首页 / 国际专利分类库 / 物理 / 测量 / 线速度或角速度、加速度、减速度或冲击的测量;运动的存在、不存在或方向的指示 / 用积分加速度的方法测量速度(用加速度的双重积分测量行程入G01C21/16)
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
101 발사체의 트리거 시간의 비행중 프로그래밍 KR1020107020813 2009-02-18 KR101554963B1 2015-09-23 앙용림토마스; 응세이힘; 와쳉혹
본발명은발사체(60)가공기중으로발사된후 목표물(P)에대한잔여비행시간을기초로발사체(60)의트리거시간을프로그래밍하기위한방법들을개시한다. 실제포구속도(V) 및비행속도들(V1, V2 등)은독립적으로결정되어탄도컴퓨터(30)에의해사용되는것들과비교되므로, 더양호한트리거시간의추정이발사체(60)를폭발시키는데 사용된다. 일실시예에서는칼만알고리즘이트리거시간의더 양호한추정을제공하기위해독립방법들에의해구해진발사체의비행속도들의더 양호한추정을제공하는데 사용된다.
102 운동 해석 방법 및 운동 해석 장치 KR1020140061044 2014-05-21 KR1020140148298A 2014-12-31 시부야가즈히로; 노무라가즈오; 고다이라겐야; 사토마사후미
A motion analysis method according to the present invention comprises: a process of calculating change in the inertia of a part having an inertia sensor mounted thereon during swing using the output of the inertia sensor; and a process of specifying the maximal value of the inertia during the swing and comparing the maximal value with inertia during impact. Whether or not the swing is good can be judged as the deceleration timing of the part having the inertia sensor (12) mounted thereon (e.g., the grip of an exercise device) during the swing is specified.
103 풍력 발전기의 회전속도 측정장치 및 방법 KR1020120113010 2012-10-11 KR101375268B1 2014-03-17 신상명; 박어진; 김남영
Disclosed is an apparatus for measuring the rotation velocity of a wind power generator. According to one embodiment of the present invention, the apparatus for measuring the rotation velocity of a wind power generator, in an apparatus for measuring the rotation velocity of a wind power generator where a hub and a rotor having blades connected to the hub are installed, includes a gyroscope measuring the rotation of the hub which is installed in the rotor, and an accelerator correcting the rotation speed measured by the gyroscope which is fixed to the rotor.
104 디지털 센서 바이어스 보정장치 및 방법 KR1020120035136 2012-04-04 KR101252791B1 2013-04-09 김현수; 도승복; 최현영; 신주현
PURPOSE: A bias correction device for a digital sensor is provided to prevent accumulation of errors in various terminals provided with a digital sensor, thereby markedly improving performance and functions of the terminal. CONSTITUTION: A digital sensor(200) is a temperature-based digital sensor which outputs digital data having bias which varies on temperature changes. A data processor(100) includes multiple bias correction devices for estimating and compensating in real time the variation of bias depending on temperature changes. The multiple bias correction devices process smoothing or filtering using moving average method, on the digital data of X, Y, and Z axes received from the digital sensor. A processing unit(300) finds the angle of a platform using the detection values of the digital sensor which are corrected by the multiple bias correction devices. [Reference numerals] (200) Digital sensor; (300) Processing;
105 Measuring method for rotational speed of sphere using accelerometers KR20120061661 2012-06-08 KR101193917B1 2012-10-29 KANG WOO YONG; KIM DAE KWAN; KIM YONG BOK; YOON HYUNG JOO; CHOI HONG TAEK
PURPOSE: A rotational speed measuring method of a sphere is provided to accurately and easily calculate rotational speed of the sphere by measuring the rotational speed of the sphere using acceleration. CONSTITUTION: A pair of accelerometers is respectively installed on an accelerometer system coordinate shaft consisting of x, y, and z shafts(S100). The x, y, and z shafts of the pair of accelerometers are in accord with x, y, and z shafts of a system coordinate shafts(S200). A sphere is rotated and acceleration which is added to the x, y, and z shafts of the pair of accelerometers is measured at in order when current is applied to an electromagnet installed in around the sphere(S300). The acceleration which is created by the rotation of the sphere is calculated only(S400). The rotational speed of the sphere for each coordinate shaft is calculated from the calculated acceleration(S500). [Reference numerals] (S100) A pair of accelerometers is installed; (S200) Accelerometer system coordinate shaft is arranged; (S300) Acceleration is measured; (S400) The acceleration is calculated; (S500) Rotational speed is calculated
106 발사체의 트리거 시간의 비행중 프로그래밍 KR1020107020813 2009-02-18 KR1020110008165A 2011-01-26 앙용림토마스; 응세이힘; 와쳉혹
본 발명은 발사체(60)가 공기 중으로 발사된 후 목표물(P)에 대한 잔여 비행시간을 기초로 발사체(60)의 트리거 시간을 프로그래밍하기 위한 방법들을 개시한다. 실제 포구속도(V 0 ) 및 비행속도들(V1, V2 등)은 독립적으로 결정되어 탄도 컴퓨터(30)에 의해 사용되는 것들과 비교되므로, 더 양호한 트리거 시간의 추정이 발사체(60)를 폭발시키는 데 사용된다. 일실시예에서는 칼만 알고리즘이 트리거 시간의 더 양호한 추정을 제공하기 위해 독립 방법들에 의해 구해진 발사체의 비행속도들의 더 양호한 추정을 제공하는 데 사용된다.
107 가속도계를 이용한 이동체의 속력측정 및 그 장치 KR1020030097476 2003-12-26 KR100520144B1 2005-10-10 이국연; 홍현수; 이윤덕; 김진원
본 발명은 가속도계를 이용한 이동체의 속력측정장치 및 그 방법에 관한 것으로서, 가속도계의 측정데이터를 분석하여 이동체의 정지여부를 판단하고 상기 이동체가 정지상태라고 판단하는 과정과, 상기 가속도계의 측정데이터 분석결과 이동체가 주행 중이라고 판단된 경우 상기 가속도계의 측정데이터를 이용하여 도로각의 크기를 연산하는 과정과, 상기 도로각의 크기가 소정 임계치 이상인 경우 그 도로각의 부호를 결정하는 과정과, 상기 도로각을 이용하여 상기 가속도계의 측정데이터에 포함된 중력가속도 성분을 보상하는 과정과, 상기 중력가속도 성분이 보상된 이동체의 가속도 값에 의거하여 이동체의 속력을 계산하는 과정을 포함한다. 따라서, 본발명은 차량용 속력측정장치의 구현에 있어서 고가인 자이로의 개수를 줄임으로써 비용절감의 효과가 있다.
108 능동현가장치에서 절대속도를 추정하기 위한 혼성 아날로그 디지탈 제어방법 및 장치 KR1019890006285 1989-05-09 KR1019920006164B1 1992-07-31 풀티.울프
내용 없음.
109 モーションキャプチャ装置、モーションキャプチャ方法、運動性能診断方法およびモーションキャプチャ用身体装着具 JP2016542575 2015-08-10 JP6319446B2 2018-05-09 紙田 徹; 加藤 千晴; 柴田 治; 田淵 勝宏; 川妻 雅人; 久保 昌幸; 林 毅至; 前田 頼宣; 河原 直樹
110 開閉イベントの信頼できる検出のための方法と装置 JP2017522095 2015-10-14 JP2017533430A 2017-11-09 カテ ワーナー ルドルフ テオフィル テン
センサにより生成される出信号を用いたドア若しくは引き出しの開閉の確実かつ正確な検出のための方法が提供され、出力信号は経時的なセンサの加速度を直接若しくは間接的にあらわす。加速度に対する曲線下面積、若しくはその表現が決定され、所定閾値との計算される面積の比較を通じて運動イベントの発生が識別される。対応する合計の全要素が同符号であり、結果としてのエリア信号が最大振幅を持つように、加速度曲線のゼロ交差点間に張る面積が考慮される。所与の時間分離内に生じる、実質的に等しい及び反対のエリア信号のペアが求められ得、これらは開閉運動に特徴的であり、第一の方向における第一の加速度と、続く反対方向における第二の加速度とから成る。開閉イベントの信頼できる検出のための装置も提供される。
111 加速度測定に基づく平又は垂直方向の速度推定 JP2014525555 2012-08-17 JP6023809B2 2016-11-09 テン ケイト ワーナー ルドルフ テオフィレ
112 検知および分析のためのコンフォーマルセンサシステム JP2016520657 2014-10-07 JP2016532468A 2016-10-20 ガファリ、ルーズベ; カシベンスキー、アイザイア; ラファティ、コナー; ラージ、ミラン; セルオロ、メリッサ; スー、ユン−ユー; キーン、ブライアン; モーリー、ブリアナ; ライリー、ブライアン; ウェイ、ピン−ハン
コンフォーマルセンサを使用して検知および分析するためのシステム、方法およびデバイス(100)が開示される。この開示の態様は、例えば、トレーニングおよび/または臨床の目的としてのそのような適用のために、身体動作を示すデータを検知および分析するためのコンフォーマルセンサシステムおよびデバイスを対象とする。本明細書で開示される代表的なシステム、方法およびデバイスによれば、フレキシブル電子機器技術は、医療診断、医療治療、身体活動、理学療法および/または臨床の目的としてのそのような適用のために、動作(身体動作および/または筋肉活動を含む)、心拍数、電気活動および/または身体温度を検知または測定するためのコンフォーマルセンサ(103)として実装することができる。コンフォーマルセンサは、衝撃を検知および定量化するために使用することができ、中枢神経系疾患モニタリングのために使用することができる。
113 携帯型機器 JP2012140310 2012-06-22 JP6003284B2 2016-10-05 宮坂 英治; 最上 和人; 國重 貴裕
114 電子機器及び移動速度算出システム JP2013537546 2012-10-04 JPWO2013051645A1 2015-03-30 知巳 高階
電子機器は、カメラと、筐体に加わる加速度を検出する加速度センサと、前記カメラによって撮像された撮像画像と、前記加速度センサによって検出された加速度とに基づいて前記筐体の移動速度を算出する移動速度算出部と、を備える。
115 Rate calculation method, the speed calculation apparatus, and computer program JP2012131582 2012-06-11 JP5557296B2 2014-07-23 暢也 酒井; 功壮 久米川
116 Relocation detection method and relocation detection unit JP2010172730 2010-07-30 JP5504090B2 2014-05-28 勝彦 大野
117 Information processing method, apparatus and program JP2010204402 2010-09-13 JP5477238B2 2014-04-23 政博 原; 一穂 前田; 義典 柳沼
A method executed by a computer includes applying a correction to an acceleration value of an object at an interval; calculating an initial speed of the object by assigning the corrected acceleration value in a period to a third relational expression that is obtained by transforming a first relational expression and a second relational expression so as to obtain an initial speed from the acceleration in the period and the interval, where the first relational expression is to obtain an object position from acceleration and an initial speed, and the second relational expression represents force applied to the object due to fluctuation of the center of gravity of the object as a motion equation of a spring model; and calculating coordinate values over a horizontal plane that indicates a center of gravity of the object by assigning the corrected acceleration value and the initial speed to the first relational expression.
118 Portable device JP2012140310 2012-06-22 JP2014006089A 2014-01-16 MIYASAKA EIJI; MOGAMI KAZUTO; KUNISHIGE TAKAHIRO
PROBLEM TO BE SOLVED: To perform speed calculation without botheration of mounting of a separate sensor and surely and accurately even if used by any user, when incapable of receiving speed information grasped by processing signals from a position information satellite.SOLUTION: A portable device comprises an acceleration sensor 38 capable of detecting acceleration speeds in three axial directions. When GPS radio waves can be received by a GPS module 34, a correlation between a body vibration frequency detected by the acceleration sensor 38 and speed information grasped by processing signals included in the GPS radio waves is recorded in a flash ROM 33 by an MCU 30. When a reception state of the GPS radio waves does not satisfy a predetermined reference, based on the body vibration frequency detected by the acceleration sensor 38 and the correlation recorded in the flash ROM 33, a traveling speed is estimated by the MCU 30.
119 The vehicle data, among other things, measure the speed of a vehicle traveling at a wheel device JP2009507030 2007-04-17 JP5135329B2 2013-02-06 へルク クリスティアン
120 Wind estimation for unmanned aerial vehicle JP2011053953 2011-03-11 JP2011246105A 2011-12-08 HAMKE ERIC E; ENNS DALE F; LOE GREGORY R; WACKER ROGER A; SCHUBERT OLIVER
PROBLEM TO BE SOLVED: To provide a device, a system, and a technology that estimate the speed of wind during the operation of an unmanned aerial vehicle (UAV) based on the modeled acceleration of the UAV during flight and the actual acceleration of the UAV during the flight.SOLUTION: The speed of the wind during operation of the UAV is estimated. In one example the speed of the wind is estimated by modeling the acceleration of the UAV based on a measured ground speed of the UAV, by determining the actual acceleration of the UAV with one or more sensors, and by estimating the speed of the wind as an integral of a difference between the modeled acceleration and the actual acceleration.
QQ群二维码
意见反馈