首页 / 国际专利分类库 / 物理 / 测量 / 线速度或角速度、加速度、减速度或冲击的测量;运动的存在、不存在或方向的指示 / 用积分加速度的方法测量速度(用加速度的双重积分测量行程入G01C21/16)
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
181 Offset detection of acceleration sensor and navigation system EP06018704.4 2006-09-06 EP1760475A2 2007-03-07 Ohkubo. Masashi Sony Corp.; Takaoka, Tomohisa Sony Corp.

To accurately detect a zero gravity offset in an acceleration sensor. As an embodiment of the present invention, in the case where position information can be obtained from a GPS processing section, a velocity detecting unit performs an operation according to Expression (15), using real detected acceleration Gr that was actually obtained from the acceleration sensor, vehicle acceleration αP based on the position information, distance Dm, an amount of height change Dh based on pressure PR, and gravity acceleration g. Therefore, offset acceleration αo can be accurately calculated, and an acceleration detection signal can be converted into detected acceleration αG with high accuracy, based on a zero gravity offset value Vzgo by that the above offset acceleration αo was converted.

182 Apparatus and method for measuring speed of a moving object EP06008122.1 2006-04-19 EP1722239A2 2006-11-15 Hong, Hyun-Su; Lee, Jae-Myeon

An apparatus and method for measuring the speed of a moving object is provided. A first acceleration along the moving direction of the moving object and a second acceleration along the lateral direction of the moving object are measured. A first angular speed along the lateral direction of the moving object and a second angular speed along the lower direction of the moving object are measured. The roll angle of the moving object using the first acceleration, the second angular speed, a previous speed of the moving object in the moving direction of the moving object, and a previous road inclination angle with respect to the moving direction of the moving object are calculated. A road inclination angle is calculated using the calculated roll angle, the first angular speed, and the second angular speed. A pure motion acceleration in the moving direction of the moving object is calculated using the calculated road inclination angle and the speed of the moving object is calculated using the pure motion acceleration of the moving object.

183 SYSTEM AND METHOD FOR MEASUREMENTS OF DEPTH AND VELOCITY OF INSTRUMENTATION WITHIN A WELLBORE EP05711962.0 2005-01-25 EP1714004A1 2006-10-25 EKSETH, Roger; GREENSMITH, Martyn, Ian Woodlands of Cushnie
A survey tool for use in a wellbore includes a downhole portion having an axis. The downhole portion is adapted to move within the wellbore with the axis generally parallel to the wellbore. The survey tool further includes a first acceleration sensor mounted at a first position within the downhole portion. The first acceleration sensor is adapted to generate a first signal indicative of an acceleration of the first acceleration sensor along the axis. The survey tool further includes a second acceleration sensor mounted at a second position within the downhole portion. The second position is spaced from the first position by a non-zero distance along the axis. The second acceleration sensor is adapted to generate a second signal indicative of an acceleration of the second acceleration sensor along the axis. The survey tool further includes a controller adapted to receive the first signal and the second signal and to calculate a depth, a velocity, or both a depth and a velocity of the downhole portion in response to the first signal and the second signal.
184 Apparatus for monitoring human body's movements in sport or medical domain, and its use EP06425050.9 2006-02-01 EP1688746A3 2006-08-23 Facchielli, Duccio; Torti, Stefano; Verza, Andrea; Chiarugi, Antonio; Clot, Paolo Rosa; Clot, Marco Rosa

The application concerns a precise measurement of human body's movement, e.g. in the rehabilitation domain and/or physical training, physiotherapy and sport. The system is adapted to estimate any body part speed and displacement - and, therefore, motion - without any external reference, by means of inertial measurement. Acceleration data are stored and integrated to determine velocity and displacement. A modified acceleration function is derived to meet boundary conditions, e.g. initial and final speed must be zero.

185 Vehicle stopped-judgement apparatus and stopped-judgement method in a velocity-calculation apparatus EP06000131.0 2006-01-04 EP1681573A1 2006-07-19 Kakuda, Yasunobu; Hosaka, Jin

By calculating the velocity from acceleration information that is obtained from an acceleration sensor that is located in a vehicle, this invention, determines whether or not the vehicle is stopped from only the acceleration information obtained from the acceleration sensor without using angle information for which there is a high possibility of error, so it is possible to improve the accuracy of the velocity value.

A vehicle stopped-judgment apparatus in a velocity-calculation apparatus comprising: an angle-calculation means 2 that calculates the road-surface angle from the acceleration component Ax that is parallel with the road surface and acceleration component Az that is perpendicular to the road surface and that are obtained from an acceleration sensor 1 installed in a vehicle; and a velocity-calculationmeans 3 that calculates the vehicle velocity using the road-surface angle and the acceleration component Ax obtained from the acceleration sensor 1; and that comprises: an unsteadiness-detection means 4 that detects the size of unsteadiness in the acceleration component Ax or Az obtained from the acceleration sensor 1; and a stopped-judgment means 5 that performs a comparison to determine whether or not the size of unsteadiness exceeds a certain set value, and when it does not exceed the set value, determines that said vehicle is stopped.

186 Autonomous velocity estimation and navigation EP03018559.9 2003-08-18 EP1508776A1 2005-02-23 Hagstedt, Anders

The present invention relates to measurement of a spatial velocity vector (vx, vy, vz), i.a. in order to make determination of a geographical position possible. A proposed spatial velocity meter (200) includes an inertial measurement unit (210), a direction-sensing module (220) and a velocity processor (230). The inertial measurement unit (210) registers acceleration parameters (a) and angular velocity parameters (ω) in three dimensions. The direction-sensing module (220) registers a natural reference signal (R). The velocity processor (230) receives the acceleration parameters (a), the angular velocity parameters (ω) and the natural reference signal (R), and based thereon, generates the spatial velocity vector (vx, vy, vz).

187 MOVEMENT MEASURING DEVICE, ELECTRONIC GAME MACHINE INCLUDING MOVEMENT MEASURING DEVICE, AND METHOD OF PLAYING GAME MACHINE EP97922144.7 1997-05-23 EP0842436B1 2004-08-18 TONOMURA, Keisuke; YAMAGISHI, Masakatsu
188 VERFAHREN ZUM BESTIMMEN DER DREHZAHL EINES RADES AN EINEM FAHRZEUG EP01903696.1 2001-02-03 EP1269202B1 2004-04-28 NORMANN, Norbert; SCHULZE, Gunter, Lothar
The invention relates to a method for determining the speed of a wheel on a motor vehicle. To achieve this, an acceleration sensor is mounted on the wheel. According to the invention, the frequency φ or the cycle T of an alternating signal caused by the influence of the ground acceleration g is determined as the speed of the wheel. Said alternating signal is contained in the acceleration signal provided by the acceleration sensor. The method can be used in automatic tyre-pressure monitoring systems to assign signals transmitted by a wheel electronic system by radio to a specific wheel position on the motor vehicle and to control the transmission rate of a wheel electronic system according to the speed.
189 Movement condition determination EP03252628.7 2003-04-25 EP1357354A3 2004-01-07 Tanaka, Kazuaki, Pioneer Corporation Kawagoe Plant; Goto, Seiji, Pioneer Corporation Kawagoe Plant; Endo, Isao, Pioneer Corporation Kawagoe Plant; Okamoto, Tatsuya, Pioneer Corp. Kawagoe Plant

A velocity information acquisition section 21 acquires velocity information on the velocity of a vehicle and records this acquired information in a velocity information recording section 27. A state judgment section 23 judges start and stop states of the vehicle based on state information indicating the start and stop states of the vehicle that was acquired at a state information acquisition section 22. After this judgment, a minimum output velocity computing section 24 accurately computes, based on the velocity information recorded in velocity information recording section 27, a minimum output velocity in a period in which a vehicle velocity detection circuit 10 cannot detect velocity information. A movement condition computing section 25 can appropriately compute a relative movement distance or a relative movement velocity of the vehicle based on the state information acquired at state information acquisition section 22 and the minimum output velocity computed at minimum output velocity computing section 24.

190 ESTIMATION OF MOVEMENT EP01945364.6 2001-06-14 EP1304008A1 2003-04-23 FRANTTI, Tapio; MÄHÖNEN, Petri
A mobile transceiver and a method of detecting movement of the mobile transceiver in a radio system. The radio system includes at least one base station and terminals. The movement of the mobile transceiver is measured by at least one acceleration sensor (114-116) to take the movement of the mobile transceiver onto account in the operation of the radio system.
191 VERFAHREN UND VORRICHTUNG ZUR ERMITTLUNG EINER DIE FAHRZEUGGESCHWINDIGKEIT BESCHREIBENDEN GRÖSSE EP98910616.0 1998-02-12 EP0927119A1 1999-07-07 MUELLER, Elmar
The invention relates to a method or a device for determining a variable describing the speed of a vehicle. According to said method, the speed of at least two wheels is determined and a variable describing the speed of the vehicle is obtained on the basis of the speed of a selected wheel. An operational state of said vehicle is determined on the basis of the speed of the at least two wheels, whereby the selected wheel is determined at least on the basis of the above-mentioned operational state. For a part of the determined operational states of the vehicle, plausibility checks are carried out to determine the selected wheel on the basis of each indicated operational vehicle state.
192 Vorrichtung zur Erfassung von Fortbewegungsvorgängen EP95250233.4 1995-09-25 EP0703431A3 1998-04-01 Spende, Peter

Vorrichtung zur Erfassung eines Fortbewegungsvorganges, insbesondere für den Einsatz mit einem Fahrtschreiber oder Unfalldatenschreiber, mit einem im wesentlichen in der Fortbewegungsrichtung wirksamen Beschleunigungsgeber (5) und einer mit dessen Ausgang verbundenen ersten Auswertungs- und Berechnungseinheit (61 bis 64) zur Berechnung einer Vergleichsgröße zur Kontrolle der Signale eines Weg- oder Geschwindigkeitsgebers (3), dessen Signale zur Dokumentation desselben Fortbewegungsvorganges genutzt werden, anhand der Signale des Beschleunigungsgebers (5), wobei die erste Auswertungs- und Berechnungseinheit (61 bis 64) so ausgebildet ist, daß nicht die Beschleunigung in Fortbewegungsrichtung (aW) repräsentierende Signalanteile (aO) im Signal des Beschleunigungsgebers (5) im wesentlichen eliminiert werden, indem dieses Signal in mindestens zwei kurzen, aufeinanderfolgenden Phasen des Fortbewegungsvorganges aufgenommen und einer vergleichenden Auswertung in diesen Phasen unterzogen wird.

193 Verfahren zum Ermitteln der Auffahrgeschwindigkeit eines schienengebundenen Wagens auf ein Hindernis und Vorrichtung zur Durchführung des Verfahrens EP93250173.7 1993-06-17 EP0584894B1 1996-09-11 von Jena, Alexander, Dr.; Talke, Wolfgang, Dr.
194 Vorrichtung zur Erfassung von Fortbewegungsvorgängen EP95250233.4 1995-09-25 EP0703431A2 1996-03-27 Spende, Peter

Vorrichtung zur Erfassung eines Fortbewegungsvorganges, insbesondere für den Einsatz mit einem Fahrtschreiber oder Unfalldatenschreiber, mit einem im wesentlichen in der Fortbewegungsrichtung wirksamen Beschleunigungsgeber (5) und einer mit dessen Ausgang verbundenen ersten Auswertungs- und Berechnungseinheit (61 bis 64) zur Berechnung einer Vergleichsgröße zur Kontrolle der Signale eines Weg- oder Geschwindigkeitsgebers (3), dessen Signale zur Dokumentation desselben Fortbewegungsvorganges genutzt werden, anhand der Signale des Beschleunigungsgebers (5), wobei die erste Auswertungs- und Berechnungseinheit (61 bis 64) so ausgebildet ist, daß nicht die Beschleunigung in Fortbewegungsrichtung (aW) repräsentierende Signalanteile (aO) im Signal des Beschleunigungsgebers (5) im wesentlichen eliminiert werden, indem dieses Signal in mindestens zwei kurzen, aufeinanderfolgenden Phasen des Fortbewegungsvorganges aufgenommen und einer vergleichenden Auswertung in diesen Phasen unterzogen wird.

195 Verfahren zum Ermitteln der Auffahrgeschwindigkeit eines schienengebundenen Wagens auf ein Hindernis und Vorrichtung zur Durchführung des Verfahrens EP93250173.7 1993-06-17 EP0584894A1 1994-03-02 von Jena, Alexander, Dr.; Talke, Wolfgang, Dr.

Um die Auffahrgeschwindigkeit (va) eines schienengebundenen Wagens (1) auf ein Hindernis (2) zu ermitteln, wird zunächst der zeitliche Verlauf der Beschleunigung (b(t)) des Wagens erfaßt. Aus dem zeitlichen Verlauf der Beschleunigung (b(t)) wird durch zeitliche Integration die Auffahrgeschwindigkeit (va(t)) ermittelt, wobei als obere Integrationsgrenze der zuvor ermittelte Zeitpunkt (to) des negativen Beschleunigungsmaximums (bmax) herangezogen wird.

196 Hybrid analog digital control method and apparatus for estimation of absolute velocity in active suspension system EP89304392.7 1989-05-02 EP0341883B1 1993-09-01 Wolfe, Paul T.
197 Signal processing apparatus and method EP90302557.5 1990-03-09 EP0389155A3 1992-11-04 Watson, Norman Frederick

A method and apparatus (Fig. 3 and 4) for correcting a signal representing the integral of an input signal ACC. (Fig. 3) to eliminate the effects of errors in the input signal comprises deriving from one or more signals which bear functional relationship with the errors samples 15′ at 16, subjecting the samples to a correction algorithmic process at 18, integrating the process results at 19 and therewith correcting the input signal integral at 21. This differs from known arrangements, that demand a high sampling rate (at intervals 16) in accordance with the Nyquist sampling theorem and result in a large amount of sample data to be processed, by processing fewer samples 15′ taken at below the Nyquist rate at random or pseudorandom intervals or random ones of the intervals 16. Relatively few samples 15′ processed and integrated provide an acceptable quantitive estimate of the error in the integrated input signal. Preferably, and particularly to assist in low demands on computerised sample processing, the samples are spaced throughout the integration period by defining window intervals 25 and taking one or more samples 15′ randomly in each window interval.

198 PROCEDE DE DETERMINATION DE LA VITESSE DE ROTATION D'UN OUTIL DE FORAGE EP91916343.0 1991-08-30 EP0498876A1 1992-08-19 DRAOUI, Elyes
Procédé de détermination de la vitesse de rotation d'un outil de forage (16), l'outil étant disposé à une extrémité d'une garniture (20) mise en rotation. Selon l'invention le procédé comporte les étapes suivantes: mesure de l'accélération axiale en un point de la garniture, traitement de cette mesure pour déterminer le contenu énergétique de l'accélération, application à cette valeur énergétique d'une correction pour déterminer ainsi la vitesse de rotation.
199 Device for measuring the number of revolutions of the shaft of a permanent magnet electric motor EP90122982.3 1990-11-30 EP0433733A1 1991-06-26 Giaccardi, Eraldo; Scartezzini, Vito; Ampala, Claudio

The device (15) measures the number of revolutions completed by the shaft of a permanent magnet electric motor (M) in a period of time (t1) during which it is set in motion by the effect of its connection to a respective electrical supply source, essentially by means of calculation (2(5), 22, 23, 37) of the integral of the counter-electromotive force which the motor (M) develops in the aforementioned period of time.

200 Einrichtung zur inertialen Geschwindigkeits- oder Beschleunigungsmessung und Schaltungsanordnung zur Signalaufbereitung und -verarbeitung hierfür EP88114659.1 1988-09-08 EP0328730A3 1990-12-19 Berresheim, Alexander

Eine Einrichtung zur inertialen Geschwindigkeits- oder Beschleunigungs­messung weist eine Schaltungsanordnung zur Aufbereitung und -verarbei­tung von Meßsignalen auf, bei der diese Signale von Meßfühlern/Sensoren als Geber direkt in eine digitale Form gebracht und aufintegriert werden als Summen (S) von Produkten (P = X · V). Durch die A/D-Wandlung am Anfang der Schaltung fallen Fehlerquellen einer analogen Verarbeitungs­schaltung und deren Aufwand fort. Ein Rechner ist nicht notwendig.

QQ群二维码
意见反馈