首页 / 国际专利分类库 / 化学;冶金 / 无机化学 / 碱金属,即锂、钠、钾、铷、铯或钫的化合物 / 钠、钾或一般碱金属的卤化物{(一般卤化物入C01B 9/00)}
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 将部分化过程中的卤化氢腐蚀减至最小的方法 CN97196449.1 1997-07-14 CN1109007C 2003-05-21 J·S·史蒂文森; B·冯克洛克; J·D·温特; J·S·卡斯曼; G·H·韦伯斯特; P·E·布里克豪斯
发明涉及一种在含卤类原料的非催化部分化反应中,将急冷气化器中的卤化氢腐蚀减至最小,制备含卤化氢的合成气、细碎的颗粒固体及无毒的炉渣的方法。在气化器(10)的急冷区(14)中将含卤化氢的合成气与接触。急冷水中含有中和剂,其含量超出中和其中的氢卤酸所需的量,因此形成了卤化物盐。净化含有卤化物盐的急冷水回收卤化物盐。无盐的水基本上对环境无毒,或者再循环至本方法中,或者按照环境整治进行排放。
2 一种电子废弃物热解净化系统及其用于处理电子废弃物热解气的方法 CN201710144757.1 2017-03-13 CN106906007A 2017-06-30 刘维; 覃文庆; 焦芬; 蔡练兵; 刘方侃
发明公开了一种电子废弃物热解净化系统及其用于处理电子废弃物热解气的方法,净化系统包括依次串联的空冷器、空气换热器、重捕油器、电捕油器、洗塔、洗塔和增压机;空冷器、空气换热器、重力捕油器和电捕油器的底部各自设有热解油储罐;利用该系统净化电子废弃物热解气的方法是电子废弃物热解气依次经过空冷器回收高沸点热解油,空气换热器换热回收中低沸点热解油,重力捕油器回收大颗粒热解油,电捕油器回收残余热解油,气相再经过碱洗和水洗后作为燃气返回燃烧系统;该系统操作简单,可实现电子废弃物热解气的油气完全分离,且可脱除热解气中卤素元素得到洁净燃气,实现了热解气的洁净化资源利用。
3 从含卤有机废料的解处理生产和/或碱土金属的纯卤化物盐的方法 CN200680013047.5 2006-04-11 CN101163641A 2008-04-16 简·普罗西达
从用含卤有机废料,如PVC废料,在有和/或碱土金属氢化物存在下解(1)并接着分离(2)成固体水解产物部分(4)和液体水解产物部分(3)所获得的液体水解产物部分(3),生产碱和/或碱土金属或它们混合物的纯卤盐的方法。液体水解产物部分用氢卤酸如HCl中和(6),在其中加入絮凝剂(7),分离成含固体部分和含水部分(9)并纳米过滤(11)含水部分。来自纳米过滤的渗透物纯度高得以致能用传统蒸发(14)以满足真空盐纯度要求那样的令人惊讶的纯的形式获得卤化物盐晶体。
4 将部分化过程中的卤化氢腐蚀减至最小的方法 CN97196449.1 1997-07-14 CN1248963A 2000-03-29 J·S·史蒂文森; B·冯克洛克; J·D·温特; J·S·卡斯曼; G·H·韦伯斯特; P·E·布里克豪斯
发明涉及一种在含卤类原料的非催化部分化反应中,将急冷气化器中的卤化氢腐蚀减至最小,制备含卤化氢的合成气、细碎的颗粒固体及无毒的炉渣的方法。在气化器(10)的急冷区(14)中将含卤化氢的合成气与接触。急冷水中含有中和剂,其含量超出中和其中的氢卤酸所需的量,因此形成了卤化物盐。净化含有卤化物盐的急冷水回收卤化物盐。无盐的水基本上对环境无毒,或者再循环至本方法中,或者按照环境整治进行排放。
5 Minimization of hydrogen halide corrosion in the partial oxidation process JP50629598 1997-07-14 JP2000514495A 2000-10-31 ジョン ダッケット ウインター; ジョージ ヘンリー ウエブスター; ジャロルド サミュエル カスマン; ジョン サンダース ステベンソン; クロック バイロン ファン; ポール エリス ブリックハウス
(57)【要約】 本発明は素ハライド含有合成ガスと、微細に分割された微粒子状固体と、非毒性のスラグとを発生させるために、ハロゲン含有炭化水素供給材料の非触媒部分酸化反応中に急冷ガス化装置における水素ハライド腐食を最小にする水素ハライド腐食の最小化方法に関する。 水素ハライド含有合成ガスはガス化装置(10)の急冷区域(14)中の水と接触される。 急冷水はその中に存在する水素ハライド酸を中和するために必要な量を超える中和剤を含んでおり、それによりハライド塩を形成する。 ハライド塩を含有している急冷水はハライド塩を回収するために純化される。 塩なしの水は実質上環境的に非毒性でありそしてプロセスに再循環されるかまたは環境規制にしたがって廃棄される。
6 Ion conductive material* method of producing same and battery containing same material JP6163180 1980-05-09 JPS55151772A 1980-11-26 PEETAA HARUTOBUIHI; BUERUNAA BUETSUPUNAA; BUINFURIITO BUITSUHERUHAUSU
7 Method of making an alkali and / or alkaline earth metal net halide salt by hydrolysis of the halogen organic waste JP2008506927 2006-04-11 JP2008536787A 2008-09-11 プロシダ イアン
例えばPVCのようなハロゲン有機廃棄物を、アルカリ及び/又はアルカリ土類金属ハロゲン化物の存在下で加分解し(1)、その後に加水分化物(2)を加水分解物の固体画分(4)及び加水分解物の液体画分(3)に分離することによって、アルカリ金属及び/又はアルカリ土類金属又はこれらの混合物の純粋なハロゲン塩を製造する方法。 加水分解物の液体画分を例えばHClのようなハロゲン化水素酸で中和し(6)、個々にフロキュラントを加え(7)、固体を含む画分及び水性画分に分離し(9)、前記水性画分をナノろ過する(11)ことによる、アルカリ金属及び/又はアルカリ土類金属或いはそれらの混合物の純粋なハロゲン塩を製造する方法。 ナノフィルターによる透過物は、真空塩に対する要求を満たすのと同程度の、従来法の蒸発(14)によって驚くべきほど純度の高い結晶が得られるような純度である。
8 Method of reducing to a minimum hydrogen halide corrosion in a partial oxidation process JP50629598 1997-07-14 JP3300706B2 2002-07-08 ジョン ダッケット ウインター; ジョージ ヘンリー ウエブスター; ジャロルド サミュエル カスマン; ジョン サンダース ステベンソン; クロック バイロン ファン; ポール エリス ブリックハウス
9 Enhanced metal halide particles and improved lamp filling and a method for its JP51075998 1997-07-31 JP2000516901A 2000-12-19 アンダーソン スコット; ハンセン スティーブ
(57)【要約】 粒子組成は、強化剤と結合したあるメタルハライドからなる。 メタルハライド粒子に対する強化剤の添加は、粒子の強度を増すので、衝撃に対し、或いは処理時に壊れ易さを減少する。 放電ランプにおいて蒸発可能なメタルハライド充填材として使用するとき、粒子強度はランプのスペクトル特性や電気的特性を特に変えることなく増加される。 粒子と粒子を含むアーク管の製法も開示される。
10 COMPLEXOMETRIC PRECURSOR FORMULATION METHODOLOGY FOR INDUSTRIAL PRODUCTION OF HIGH PERFORMANCE FINE AND ULTRAFINE POWDERS AND NANOPOWDERS FOR SPECIALIZED APPLICATIONS EP14767613 2014-03-14 EP3245682A4 2018-08-01 FRIANEZA-KULLBERG TERESITA
A method of forming a powder MjXp wherein Mj is a positive ion or several positive ions selected from alkali metal, alkaline earth metal or transition metal; and Xp is a monoatomic or a polyatomic anion selected from Groups IIIA, IVA, VA, VIA or VIIA; called complexometric precursor formulation or CPF. The method includes the steps of: providing a first reactor vessel with a first gas diffuser and an first agitator; providing a second reactor vessel with a second gas diffuser and a second agitator; charging the first reactor vessel with a first solution comprising a first salt of Mj; introducing gas into the first solution through the first gas diffuser, charging the second reactor vessel with a second solution comprising a salt of Mp; adding the second solution to the first solution to form a complexcelle; drying the complexcelle, to obtain a dry powder; and calcining the dried powder of said MjXp.
11 STRENGTHENED METAL HALIDE PARTICLES AND IMPROVED LAMP FILL MATERIAL AND METHOD THEREFOR EP97935219.2 1997-07-31 EP0951372B1 2004-12-29 ANDERSON, Scott; HANSEN, Steve
Particle compositions are described comprising certain metal halides in combination with a strengthening agent. The addition of the strengthening agent to a metal halide particle increases the particle's strength thereby reducing breakage on impact and during handling. When used as a vaporizable metal halide fill in discharge lamps, the particle strength is increased without significantly altering the spectral and electrical characteristics of the lamp. Methods of making the particles and arc tube containing the particules are also disclosed.
12 METHOD FOR MINIMIZING HYDROGEN HALIDE CORROSION IN A PARTIAL OXIDATION PROCESS EP97937980 1997-07-14 EP0950041A4 2004-11-10 STEVENSON JOHN SAUNDERS; VON KLOCK BYRON; WINTER JOHN DUCKETT; KASSMAN JERROLD SAMUEL; WEBSTER GEORGE HENRY; BRICKHOUSE PAUL ELLIS
The present invention relates to a method for minimizing hydrogen halide corrosion in quench gasifier during the non-catalytic partial oxidation reaction of a halogen-containing hydrocarbonaceous feed, to produce a hydrogen halide-containing synthesis gas, finely divided particulate solids, and a nontoxic slag. The hydrogen halide-containing synthesis gas is contacted with water in the quench zone (14) of the gasifier (10). The quench water contains a neutralizing agent, in excess of the amount necessary to neutralize hydrogen halide acids present therein, to thereby form halide salts. The quench water containing the halide salts is purified to recover the halide salts. The salt-free water is essentially environmentally non-toxic and can either be recycled to the process or discarded in conformity with environmental regulations.
13 STRENGTHENED METAL HALIDE PARTICLES AND IMPROVED LAMP FILL MATERIAL AND METHOD THEREFOR EP97935219 1997-07-31 EP0951372A4 2000-04-26 ANDERSON SCOTT; HANSEN STEVE
Particle compositions are described comprising certain metal halides in combination with a strengthening agent. The addition of the strengthening agent to a metal halide particle increases the particle's strength thereby reducing breakage on impact and during handling. When used as a vaporizable metal halide fill in discharge lamps, the particle strength is increased without significantly altering the spectral and electrical characteristics of the lamp. Methods of making the particles and arc tube containing the particules are also disclosed.
14 STRENGTHENED METAL HALIDE PARTICLES AND IMPROVED LAMP FILL MATERIAL AND METHOD THEREFOR EP97935219.0 1997-07-31 EP0951372A1 1999-10-27 ANDERSON, Scott; HANSEN, Steve
Particle compositions are described comprising certain metal halides in combination with a strengthening agent. The addition of the strengthening agent to a metal halide particle increases the particle's strength thereby reducing breakage on impact and during handling. When used as a vaporizable metal halide fill in discharge lamps, the particle strength is increased without significantly altering the spectral and electrical characteristics of the lamp. Methods of making the particles and arc tube containing the particules are also disclosed.
15 METHOD FOR MINIMIZING HYDROGEN HALIDE CORROSION IN A PARTIAL OXIDATION PROCESS EP97937980.0 1997-07-14 EP0950041A1 1999-10-20 STEVENSON, John, Saunders; VON KLOCK, Byron; WINTER, John, Duckett; KASSMAN, Jerrold, Samuel; WEBSTER, George, Henry; BRICKHOUSE, Paul, Ellis
The present invention relates to a method for minimizing hydrogen halide corrosion in quench gasifier during the non-catalytic partial oxidation reaction of a halogen-containing hydrocarbonaceous feed, to produce a hydrogen halide-containing synthesis gas, finely divided particulate solids, and a nontoxic slag. The hydrogen halide-containing synthesis gas is contacted with water in the quench zone (14) of the gasifier (10). The quench water contains a neutralizing agent, in excess of the amount necessary to neutralize hydrogen halide acids present therein, to thereby form halide salts. The quench water containing the halide salts is purified to recover the halide salts. The salt-free water is essentially environmentally non-toxic and can either be recycled to the process or discarded in conformity with environmental regulations.
16 Silane production from magnesium hydride EP87116994.2 1987-11-17 EP0316472A1 1989-05-24 Marlett, Everett Michael; McKinnie, Bonnie Gary

A process for producing silane by reacting a silicon halide with highly reactive magnesium hydride and a cyclic process for producing silane by reacting mag­nesium hydride with a silicon halide, reacting the magnesium halide co-product with an alkali metal to recover elemental magnesium, and pressure hydrogenating said magnesium to form magnesium hydride and repeat the cycle. A highly reactive magnesium hydride is formed by the homogeneously catalyzed pressure hydrogenation of magnesium, preferably using an activated transition metal catalyst such as TiCl₄ and a polycyclic organic compound such as anthracene. The highly activated magnesium hydride is thereafter used for reaction with silicon halide to produce silane.

17 Apparatus for preventing the drop of asbestos-slate roof in Saltpan KR20090005042 2009-04-27 KR200447657Y1 2010-02-11
본 공압에 의해 쉽게 작동시킬 수 있을 뿐만 아니라 염분에 의한 부식이나 녹의 생성을 방지할 수 있기 때문에 장기간 재활용을 할 수 있고, 특히 전체적인 중량을 줄여 유지 및 관리를 용이하게 할 수 있는 염전해주의 석면슬레이트 낙하 방지장치를 제공하는데 그 목적이 있다. 이러한 목적을 달성하기 위한 본 고안에 따르는 염전해주의 석면슬레이트 낙하 방지장치는, 외부에서 공급되는 공압에 의해 길이 전체에 걸쳐 폭방향으로 신축가능한 신축팽창부재; 신축팽창부재의 양측에 각각 탈부착수단에 의해 분리가능하도록 설치되는 한쌍의 좌우부유수단; 좌우부유수단의 바깥쪽 테두리에 각각 장착된 완충부재; 및 신축팽창부재 상부에 위치하고, 양측의 테두리 부분이 좌우부유수단의 바깥쪽 테두리 부분에 장착되어 신축팽창부재 및 좌우부유수단가 팽창됨에 따라 펼쳐지는 비닐시트(500);를 포함하여 이루어진 것을 특징으로 한다. 해주, 석면슬레이트, 낙하방지, 튜브, 스치로폼
18 부분산화공정에서할로겐화수소부식최소화방법 KR1019980710901 1997-07-14 KR1020000022464A 2000-04-25 스티븐슨존사운더스; 본클록바이런; 윈터존두케트; 카스만제롤드사무엘; 웹스터조지헨리; 브릭하우스폴엘리스
PURPOSE: A method for minimizing hydrogen halide corrosion in quench gasifier during the non-catalytic partial oxidation reaction of a halogen-containing hydrocarbonaceous feed, to produce a hydrogen halide-containing synthesis gas, finely divided particulate solids, and a nontoxic slag is provided. CONSTITUTION: A hydrogen halide-containing synthesis gas is contacted with water in the quench zone (14) of the gasifier (10). The quench water contains a neutralizing agent, in excess of the amount necessary to neutralize hydrogen halide acids present therein, to thereby form halide salts. The quench water containing the halide salts is purified to recover the halide salts. The salt-free water is essentially environmentally non-toxic and can either be recycled to the process or discarded in conformity with environmental regulations. Therefore halide corrosion is substantially reduced or eliminated and an environmently clean water is generated.
19 SODIUM ANTI-PEROVSKITE SOLID ELECTROLYTE COMPOSITIONS EP14900270 2014-08-22 EP3192118A4 2018-02-21 ZHAO YUSHENG; WANG YONGGANG; ZOU RUQIANG
Na-rich electrolyte compositions provided herein can be used in a variety of devices, such as sodium ionic batteries, capacitors and other electrochemical devices. Na-rich electrolyte compositions provided herein can have a chemical formula of Na3OX, Na3SX, Na (3-δ) Mδ/2OX and Na (3-δ) Mδ/2SX wherein 0<δ<0.8, wherein X is a monovalent anion selected from fluoride, chloride, bromide, iodide, H−, CN−, BF4−, BH4−, ClO4−, CH3−, NO2−, NH2− and mixtures thereof, and wherein M is a divalent metal selected from the group consisting of magnesium, calcium, barium, strontium and mixtures thereof. Na-rich electrolyte compositions provided herein can have a chemical formula of Na (3-δ) Mδ/3OX and/or Na (3-δ) Mδ/3SX; wherein 0<δ<0.5, wherein M is a trivalent cation M3, and wherein X is selected from fluoride, chloride, bromide, iodide, H−, CN−, BF4−, BH4−, ClO4−, CH3−, NO2−, NH2− and mixtures thereof. Synthesis and processing methods of NaRAP compositions for battery, capacitor, and other electrochemical applications are also provided.
20 COMPLEXOMETRIC PRECURSOR FORMULATION METHODOLOGY FOR INDUSTRIAL PRODUCTION OF HIGH PERFORMANCE FINE AND ULTRAFINE POWDERS AND NANOPOWDERS FOR SPECIALIZED APPLICATIONS EP14767613.4 2014-03-14 EP3245682A2 2017-11-22 FRIANEZA-KULLBERG, Teresita
A method of forming a powder MjXp wherein Mj is a positive ion or several positive ions selected from alkali metal, alkaline earth metal or transition metal; and Xp is a monoatomic or a polyatomic anion selected from Groups IIIA, IVA, VA, VIA or VIIA; called complexometric precursor formulation or CPF. The method includes the steps of: providing a first reactor vessel with a first gas diffuser and an first agitator; providing a second reactor vessel with a second gas diffuser and a second agitator; charging the first reactor vessel with a first solution comprising a first salt of Mj; introducing gas into the first solution through the first gas diffuser, charging the second reactor vessel with a second solution comprising a salt of Mp; adding the second solution to the first solution to form a complexcelle; drying the complexcelle, to obtain a dry powder; and calcining the dried powder of said MjXp.
QQ群二维码
意见反馈