序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 一种可再生靶向吸附处理溴硝醇废弃结晶母液的清洁生产工艺 CN201710681852.5 2017-08-10 CN107417538A 2017-12-01 吕志; 徐明; 徐心仪; 吕倩楠; 胡弘冰
发明属于废处理技术领域,特别是一种可再生靶向吸附处理溴硝醇废弃结晶母液的清洁生产工艺。本发明在溴硝醇废弃母液结晶装置后增加靶向固定床吸附装置,通过靶向固定床吸附装置进行吸附,得到氢溴酸、溴化钠、硝基甲烷、三羟甲基硝基甲烷组成的过流液,经结晶后回收溴化钠,结晶浓缩形成的结晶母液供合成工艺重复利用,蒸发冷凝水经常规生化法污水处理装置处理,可以达标排放;吸附剂经层析后,蒸馏脱溶媒回用,釜残液得到高纯度溴硝醇,母液回用;吸附剂解吸后,蒸馏脱溶媒回用,釜残液得到高浓度1,2-二溴-2-硝基-1,3-丙二醇。本发明降低了污染,实现了废物零排放;有效节约了溴硝醇废弃结晶母液的处理成本,产生了经济效益,并实现了清洁生产。
2 溴化钠制备方法 CN201610532442.X 2016-07-07 CN106185995A 2016-12-07 杨春彬; 孙彤江; 孙桂林; 刘善书; 林春辉; 刘淑洪; 牟作磊; 朱林生; 辛鹏
发明公开了一种溴化钠制备方法,包括酸化化、空气吹出、三次吸收、浓缩分离和干燥成品步骤。使用本方法时因为卤为常温,不需要加热,可以节约能源;吹出的单质溴不需要洗涤,简化工序,空气密闭循环利用,对环境无任何污染;并且采用“一吹三吸”工序,吸收充分,吸收效率高,提取率能达到97%以上,得到99%优级溴化钠成品;本方法尤其可以利用提废水进行提溴,进一步生产溴化钠产品,实现资源再次利用。
3 用于制备溴化物的方法 CN201480067036.X 2014-11-20 CN105980297A 2016-09-28 T·G·雷; D·W·巴特利; H·布罗德赫斯特; N·古德温
通过使用具有两个溴化阶段和经常的其中粗产品混合物能够被调节成满足特定的产品要求的第三步骤的方法来以较少的废弃物高纯度且更快地制备含溴化合物,诸如溴化、溴化钠等。在第一溴化阶段中,使用还原溴化反应对大部分但非全部的基质进行溴化,剩余未反应的基质在第二阶段中通过另一个还原溴化反应来转化成产品,虽然具体的试剂可以是不同的,其中仔细监测溴和还原剂的添加。
4 一种合成邻甲基苯甲酸甲酯的方法 CN201511010504.2 2015-12-30 CN105566107A 2016-05-11 夏秋景
发明提供了一种合成邻甲基苯甲酸甲酯的方法,将杨酸与氢氧化配制成水溶液加入到反应装置,控制温度在10~20℃,搅拌条件下通入溴甲烷,点板跟踪反应程度;反应完全后,停止搅拌,室温下静置分层,分去下层含溴化钾废水,浓缩处理得到副产品溴化钾;上层产物经饱和食盐水洗涤,无水硫酸钠干燥后,经减压蒸馏,收集95~110℃馏份得邻甲氧基苯甲酸甲酯。本发明所述的合成邻甲氧基苯甲酸甲酯的方法,缩短工艺流程,大幅度减少反应周期,同时减少三废产生量,简化了其废水的处理难度,大大降低其处理动消耗和设备占用量。
5 一种吡唑醚菌酯副产溴化钠的提纯工艺 CN201710250607.9 2017-04-17 CN107098364A 2017-08-29 黄金祥; 吴建平; 刘长庆; 戴玉婷; 黄显超; 杨亚明; 张军; 徐小兵; 朱张
发明公开了一种吡唑醚菌酯副产溴化钠的提纯工艺,所述工艺方法的具体包括以下步骤:邻硝基苄溴合成产生的含溴化钠,将含溴化钠废水投入MVR蒸发器中,搅拌1‑2小时,通过MVR系统提纯副产品溴化钠,产生废水送入污水处理厂处理,提纯溴化钠作为副产品,本发明能够将吡唑醚菌酯废水中的有用产品进行回收,提高了废水的利用价值,降低了废水对水质的破坏,节省了处理废水的成本,优化了吡唑醚菌酯副产溴化钠的提纯工艺设计,满足了吡唑醚菌酯副产溴化钠的提纯工艺设计的要求。
6 一种溴化钠中去除离子的方法 CN201610772330.1 2016-08-30 CN106865574A 2017-06-20 林利成; 苏学松
发明提供了一种溴化钠中去除离子的方法,具体步骤为:(1)采用乙醇对溴化钠进行浸泡,浸泡时间2‑8小时;(2)离心出溴化钠固体,即可一次性除去溴化钠中的钾离子;所述方法可一次性除去溴化钠中的钾离子,满足试剂级溴化钠指标,且乙醇可回收后重复利用,方法简单,操作方便,具有广泛的应用前景。
7 嗪草合成工艺中的废处理方法 CN201611138598.6 2016-12-12 CN106630408A 2017-05-10 李华; 苏复; 刘利平; 郭金冬
发明公开了一种嗪草合成工艺中的废处理方法,包括如下步骤:A:于废水中加入浓硫酸,调节PH小于3,搅拌半小时加入氢化钠溶液,调节PH为4‑5,加热至100度以上,回流一小时,将滤液进行间歇蒸馏,得到甲醇;B:配置络合剂,络合剂加入上述步骤中的残液中,搅拌萃取半小时,下层水相澄清后静置分离,将水相进一步蒸馏得到甲醇;油相加入氢氧化钠中和至PH为6‑8,加热蒸发,蒸发的气体用氢氧化钠溶液吸收,冷却后析出溴化钠晶体;将上述残液引入强化好氧生化池处理40‑80小时,然后经过臭氧氧化处理20小时,经过臭氧氧化处理的废水再一次经过强化好氧生化池处理10小时,完成整个处理过程。本发明能够对废水进行净化处理,不但可以回收废水中的溴和甲醇,经过处理的废液可以直接排放,降低了环境污染。
8 一种一步法合成邻甲基苯甲酸甲酯的方法 CN201511010497.6 2015-12-30 CN105585482A 2016-05-18 夏秋景
发明提供了一种一步法合成邻甲基苯甲酸甲酯的方法,将摩尔比为1:2.1~2.6的杨酸与氢氧化配制成水溶液加入到反应装置,控制温度在15~25℃,搅拌条件下通入溴甲烷,点板跟踪反应程度;反应完全后,停止搅拌,室温下静置分层,分去下层含溴化钾废水,浓缩处理得到副产品溴化钾;上层产物经饱和食盐水洗涤,无水硫酸钠干燥后,经减压蒸馏,收集95~110℃馏份得邻甲氧基苯甲酸甲酯。本发明所述的一步法合成邻甲氧基苯甲酸甲酯的方法,缩短工艺流程,大幅度减少反应周期,同时减少三废产生量,简化了其废水的处理难度,大大降低其处理动消耗和设备占用量。
9 从含卤有机废料的解处理生产和/或碱土金属的纯卤化物盐的方法 CN200680013047.5 2006-04-11 CN101163641A 2008-04-16 简·普罗西达
从用含卤有机废料,如PVC废料,在有和/或碱土金属氢化物存在下解(1)并接着分离(2)成固体水解产物部分(4)和液体水解产物部分(3)所获得的液体水解产物部分(3),生产碱和/或碱土金属或它们混合物的纯卤盐的方法。液体水解产物部分用氢卤酸如HCl中和(6),在其中加入絮凝剂(7),分离成含固体部分和含水部分(9)并纳米过滤(11)含水部分。来自纳米过滤的渗透物纯度高得以致能用传统蒸发(14)以满足真空盐纯度要求那样的令人惊讶的纯的形式获得卤化物盐晶体。
10 非危险溴化试剂的制备 CN02828066.0 2002-01-25 CN1620403A 2005-05-25 R·N·沃赫拉; P·K·高希; M·R·甘地; H·L·乔希; H·H·德雷亚; R·H·达夫; K·哈尔德; K·M·马吉萨; S·L·达加; V·P·莫汉达斯; R·J·桑哈维
发明涉及一种来自性溴副产物溶液的非危险溴化试剂,该碱性溴副产物水溶液从溴回收装置获得和包含溶于含水石灰或氢化钠的25-35%溴,该溴包含溴化物对溴酸盐化学计量比为5∶1-5.1∶1或2∶1-2.1∶1的碱性溴化物和碱性溴酸盐混合物,和pH为8.5-10.5,和也涉及通过使用以上溴化剂溴化芳族化合物的方法。
11 稳定溴溶液、其制备方法及其用于生物污垢控制的应用 CN00805668.4 2000-02-11 CN1345385A 2002-04-17 S·杨; W·F·麦科伊; E·J·阿莱恩; E·R·迈尔斯; A·W·达尔米尔
通过以下步骤制备稳定溴溶液:结合溴源和稳定剂形成混合物,向混合物中加入化剂,然后加入源将混合物的pH调到至少13。
12 从吹溴吸收液提取溴化钠和溴酸钠的方法 CN92106682.1 1992-08-21 CN1071643A 1993-05-05 刘亦凡; 宋校泉; 伦绍普
发明公开了一种从吹溴吸收液提取溴化钠和溴酸钠的方法,它是以吹溴碱吸收液为原料,先将其蒸发浓缩并加入氯化反应,再进行固液分离,并将液相继续蒸发得到固体S1,将固体S1用甲醇浸取,分离出固相S2和液相L2,将液相L2蒸馏得到固体溴化钠,固相S2用热浸取后除去固相氯化钠,然后将液相冷却,固液分离,得到固体溴酸钠。本发明只消耗原料吹溴碱吸收液和少量氯化钙,浸取剂甲醇回收使用,因而使溴化钠和溴酸钠的生产成本降低了20—30%。
13 Preparation of cesium salts and other alkali metal salts JP2002577725 2002-03-29 JP4541644B2 2010-09-08 エフ. ベイック,バート
14 Preparation of cesium salts and other alkali metal salts JP2002577725 2002-03-29 JP2005504694A 2005-02-17 エフ. ベイック,バート
セシウム塩の製造法が記載され、それは、硫酸セシウム含有溶液を石灰と反応させて、1)少なくとも酸化セシウムを含有する溶液、及び、2)硫酸カルシウムを含んで成る残留物を形成させることを伴う。 該方法は、該溶液から該残留物を除去すること、及び、該溶液中に存在する該水酸化セシウムを少なくとも1種類のセシウム塩に転化させることをさらに伴う。 本発明は、さらに、石灰を用いた水酸化セシウムの製造法に加え、セシウム塩の使用に関する。 さらに、アルカリ金属塩及びアルカリ金属水酸化物の製造法がまた記載される。
15 Method for making bromides US14538838 2014-11-12 US09688543B2 2017-06-27 Thomas G. Ray; David W. Bartley; Hugh Broadhurst; Nate Goodwin
Bromine containing compounds, such as calcium bromide, sodium bromide and the like, are prepared in high purity and more quickly with less waste by using a process with two bromination stages and often a third step wherein the crude product mixture can be adjusted to meet specific product requirements. In the first bromination stage, the majority, but not all, of a substrate is brominated using a reductive bromination reaction, the remaining unreacted substrate is converted to product in the second stage through another a reductive bromination reaction, although the specific reagents may be different, wherein the addition of bromine and a reducing agent are carefully monitored.
16 Method for Making Bromides US14538838 2014-11-12 US20150158734A1 2015-06-11 Thomas G. Ray; David W. Bartley; Hugh Broadhurst; Nate Goodwin
Bromine containing compounds, such as calcium bromide, sodium bromide and the like, are prepared in high purity and more quickly with less waste by using a process with two bromination stages and often a third step wherein the crude product mixture can be adjusted to meet specific product requirements. In the first bromination stage, the majority, but not all, of a substrate is brominated usiung a reductive bromination reaction, the remaining unreacted substrate is converted to product in the second stage through another a reductive bromination reaction, although the specific reagents may be different, wherein the addition of bromine and a reducing agent are carefully monitored.
17 PROCESS FOR THE PREPARATION OF CONCENTRATED SOLUTIONS OF STABILIZED HYPOBROMITES US13074090 2011-03-29 US20110183005A1 2011-07-28 Theodor Morel Fishler; David Feldman
The invention provides stabilized concentrated aqueous solutions of alkali hypobromites, as well as a process for the preparation of said stabilized concentrated solutions at low temperatures, comprising reacting a concentrated alkali hydroxide aqueous solution with bromine, adding to the non-stabilized reaction product an aqueous solution of a sulfamic compound to stabilize the hypobromite, and oxidizing bromide to produce additional hypobromite.
18 Optimizing Reactions in Fuel Cells and Electrochemical Reactions US12333929 2008-12-12 US20090253002A1 2009-10-08 Juliana H. J. Brooks; Bentley J. Blum; Mark G. Mortenson
This invention relates to novel methods for affecting, controlling and/or directing various reactions and/or reaction pathways or systems by exposing one or more components in a fuel cell reaction system to at least one spectral energy pattern. In a first aspect of the invention, at least one spectral energy pattern can be applied to a fuel cell reaction system. In a second aspect of the invention, at least one spectral energy conditioning pattern can be applied to a conditioning reaction system. The spectral energy conditioning pattern can, for example, be applied at a separate location from the reaction vessel (e.g., in a conditioning reaction vessel) or can be applied in (or to) the reaction vessel, but prior to other reaction system participants being introduced into the reaction vessel.
19 Optimizing reactions in fuel cells and electrochemical reactions US10615666 2003-07-09 US20040151957A1 2004-08-05 Juliana H. J. Brooks; Bentley J. Blum; Mark G. Mortenson
This invention relates to novel methods for affecting, controlling and/or directing various reactions and/or reaction pathways or systems by exposing one or more components in a holoreaction system to at least one spectral energy pattern. In a first aspect of the invention, at least one spectral energy pattern can be applied to a reaction system. In a second aspect of the invention, at least one spectral energy conditioning pattern can be applied to a conditioning reaction system. The spectral energy conditioning pattern can, for example, be applied at a separate location from the reaction vessel (e.g., in a conditioning reaction vessel) or can be applied in (or to) the reaction vessel, but prior to other reaction system participants being introduced into the reaction vessel. The techniques of the present invention are applicable to certain reactions in various cell reaction systems, including but not limited to, the following known cells: galvanic cells, electrochemical cells, electrolytic cells, fuel cells, batteries, photoelectrochemical cells, photogalvanic cells, photoelectrolytic cells, capacitors. Cell reaction systems can be organic, biologic and/or inorganic. The invention also relates to mimicking various mechanisms of action of various catalysts in cell reaction systems under various environmental reaction conditions. The invention specifically discloses different means for achieving the control of energy dynamics (e.g., matching or non-matching) between, for example, applied energy and matter (e.g., solids, liquids, gases, plasmas and/or combinations or portions thereof), to achieve (or to prevent) and/or increase energy transfer to, for example, at least one participant (or at least one conditionable participant) in a holoreaction system by taking into account various energy considerations in the holoreaction system. The invention further discloses different techniques and different means for delivery of at least one spectral energy pattern (or at least one spectral energy conditioning pattern) to at least a portion of a cell reaction system. The invention also discloses an approach for designing or determining appropriate physical catalyst(s) and/or conditioned participants to be used in a cell reaction system.
20 Method for producing a halide brine US10407417 2003-04-04 US20030198589A1 2003-10-23 Raymond D. Symens; Lyle H. Howard; Surendra Kumar Mishra; Thomas William Polkinghorn
A method for producing halide brine wherein an alkali and a reducing agent are added to an aqueous fluid having a density greater than 8.30 lb/gal., (0.996 kg/L) water, waste water or sea water for example. The resulting fluid is then contacted with a halogen to form a halide brine. The reaction occurs in a conventional reactor such as a mixing tank.
QQ群二维码
意见反馈