序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
221 COUPLING SEGMENT, DIRECT-ACTING EXTENSION/RETRACTION MECHANISM, AND ROBOT ARM MECHANISM EP16740233.8 2016-01-20 EP3249259A1 2017-11-29 YOON Woo-Keun; SANO Hikaru; KURIHARA Shinji

A linear extension and retraction mechanism includes a first connection piece string (21) made up of a plurality of first connection pieces (23); a second connection piece string (22) made up of a plurality of second connection pieces (24); a linear gear (239) made up of a plurality of teeth (240) and provided on a back face of each of the first connection piece (23); an ejection section (30) adapted to support a columnar body formed by joining together the first and second connection piece strings (21 and 22) and; and a drive gear (50) adapted to be meshed with the linear gears (239), wherein gear-end teeth (240f and 240e) located adjacent to each other across a junction between adjacent first connection piece string (21) are provided in such a way as not to overlap each other when viewed along a center axis of the columnar body.

222 ROBOT SYSTEM AND ROBOT DEVICE EP15872859.2 2015-12-16 EP3238894A1 2017-11-01 TAKASE, Sosuke

This invention provides an efficient robot layout in which there is a high degree of freedom. The robot system includes a work bench on which a work object is placed, and a robot device. The robot device includes: a base (1); and an arm section (2) that has torsional rotatability around a first axis approximately along a center line of the base, bending rotatability around a second axis that is orthogonal to the first axis, and linear extensibility and retractability along a third axis that is orthogonal to the second axis. Work is performed in collaboration with a worker on the work object by means of an end effector (3) that is provided at a tip of the arm section. The base is disposed at a position at which a moveable region (MR) of the arm section accompanying rotation around the first axis and the second axis and linear extension and retraction along the third axis at least partially overlaps with a work region (WAM) of the worker.

223 ROBOT DEVICE AND ROBOT CONTROL DEVICE EP15862582.2 2015-11-27 EP3225364A1 2017-10-04 YOON Woo-Keun; KAWAGUCHI Masateru; KURIHARA Shinji

The purpose of the present invention is to improve robot arm mechanism's operability regarding translational movement and posture change. A robot device includes: a robot arm mechanism 200 capable of being provided with an end effector at a tip thereof and including a plurality of joints; an operation section 300 for operating a movement and a posture change of the end effector; and a control section 100 for controlling driving of the joints in accordance with an operation of the operation section. The control section associates a translational operation received from the operation section with orthogonal three axes of a robot coordinate system of the robot arm mechanism to move a hand reference point. During the movement, a posture of the end effector is maintained at a posture on the robot coordinate system at the start of the translational operation. A posture change operation of the end effector input via the operation section is associated with orthogonal three axes of a hand coordinate system having a reference point of the end effector as the origin to change the posture of the end effector. At this time, a position of the hand reference point is maintained at a position on the robot coordinate system at the start of the posture change operation.

224 TELESCOPIC ARM AND STRUCTURE USING TELESCOPIC ARM EP13872717 2013-12-05 EP2949434A4 2016-11-02 MATSUOKA NORIMICHI
An extendable arm (30) is formed by a plurality of cross units (31) arranged in one direction and pivotally coupled to each other, and each of the cross units is formed by two rigid members (31a, 31b) that are pivotally coupled at a central coupling point (c) so as to cross over each other to form an X-shape. In order for the extendable arm (30) to follow a curved-line path when being extended and contracted, each of the rigid members (31a, 31b) has such a curved shape that coupling points (d, e) at both ends of the rigid member are shifted toward one side from a longitudinal axis passing through the central coupling point (c).
225 TRANSPORTEINRICHTUNG EP10803067.7 2010-11-30 EP2506995A1 2012-10-10 CHO, Yong-Hak; HOLECEK, Thomas; GASTL, Matthias; HENNEKE, Thomas; MOCKER, Sebastian
The invention relates to a transport unit (1) for workpieces (2), in particular sheet metal parts, between neighboring placement areas or machining devices (3, 4), in particular presses. The transport unit (1) comprises a multi-axis robot (5) having a gripper tool (9). The invention further comprises a controllable transfer unit (6) guided by the robot (5), said unit comprising an advancement unit (7) and a pivot unit (8) for the gripper tool (9).
226 Universally tiltable elevator structure for positioning an apparatus for picking up an article EP05100277.2 1997-06-11 EP1529607A1 2005-05-11 Genov, Genco; Todorov, Dimitre (Deceased); Todorov, Alexander

  • 1. A workpiece handling system comprises a robotic arm mechanism (66) which provides R-, θ- and Z-motion of an end effector adapted to pick up and transport workpieces. The robotic arm mechanism is mounted on an elevator (10) for linear motion along a motion axis of the elevator to provide Z-motion for the arm mechanism as a whole. Universal direction tilting means (30, 36, 38) are provided for tilting the elevator as a whole in any selected direction relative to its motion axis.

227 UNIVERSALLY TILTABLE Z AXIS DRIVE ARM EP97931286 1997-06-11 EP0918598A4 2000-02-23 GENOV GENCO; TODOROV DIMITRE; TODOROV ALEXANDER
A tilting elevator is set forth. A rigid frame (12) has a base (14), a structurally rigid structure (18) extending upwardly from the base (14), and a flange (22) attached to the structure top. The flange (22) is generally parallel to the base (14). A movable elevatable structure (10) is telescopically mounted to the rigid frame (12). The elevatable structure (10) comprises upper (26) and lower (28) spaced-apart generally parallel plates (26, 28). At least three generally parallel rods (30) extend between the plates (26, 28) and are connected to them by universal joints (36, 38). A motor system (40) is supported rigidly relatively to the base (14). Each of the rods (30) is movable relative to the plates (26, 28) independently of each rod (30). A robotic arm (66) having R-, theta -, and Z- motion can be mounted to the elevator (10). With the addition of a sensor (96) and using microprocessor control, canted workpieces can be readily picked up.
228 Robot hand structure, and method of selecting hand structure EP91119015.5 1991-11-07 EP0540777B1 1997-09-17 Danmoto, Shojiro, c/o Canon Kabushiki Kaisha; Kanno, Fumio, c/o Canon Kabushiki Kaisha; Komiya, Takao, c/o Canon Kabushiki Kaisha; Ito, Sumiyoshi, c/o Canon Kabushiki Kaisha
229 VERIN ELECTRIQUE A SYSTEME DE CONVERSION DE MOUVEMENT ROTATION/TRANSLATION ET A RECUPERATION D'ENERGIE EP92915827.7 1992-07-03 EP0592599B1 1995-10-11 GARREC, Philippe
An actuator providing substantial energy savings by using a reversible mechanical system. In particular, the actuator uses a power recovery system, particularly a screw (2) and nut (4) system, e.g. a ball-type system, wherein the pitch of the screw (2) is coarse (above 5°), or a smooth shaft system. A number of motors (9) may be placed at the ends of the screw or inside it when it is hollow. The reversibility of the coarse pitch screw/nut system allows a large portion of the electrical energy to be fed back to the supply grid or stored in a capacitor (14) during load deceleration phases. The actuator has many uses, particularly in robots.
230 HORIZONTAL ARTICULATED ROBOT EP89909237.3 1989-08-11 EP0418388B1 1994-12-28 TORII, Nobutoshi Room 308,; ITO, Susumu Room 7-204, Fanuc; HAMURA, Masayuki Room 8-103, Fanuc; TANAKA, Akira Fanuc Dai-3
A light, miniaturized horizontal articulated robot capable of being moved in a large space, and fabricated, assembled, maintained and transported at reduced costs. A ball screw (21) in a direct-acting actuator (100) is supported rotatably at its upper end on an upper plate of a column (10), and connected at its lower end to a driving unit (40) provided on a base plate of the column. A first link (220) is connected pivotably to a connecting member (210) of a manipulator (200) fixed to a slider (30) in the actuator, and a second link (240) to the first link. The ball screw is turned by the driving unit to move the manipulator with the slider along the ball screw, and a servomotor (230, 250) for the manipulator is driven to turn the two links in a horizontal plane, whereby robot work is carried out as wrist of the robot is positioned in a robot-provided space. Since a base on which the actuator is supported pivotably is not required, the robot can be made smaller in dimension and weight at a lower cost, and the space of movement of the robot becomes large owing to the low downward movement limit position of the manipulator.
231 GREIFERMECHANISMUS EP92909868.0 1992-05-07 EP0584144A1 1994-03-02 SAADAT, Mohammad Mohsen, Prof. Dr.-Ing.
Un mécanisme de préhension pour appareils de manipulation ou similaires comprend au moins un doigt de préhension mobile (6) pivotable autour d'un axe de poussée qui sert de coupleur d'un entraînement cinématique de guidage forcé (1, 2, 3, 4, 5, 6) à plusieurs éléments qui contient au moins un mécanisme bielle-manivelle (1, 2, 3, 4) en tant qu'unité d'actionnement. Le mécanisme bielle-manivelle (1, 2, 3, 4) comprend une manivelle (2) qui est en prise par une première extrémité, avec une première bielle (3) et qui est reliée de manière articulée par l'autre extrémité à une tige de poussée (1), ainsi qu'une coulisse (4) guidée sur la tige de poussée (1) et qui sert de butée pour la première bielle (3). Une deuxième bielle (5) est montée axialement décalée sur la coulisse (4). Les deux bielles (3, 5) du coupleur de guidage sont en prise avec le doigt de préhension (6) et la tige de poussée (1) n'effectue aucun mouvement dans la direction de l'axe de poussée pendant la préhension. Afin d'obtenir un tel mécanisme de préhension qui soit rigide en flexion et en torsion, la tige de poussée (1) a la forme d'une cage composée de plusieurs tiges (7) décentrées.
232 FITTING STRUCTURE OF HORIZONTAL MULTIPLE JOINT ROBOT ARMS EP89905783 1989-05-17 EP0379582A4 1992-05-06 TORII, NOBUTOSHI; ITO, SUSUMU FANUC MANSION HARIMOMI 7-204; TANAKA, AKIRA FANUC DAI-3 VIRA-KARAMATSU
This invention relates to a structure for fitting a robot base (1) with a first arm (3) of a horizontal multiple joint type robot. The base (2) of the first arm is fitted rotatably to a slider (6), which is guided linearly in the longitudinal direction of the robot base (1), and the rotation of the slider (6) and the base (2) is restricted by removable fixing means. The present invention is effective for packaging a robot.
233 Vorrichtung für ein Montagesystem der Handhabungstechnik, bestehend aus einem Trägerelement und einer Schlitteneinheit EP88113467.0 1988-08-19 EP0307645B1 1991-10-16 Hirschmann, Gregory C.
234 Industrieroboter EP89102388.9 1986-06-19 EP0320498A3 1991-10-09 Winter, Alfred; Schendl, Adolf, Dipl.-Ing.

Bei einem Industrieroboter der Portalbauweise ist ein Holm (7) in Z-­Richtung, und ein den Holm (7) tragender Wagen (1) auf einer Brücke (2) in Y-Richtung verschiebbar auf Rollen gelagert. Der Holm (7) trägt auf zwei einander gegenüberliegenden Seiten prismatische Schienen, die als Lauffläche für die Rollenpaare einer Rollenführung im Wagen (1) dienen. Am unteren Ende des Holmes (7), Trägers od.dgl. ist eine Greifervorrichtung für das Werkstück od.dgl. angebracht. Der Holm (7) od.dgl. ist mit einer hydraulischen Ausgleichseinrichtung verbunden, welche aus einem am Wagen (1) befestigten Hydraulikzylinder (100) besteht, dessen Kolbenstange (102) mit dem Holm (7) od.dgl. verbunden ist.

235 DIRECT-ACTING ACTUATOR OF INDUSTRIAL ROBOT EP89908520.3 1989-07-24 EP0396758A1 1990-11-14 TORII, Nobutoshi; ITO, Susumu Room 7-204, Fanuc Manshonharimomi; HAMURA, Masayuki Room 8-103, Fanuc Manshonharimomi; TANAKA, Akira Fanuc Dai-3 Vira-karamatsu

This invention relates to a direct-acting actuator of an industrial robot which can fit and remove an elongated feed screw rapidly and safely within a limited work space. When a ball screw is to be fitted, the upper and lower end portions of the ball screw inserted diagonally into an inner space of a column (10) are fitted into holes (12a, 33a) of an upper plate and sheet member through a passage (12b) formed on a column upper plate (12) and opening in that end surface of this upper plate on the slider side and through a passage (33b) formed on the sheet member (33) of a slider (30) and opening in the tip surface of the sheet member respectively, the lower end of the ball screw is connected to a decelerator (52) and a bearing unit (22) fitted to the upper end of the ball screw and ball nut (34) meshed with the ball screw are fitted into the holes (12a, 33a), respectively. Then, the bearing unit and the ball nut are fixed to the upper plate and to the sheet member, respectively. The ball screw can be removed in the procedures reverse to those described above.

236 SHAFT SUPPORT STRUCTURE FOR INDUSTRIAL ROBOTS EP89907292.0 1989-06-22 EP0377753A1 1990-07-18 TORII, Nobutoshi; ITO, Susumu Fanuc Mansion Harimomi 7-204; HAMURA, Masayuki Fanuc Mansion Harimomi 8-103; TANAKA, Akira Fanuc Dai-3 Vira-karamatsu

A shaft support (10), which supports both end portions of an elongated screw shaft (12) for use in moving a movable element, such as an arm of an industrial robot in a predetermined direction, is fixed to the upper surface of a base plate (14) via a gear box (30) which supports a driving motor (22) and the elongated screw shaft (12), and which contains reduction gears (24) therein, in such a manner that a projected area of the shaft support (10) on a plane perpendicular to the longitudinal direction of the elongated screw shaft (12) is reduced. When the gear box (30) is fixed to the base plate (14), a circular boss (32b), which is provided on the lower surface of the gear box (30) for use in positioning the gear box (30) in the plane of the base plate (14), and a bore (14a) provided in the base plate (14) are used. The vertical positioning of the gear box (30) is done by a positioning member (40) having a predetermined height.

237 A plant for robot operations EP89116648.0 1989-09-08 EP0361178A1 1990-04-04 Norman, Mauritz; Stenström, Valter

A plant for robot operations comprising a robot (2) disposed on a stand (1) and a plurality of work stations (3) served by the robot (2), the operating arm (4) of the robot (2) being movable to each work station (3) from a starting position at the carrying body (5) of the robot. According to the invention the plant com­prises a barrier (8) defining a first space (6), in which the robot (2) is located, and a second space (7), in which the work stations (3) are located. The barrier (8) has sufficient strength to be impenetrable to the robot (2), and it includes hatches (10) disposed opposite each work station (3), each hatch (10) closing an opening (9) through which the operating arm (4) of the robot (2) is movable to serve the work station (3) when the hatch (10) has been moved aside.

238 Industrieroboter EP89102388.9 1986-06-19 EP0320498A2 1989-06-14 Winter, Alfred; Schendl, Adolf, Dipl.-Ing.

Bei einem Industrieroboter der Portalbauweise ist ein Holm (7) in Z-­Richtung, und ein den Holm (7) tragender Wagen (1) auf einer Brücke (2) in Y-Richtung verschiebbar auf Rollen gelagert. Der Holm (7) trägt auf zwei einander gegenüberliegenden Seiten prismatische Schienen, die als Lauffläche für die Rollenpaare einer Rollenführung im Wagen (1) dienen. Am unteren Ende des Holmes (7), Trägers od.dgl. ist eine Greifervorrichtung für das Werkstück od.dgl. angebracht. Der Holm (7) od.dgl. ist mit einer hydraulischen Ausgleichseinrichtung verbunden, welche aus einem am Wagen (1) befestigten Hydraulikzylinder (100) besteht, dessen Kolbenstange (102) mit dem Holm (7) od.dgl. verbunden ist.

239 Robot cartésien EP88810375.1 1988-06-07 EP0295215A1 1988-12-14 Rochat, Daniel; Urwyler, Jean-François; Sappe, Oreste

Le robot comporte trois rails (14, 24, 30) orientés respective­ment selon ces axes et trois patins (18, 20, 32) chacun coopérant avec l'un des rails. Le premier rail (14) est monté sur un support (10, 12). Le patin (18) coopérant avec le premier rail (14, axe X) est solidaire du patin 20 coopérant avec le deuxième rail (24, axe Y) et forme avec ce dernier patin un chariot (16). Le patin (32) coopérant avec le troisième rail (30, axe Z), est fixé au deuxième rail (24). Le deuxième rail (24) est solidaire d'un profilé (26, 46) de rigidification.

Application aux robots de précision.

240 Industrial manipulator EP86106444.2 1986-05-12 EP0245530A1 1987-11-19 Dunn, Donald

In an industrial manipulator (10) a controlled fluid environment for a robotic wrist drive motor (32) is achieved by mounting the motor (32) within a motor cavity (33) in the front portion (18) of a hollow support arm (17). An end cap (19) is affixed to the rear end of the support arm, and cooling fluid, inert fluids and the like are ported through the end cap (19) into the motor cavity(33). Alternatively the ports (40, 41) may be utilised to withdraw air from the cavity and to retain a vacuum therein.

QQ群二维码
意见反馈