105565855A 2016-05-11 杨莉
一种陶瓷片处理工艺,步骤如下:(1)蒸馏清洗:将陶瓷片放置在100%纯水中清洗,烘干;(2)洗:将清洗过的陶瓷片放置在50-60%丙酮中浸泡,烘干;(3)洗:将酮洗过陶瓷片置于60-70%酸钠溶液中浸泡,烘干;(4)酸洗:将步骤(3)中烘干的陶瓷片放置在10%硫酸溶液内浸泡,烘干;本发明的有益效果是:硬度大, 耐磨性能极好,重量轻,表面吸附强,是未经处理的陶瓷片的表面吸附力的10-20,通过胶水与橡胶结合后非常牢固、耐用。
103 一种陶瓷片处理工艺 CN201610062457.4 2016-01-29 CN105541402A 2016-05-04 孙英
一种陶瓷片处理工艺,步骤如下:(1)蒸馏清洗:将陶瓷片放置在100%纯水中清洗,烘干;(2)洗:将清洗过的陶瓷片放置在60-70%丙酮中浸泡,烘干;(3)洗:将酮洗过陶瓷片置于10-20%酸钠溶液中浸泡,烘干;本发明的有益效果是:硬度大,耐磨性能极好,重量轻,表面吸附强,是未经处理的陶瓷片的表面吸附力的10-20,通过胶水与橡胶结合后非常牢固、耐用。
104 一种陶瓷片处理工艺 CN201610062384.9 2016-01-29 CN105541397A 2016-05-04 孙英
一种陶瓷片处理工艺,步骤如下:(1)蒸馏清洗:将陶瓷片放置在100%纯水中清洗,烘干;(2)洗:将清洗过的陶瓷片放置在10-20%丙酮中浸泡,烘干;(3)洗:将酮洗过陶瓷片置于90-100%酸钠溶液中浸泡,烘干;本发明的有益效果是:硬度大,耐磨性能极好,重量轻,表面吸附强,是未经处理的陶瓷片的表面吸附力的10-20,通过胶水与橡胶结合后非常牢固、耐用。
105 加工复合体的方法 CN201280057067.8 2012-10-05 CN103945963B 2016-03-23 雅克布斯·斯特凡努斯·达韦尔
一种处理包括超硬结构和难熔金属材料的复合体的方法,该难熔金属材料靠近所述复合体的边界露出且包括难熔金属。所述方法包括提供腐蚀剂;将所述腐蚀剂至少加热至其熔点,将所述复合体与处于熔化状态的所述腐蚀剂相接触并且用所述腐蚀剂处理所述复合体一段时间以从所述复合体去除难熔金属材料。
106 多段聚合产物分散体用于涂布金属板的用途 CN201380041437.3 2013-06-04 CN104540906A 2015-04-22 E·扬斯; 汉斯-尤根·德努; S·如勒; A·库雷克
发明涉及一种性多段聚合物分散体用于涂布金属板的用途,所述水性多段聚合物分散体可通过自由基引发的水性乳液聚合而获得,其具有软相与硬相,且硬段与软段之比为25-95wt%:75-5wt%,其中,作为第一段的软相的玻璃化转变温度(Tg)为-30至0℃,且作为第二段的硬相的玻璃化转变温度(Tg)为20至60℃,所述水性多段聚合物分散体包含至少一种通式(I)的单体,其中,变量具有下列含义:n=0至2,R1、R2、R3=彼此独立地氢或甲基,X=O或NH,Y=H、金属、NH4。
107 加工复合体的方法 CN201280057067.8 2012-10-05 CN103945963A 2014-07-23 雅克布斯·斯特凡努斯·达韦尔
一种处理包括超硬结构和难熔金属材料的复合体的方法,该难熔金属材料靠近所述复合体的边界露出且包括难熔金属。所述方法包括提供腐蚀剂;将所述腐蚀剂至少加热至其熔点,将所述复合体与处于熔化状态的所述腐蚀剂相接触并且用所述腐蚀剂处理所述复合体一段时间以从所述复合体去除难熔金属材料。
108 用于装饰玻璃或陶瓷制品的方法、印刷设备和制剂 CN200780052638.8 2007-12-12 CN101652338B 2013-06-12 凯·K·耶昂; 托马斯·赫特; 詹姆斯·E·福克斯
发明涉及装饰玻璃或陶瓷制品的方法和印刷设备(6),其中颜料层(3)夹在两层玻璃料层(2,4)中间,其中通过或者可以通过喷墨式印刷工艺至少印刷颜料制剂层(3)和上面的玻璃料制剂层(4)。
109 具有提高的表面耐久性的新型屋面瓦片及其制造方法 CN200780006595.X 2007-02-13 CN101389818A 2009-03-18 A·德雷克斯勒; J·克莱因; F·伊兹奎艾勒; J·陈; E·弗德林
发明提供一种屋面瓦片,其包括:(a)基板;和(b)设置在所述基板上的涂层,所述涂层是通过使混合物合和硬化产生的,所述混合物包含水硬性胶结剂,所述水硬性胶结剂包含至少60重量%的源和不大于1重量%的硫酸盐。
110 能够负载催化剂的陶瓷载体、催化剂陶瓷体和它们的制法 CN00105854.1 2000-04-10 CN1331603C 2007-08-15 小池和彦; 中西友彦; 上田刚志; 田中政一
一种能够负载催化剂的陶瓷载体,其包含一具有细孔的陶瓷体,细孔的直径或宽度为负载在该陶瓷体表面上的催化剂组分的离子直径的1至最高为1000倍,所述细孔的数目为每升不少于1×1011个,陶瓷载体通过在堇青石晶格中引入空位或晶格缺陷或通过施加热冲击形成细裂纹而制得。
111 一种使用玻璃进行化物陶瓷表面改良的方法 CN200410006107.3 2004-03-02 CN1618769A 2005-05-25 赵诚宰; 秋旼澈; 朴玄珉; 尹京镇
一种化物陶瓷包括氧化表面改良的方法,包括氧化铝的氧化物陶瓷用做耐热部件、耐磨部件及半导体组装部件等,及由该方法获得的氧化陶瓷物,通过热处理的方式将热膨胀性能低的玻璃渗透到氧化物陶瓷的表面,进行表面改良,于是能提高氧化物陶瓷的挠曲强度、耐热性能和耐磨性能,而且其表面裂纹可以被修复。该氧化物陶瓷表面改良的方法包括步骤:用加入元件如电热炉对氧化物陶瓷和玻璃在1000-1700℃的温度下进行热处理,时间为几秒钟或几个小时。根据氧化陶瓷物表面改良的方法,能经济地通过简单的步骤提高氧化物陶瓷的强度、耐热性能和耐磨性能。
112 涂层陶瓷制品 CN93102943.0 1993-02-18 CN1077444A 1993-10-20 D·R·库普兰; H·E·亨特
一种用于高温和腐蚀环境中的陶瓷制品,包括一种陶瓷基体,在该基体上沉积了一层基本上无孔的一种或多种贵金属或其合金的涂层。
113 絮凝状矿物材料及用它制成的耐物品 CN86102711 1986-03-24 CN86102711A 1986-10-22 索马斯·迈克尔·蒂蒙
所公开的是絮凝状矿物材料,它可用来制备耐高温、耐物品。制备这些材料是利用一种作为原材料的可凝胶化的片状水胀性酸盐,这种硅酸具有每结构单位平均电荷范围在大约-0.4到-1左右,并且它含有促使吸水膨胀的填隙阳离子,与至少一种多胺衍生物阳离子源接触,由此引起离子交换反应,离子交换至少在某些多胺衍生物阳离子和一些填隙离子之间进行。
114 Process for the formation of metal oxide nanoparticles coating of a solid substrate US13821279 2011-09-07 US10119036B2 2018-11-06 Ovadia Lev; Sergey Sladkevich; Petr Prikhodchenko; Genia Gun
The present invention provides a process for the formation of a coating comprising peroxynanoparticles of metals selected from the group consisting of: Ga, Ge, As, Se, In, Sn, Sb, Te, Tl, Pb and Bi on a solid substrate, comprising providing a basic solution containing at least a first metal selected from said group and hydrogen peroxide, and contacting said solution with a solid substrate having oxygen-containing chemically reactive groups on its surface.
115 Retrieving aggregates and powdery mineral material from demolition waste US14778857 2014-03-26 US10029951B2 2018-07-24 Patrick Juilland; Emmanuel Gallucci; Arnd Eberhardt
A method for retrieving aggregates and/or powdery mineral material from a source material comprising hardened mineral binder and aggregates, in particular a waste or demolition material, comprises the steps of: a) treating the source material in a disintegration process and (b) separation of the treated source material at a predefined cut-off grain size in order to retrieve treated aggregates with a grain size of at least the predefined cut-off grain size and/or in order to retrieve powdery mineral material with a grain size below the predefined cut-off grain size.
116 Sliding member and method for manufacturing the same US13982613 2012-02-09 US09976209B2 2018-05-22 Hirotaka Ito; Kenji Yamamoto
Provided is a sliding member having slidability and abrasion resistance both at satisfactory levels. This sliding member has a sliding surface including a base and a filling part. The base includes a first material and bears regularly arranged concavities. The filling part includes a second material and is arranged in the sliding surface to fill the concavities. The first material includes one selected from the group consisting of a metallic material, a ceramic material, and a carbonaceous material. The second material includes at least one selected from the group consisting of a metallic material, a ceramic material, and a carbonaceous material. The first and second materials differ from each other in at least one of frictional coefficient and hardness. The base and the filling part are substantially flush with each other in the sliding surface.
117 Cation-enhanced chemical stability of ion-conducting zirconium-based ceramics US15460570 2017-03-16 US20170275208A1 2017-09-28 Erik David Spoerke; Paul G. Clem; Jill S. Wheeler; Leo J. Small; Jon Ihlefeld
At least partial substitution of zirconium by hafnium in ion-conducting zirconium-based ceramics provides enhanced chemical stability in alkaline and acid environments.
118 Method for applying sealing material paste to peripheral surface of ceramic block US14495896 2014-09-25 US09610606B2 2017-04-04 Tomohiro Takano; Kazuya Bando
A method of manufacturing a honeycomb structured body, includes providing an application jig. A sealing material paste is put on a peripheral surface of a pillar-shaped ceramic block. The application jig is set in such a manner that a first principal surface of the application jig faces upward and a second principal surface of the application jig faces downward. The ceramic block is placed inside a second opening section of the application jig. The ceramic block is passed through an opening section of the application jig so that a face defining the second opening section spreads an entire peripheral surface of the ceramic block with the sealing material paste to manufacture a honeycomb structured body with a peripheral sealing material layer formed on the peripheral surface of the ceramic block.
119 Composite substrate for LED light emitting element, method of production of same, and LED light emitting element US13148712 2010-02-10 US09387532B2 2016-07-12 Hideki Hirotsuru; Hideo Tsukamoto; Yosuke Ishihara
A substrate for an LED light emitting element having a small difference of linear thermal expansion coefficient with the III-V semiconductor crystal constituting an LED, having an excellent thermal conductivity, and suitable for high output LEDs. A porous body comprises one or more materials selected from silicon carbide, aluminum nitride, silicon nitride, diamond, graphite, yttrium oxide, and magnesium oxide and has a porosity that is 10 to 50 volume % and a three-point bending strength that is 50 MPa or more. The porous body is infiltrated, by means of liquid metal forging, with aluminum alloy or pure aluminum at an infiltration pressure of 30 MPa or more, cut and/or ground to a thickness of 0.05 to 0.5 mm and to a surface roughness (Ra) of 0.01 to 0.5 μm, then is formed with a metal layer comprising one or more elements selected from Ni, Co, Pd, Cu, Ag, Au, Pt and Sn on its surface to a thickness of 0.5 to 15 μm, so as to thereby produce the composite substrate for the LED light emitting element.
120 Method of processing a composite body US14350139 2012-10-05 US09180520B2 2015-11-10 Jacobus Stephanus Davel
A method of processing a composite body comprising a super-hard structure and refractory metal material exposed proximate a boundary of the composite body, the refractory metal material comprising refractory metal. The method includes providing a basic corrosive agent, heating the corrosive agent to at least its melting point, contacting the composite body with the corrosive agent in the molten state and treating the composite body with the corrosive agent for a period of time to remove refractory metal material from the composite body.
QQ群二维码
意见反馈