序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
41 曝光装置以及曝光方法 CN97181117.2 1997-11-28 CN1144263C 2004-03-31 西健尔; 太田和哉
保持基片的2个载片台WS1、WS2可以在定位系统24a下的位置信息测量区域PIS和投影光学系统PL下的曝光区域EPS之间独立地移动。在上述WS1上正在进行晶片交换以及对位期间,可以在载片台WS2上曝光晶片W2。晶片WS1的各拍照区域的位置在区域PIS中被作为相对形成在载片台WS1上的基准标记的相对位置求出。因为相对位置信息在晶片WS1被移动到区域EPS被曝光时,用于相对曝光图形的对位,所以在载片台移动时不需要连续监视载片台的位置。通过使用2个晶片载片台WS1、WS2并行处理曝光动作就可以提高生产率。
42 聚焦装置及使用这种装置的光盘装置 CN97192831.2 1997-03-03 CN1122981C 2003-10-01 石桥赖幸
光盘(100)通过粘合两个厚度为“h”的基底制成,用作记录介质。至少有一个基底的后表面有信号标记或能提供信号标记的反射层。激光束(210)通过物镜(203)照射到光盘(100)上,并且从基底的反射层反射的光被光学探测器件(213)探测。光学探测器件(213)的一个输出提供给信号读出器件(215),且另一个输出提供给聚焦装置(216)用于探测物镜(203)的聚焦误差以及用于控制物镜(203)关于光盘(100)的位置。在光盘装置中,激光束源的半宽Δλ满足不等式:λ02/{2h(n22-NA2)0.5}≤Δλ≤g(λ0,NA,f,dmax)其中λ0是激光束源(206)的主波长,Δλ是激光束源的半宽,NA是物镜的数值孔径,f是物镜的焦距,n2是基底材料的折射率,dmax是照射到信号凹坑的激光束光斑的最大直径,以及g是用于获得基于λ0、NA、f和dmax的最大半宽Δλ的通用函数公式。
43 模版 CN95104077.4 1995-03-22 CN1088854C 2002-08-07 黄雋
发明在此公开了一种可精确检测掩模版偏转误差的掩模版。掩模版由一个形成在单元区右端外侧的第一主游标,一个形成在单元区左端外侧的第一副游标,一个形成在单元区上端外侧的第二主游标及一个形成在单元区下端外侧的第二副游标构成。掩模版的另一种形式由一个形成在右划线区的第一主游标,一个形成在左划线区的第一副游标,一个形成在上划线区的第二主游标以及一个形成在下划线区的第二副游标构成。
44 半导体器件的图形对准标记 CN95109443.2 1995-07-07 CN1076836C 2001-12-26 裴相满; 崔秉一
发明涉及一种图形对准标记,其具有至少一个在半导体器件的制造工艺期间用于对准的已指定测量图形,包括:具有衰减所述已指定的测量图形中具有较高的光反射强度的测量图形的光反射的装置,本发明通过消除在测量图形的重叠精度时光反射强度的差异,事先防止了图形误差的出现,使生产稳定,并减少了加工时间从而提高了加工的准确性,增加了产量。
45 聚焦装置及使用这种装置的光盘装置 CN97192831.2 1997-03-03 CN1212780A 1999-03-31 石桥赖幸
光盘(100)通过粘合两个厚度为“h”的基底制成,用作记录介质。至少有一个基底的后表面有信号标记或能提供信号标记的反射层。激光束(210)通过物镜(203)照射到光盘(100)上,并且从基底的反射层反射的光被光学探测器件(213)探测。光学探测器件(213)的一个输出提供给信号读出器件(215),且另一个输出提供给聚焦装置(216)用于探测物镜(203)的聚焦误差以及用于控制物镜(203)关于光盘(100)的位置。在光盘装置中,激光束源的半宽△λ满足不等式:λ02/{2h(n22-NA2)0.5}≤△λ≤g(λ0,NA,f,dmax)其中λ0是激光束源(206)的主波长,△λ是激光束源的半宽,NA是物镜的数值孔径,f是物镜的焦距,n2是基底材料的折射率,dmax是照射到信号凹坑的激光束光斑的最大直径,以及g是用于获得基于λ0、NA、f和dmax的最大半宽△λ的通用函数公式。
46 对准方法 CN98117136.2 1998-08-04 CN1209643A 1999-03-03 松浦诚司
发明的目的是提供一种对准方法,能够保持高的生产率并且实现高精度的芯片内对准。为了实现上述目的,根据本发明,提供一种对准方法,当通过投影曝光装置把掩模上的图形转印到半导体基片上时,把掩模上的图形与半导体基片上的图形进行对准,其特征在于,把在对准中使用的全部芯片分成多组,在对准中使用在各组中分别处于不同芯片内位置的掩模。而且,从通过对各组的对准而求出的偏移量,来算出芯片内的倍率量和旋转量的值,而用于芯片内的重合偏差的校正。
47 复合式绝缘体上薄膜基片及其制作方法 CN96119843.5 1996-09-27 CN1158004A 1997-08-27 滨智宏; 新井谦一
发明揭示了一种复合式SOI基片,其容许通过使用传统可见光校准器,对埋于SOI基片内的绝缘体膜图型及在SOI基片层上形成的图型进行高精度校准。复合式SOI基片是通过在第一基片10的主表面边缘上形成校准化物薄膜图型1a;制备在其边缘有最好是V形槽部分9的第二硅基片以使第一硅基片上的校准图型显露出来;将第二硅基片与所述第一硅基片10的主表面相联接同时将校准,氧化物薄膜图型1a显露出来;然后将第二硅基片变薄形成为一个SOI层20a。
48 曝光方法以及用该方法制造半导体集成电路器件的方法 CN95116667.0 1995-08-24 CN1123466A 1996-05-29 小森谷进; 町田贵裕; 国吉伸治; 入来信行; 前岛央; 小林正道
一种能够产生具有良好反差和对称性的位置检测信号的目标图形,该目标图形由光波长为λ、数值孔径为NA且局部相干为σ的位置检测光学系统检测,由具有隆起的点部或线部1a和设于1a周围的重复台阶部分1b构成,隆起宽度小于0.5λ(1+σ)NA,1b的步距小于λ(1+σ)/NA且宽度小于0.5λ(1+σ)/NA。另一种目标图形由点部或线部2a及重复台阶部分2b构成,2a的凹下宽度小于0.5λ(1+σ)/NA,而2b在2a周围且步距小于λ(1+σ)/NA而宽度小于0.5λ(1+σ)/NA。
49 半导体器件的图形对准标记 CN95109443.2 1995-07-07 CN1115419A 1996-01-24 裴相满; 崔秉一
发明涉及一种图形对准标记,其具有至少一个在半导体器件的制造工艺期间用于对准的已指定测量图形,包括:具有衰减所述已指定的测量图形中具有较高光反射强度的测量图形的光反射的装置,本发明通过消除在测量图形的重叠精度时光反射强度的差异,事先防止了图形误差的出现,使生产稳定,并减少了加工时间从而提高了加工的准确性。
50 掩膜版 CN95104077.4 1995-03-22 CN1115413A 1996-01-24 黄儁
发明在此公开了一种可精确检测掩膜版偏转误差的掩膜版。掩膜版由一个形成在单元区右端外侧的第一主游标,一个形成在单元区左端外侧的第一副游标,一个形成在单元区上端外侧的第二主标游标及一个形成在单元区下端外侧的第二副游标构成。掩膜版的另一种形式由一个形成在右划线区的第一主游标,一个形成在左划线区的第一副游标,一个形成在上划线区的第二主游标以及一个形成在下划线区的第二副游标构成。
51 对焦位置检测方法 CN94108760.3 1994-07-30 CN1103227A 1995-05-31 汤川典昭; 木村悟; 佐藤健夫
一种对焦位置检测方法,它主要包含:目标物摄像过程;累积浓淡比运算过程;部分图像设定过程;区域设定过程;左区域运算过程;右区域运算过程;和浓淡比运算过程。按照本发明的对焦位置检测方法,由于取从部分图像中的注目像素的特定方向的左右区域中的浓度数据获得的运算结果的比,所以不用复杂的算法就能消除图像全局浓度变动的影响。
52 SUBSTRATE TABLE SYSTEM, LITHOGRAPHIC APPARATUS AND SUBSTRATE TABLE SWAPPING METHOD PCT/EP2013053084 2013-02-15 WO2013143777A2 2013-10-03 VAN DE VEN BASTIAAN LAMBERTUS WILHELMUS MARINUS; DE GROOT ANTONIUS FRANCISCUS JOHANNES; HOOGENDAM CHRISTIAAN ALEXANDER; LOOPSTRA ERIK ROELOF; BUTLER HANS
A substrate table system includes a substrate table and a dual directional motor for moving the substrate table in a plane of movement. The plane of movement is defined by a first direction and a second direction perpendicular to the first direction. The dual directional motor includes: a first pusher structure extending in the first direction, the substrate table being movable in respect of the first pusher structure, the first pusher structure and the substrate table being arranged to cooperate so as to form a first motor arranged to exert a force between the first pusher structure and the substrate table in the first direction; and a second pusher structure extending in the first direction, the substrate table being movable in respect of the second pusher structure (along the first and second directions), the second pusher structure and the substrate table being arranged to cooperate so as to form a second motor arranged to exert a force between the second pusher structure and the substrate table in the second direction.
53 光刻系统 CN201621353213.3 2016-12-09 CN206584158U 2017-10-24 B·M·约翰斯通; J·怀特; T·莱帝克
本实用新型提供一种光刻系统。在一个实施方式中,一种光刻系统包括:卡盘,所述卡盘具有基板接收表面;处理单元,所述处理单元设置在所述卡盘上方;一个或多个通气口,所述一个或多个通气口设置在所述处理单元上方;气源,所述气源耦接到所述一个或多个通气口;以及排放端口,所述排放端口设置在所述卡盘下方。
54 电子 CN201721027907.2 2017-08-16 CN207124030U 2018-03-20 小林翔太; 森良彰; 森田豊
本实用新型提供一种电子钹(100),包括具有击打面的圆环状的主体构件(1)、配设在所述主体构件(1)的与击打面为相反侧的下表面的圆环状的罩构件(2)、以及安装在所述罩构件(2)或主体构件(1)上的基板(3)。所述电子钹(100)包括缆线(4),缆线(4)的一端直接连接在基板上且另一端具有端子。罩构件(2)包括外周壁(22),所述外周壁(22)是自所述罩构件(2)的外缘向主体构件(1)的下表面侧突出而形成且以其突出前端与主体构件(1)的下表面隔开的方式配设。将所述缆线(4)收纳在较外周壁(22)更靠内周侧的主体构件(1)与罩构件(2)的对向空间。本公开旨在将缆线直接连接在基板上的情况下也可简化不使用时的操作的电子钹。
55 EXPOSURE APPARATUS, EXPOSURE METHOD, AND DEVICE MANUFACTURING METHOD EP16156880.3 2010-08-24 EP3054354B1 2018-03-21 Shibazaki, Yuichi
An exposure apparatus is equipped with an encoder system which measures positional information of a wafer stage (WST1) by irradiating a measurement beam using four heads (60 1 to 60 4 ) installed on the wafer stage (WST1) on a scale plate (21) which covers the movement range of the wafer stage (WST1) except for the area right under a projection optical system (PL). Placement distances (A, B) of the heads (60 1 to 60 4 ) here are each set to be larger than width (a i , b i ) of the opening of the scale plates (21), respectively. This allows the positional information of the wafer stage to be measured, by switching and using the three heads facing the scale plate out of the four heads according to the position of the wafer stage.
56 EXPOSURE METHOD AND APPARATUS AND DEVICE MANUFACTURING METHOD EP15185017.9 2007-09-03 EP2993524B1 2017-10-25 Shibazaki, Yuichi
A controller measures positional information of a stage (WST) within an XY plane using three encoders (Enc1, Enc2 and Enc3) which at least include one each of an X encoder and a Y encoder of an encoder system, and the stage (WST) is driven in the XY plane, based on measurement results of the positional information and positional information (p 1 , q 1 ), (p 2 , q 2 ), and (p 3 , q 3 ) in a surface parallel to the XY plane of a head (encoders) (Encl, Enc2 and Enc3) used for measurement of the positional information. Accordingly, it becomes possible to control the movement of the stage with good precision, while switching the head (the encoder) used for control during the movement of the stage (WST) using the encoder system which includes a plurality of heads.
57 EXPOSURE METHOD, EXPOSURE APPARATUS, AND DEVICE MANUFACTURING METHOD EP16166162.4 2010-08-24 EP3098655A3 2017-02-08 Shibazaki, Yuichi

Within an area (A0) where of four heads (601 to 604) installed on a stage (WST1), heads included in the first head group and the second head group to which three heads each belong that include one head different from each other face the corresponding areas on a scale plate, the stage (WST1) is driven based on positional information which is obtained using the first head group, as well as obtaining the displacement (displacement of position, rotation, and scaling) between the first and second reference coordinate systems (C1, C2) corresponding to the first and second head groups using the positional information obtained using the first and second head groups. By using the results and correcting measurement results obtained using the second head group, the displacement between the first and second reference coordinate systems (C1, C2) is calibrated, which allows the measurement errors that come with the displacement between the areas on the scale plates where each of the four heads (601 to 604) face to be corrected.

58 Exposure apparatus, exposure method, and device manufacturing method EP14178301.9 2010-08-24 EP2808737B1 2016-09-21 Shibazaki, Yuichi
An exposure apparatus is equipped with an encoder system which measures positional information of a wafer stage (WST1) by irradiating a measurement beam using four heads (60 1 to 60 4 ) installed on the wafer stage (WST1) on a scale plate (21) which covers the movement range of the wafer stage (WST1) except for the area right under a projection optical system (PL). Placement distances (A, B) of the heads (60 1 to 60 4 ) here are each set to be larger than width (a i , b i ) of the opening of the scale plates (21), respectively. This allows the positional information of the wafer stage to be measured, by switching and using the three heads facing the scale plate out of the four heads according to the position of the wafer stage.
59 EXPOSURE APPARATUS, EXPOSURE METHOD, AND DEVICE MANUFACTURING METHOD EP16156879.5 2010-08-24 EP3054353A1 2016-08-10 Shibazaki, Yuichi

An exposure apparatus in equipped with an encoder system which measures positional information of a wafer stage (WST1) by irradiating a measurement beam using four heads (601 to 604) installed on the wafer stage (WST1)on a scale plate (21) which covers the movement range of the wafer stage (WST1) except for the area right under a projection optical system (PL). Placement distances (A, B) of the heads (601 to 604) here are each set to be larger than width (ai, bi) of the opening of the scale plates (21), respectively. This allows the positional information of the wafer stage to be measured, by switching and using the three heads facing the scale plate out of the four heads according to the position of the wafer stage.

60 EXPOSURE APPARATUS, EXPOSURE METHOD, AND DEVICE MANUFACTURING METHOD EP10752444.9 2010-08-24 EP2470962A1 2012-07-04 SHIBAZAKI, Yuichi
An exposure apparatus is equipped with an encoder system which measures positional information of a wafer stage (WST1) by irradiating a measurement beam using four heads (60 1 to 60 4 ) installed on the wafer stage (WST1) on a scale plate (21) which covers the movement range of the wafer stage (WST1) except for the area right under a projection optical system (PL). Placement distances (A, B) of the heads (60 1 to 60 4 ) here are each set to be larger than width (a i , b i ) of the opening of the scale plates (21), respectively. This allows the positional information of the wafer stage to be measured, by switching and using the three heads facing the scale plate out of the four heads according to the position of the wafer stage.
QQ群二维码
意见反馈