首页 / 专利库 / 物理 / 热膨胀系数 / 一种超薄碳基复合面板及制备方法

一种超薄基复合面板及制备方法

阅读:372发布:2023-02-01

专利汇可以提供一种超薄基复合面板及制备方法专利检索,专利查询,专利分析的服务。并且本 发明 涉及一种超薄 碳 基复合面板及制备方法,所述面板是在金属 支撑 骨架的两侧通 过热 固性酚 醛 树脂 粘接碳 纤维 布构成的预制体经加压 固化 、碳化、CVI增密、高温 石墨 化处理后得到,面板厚度≤0.96mm。其制备方法,包括在金属支撑骨架的两侧通过热固性 酚醛树脂 粘接 碳纤维 布,压制固化,保压成型制备碳基面板预制体,预制体碳化制备碳基面板初坯,对碳基面板初坯进行碳增密制备增密碳基面 板坯 ,增密碳基面板坯的高温 石墨化 处理几个步骤;本发明工艺简单,周期短,成本低,可以净成型直接得到厚度在1mm以下的碳基复合面板材料,所制备的 复合材料 光洁度高、 热膨胀 系数和离子溅射系数小、机械强度高,便于产业化生产和应用。,下面是一种超薄基复合面板及制备方法专利的具体信息内容。

1.一种超薄基面板,其特征在于:所述面板包括基体和金属支撑骨架,所述金属支撑骨架至少为1层并处于所述基体中,且金属支撑骨架与基体冶金结合;所述面板厚度≤
0.96mm;所述基体为C/C 复合材料;所述金属支撑骨架的材料选自热膨胀系数为4.0×10-6-
7.38×10-6/k,熔点高于2300℃的金属。
2.根据权利要求1所述的一种超薄碳基面板,其特征在于:所述面板中金属支撑骨架为
1-3层;在金属支撑骨架每侧粘接有1-4层碳纤维布。
3.根据权利要求2所述的一种超薄碳基面板,其特征在于:所述金属支撑骨架为金属丝网,金属丝网的网孔形状为正多边形,网孔内切圆直径为0.10-0.3mm,厚度为0.10-0.25mm,金属丝直径为0.05-0.10mm;所述碳纤维布为1K或3K平纹碳布,厚度为0.12-0.26mm。
4.根据权利要求3所述的一种超薄碳基面板,其特征在于:所述金属支撑骨架的材料选自金属钨、钼、铌中的一种。
5.根据权利要求1-4任意一项所述的一种超薄碳基面板,其特征在于:所述面板是在金属支撑骨架的两侧通过热固性酚树脂粘接碳纤维布构成的预制体经加压固化、碳化、CVI增密、高温石墨化处理后得到。
6.一种超薄碳基面板制备方法,包括下述步骤:
步骤一:碳基面板预制体制备
将涂刷有热固性酚醛树脂的碳纤维布和金属或合金丝网交替放入模具中,使金属或合金丝网夹在碳纤维布之间;在压为5-10Mpa,温度为120-160℃;保温30-60min固化后,保压冷却至室温,得到碳基面板预制体;
步骤二:碳化碳基面板初坯制备
将碳基面板预制体以5-10℃/min的升温速率,从室温升至300-320℃,保温15-30min后,继续升温至700-720℃,保温15-30min后,继续升温至900-920℃,保温15-30min后随炉冷却,得到碳化碳基面板初坯;
步骤三:碳增密碳基面板坯制备
将碳基面板初坯置于化学气相渗碳炉中,以C3H6为碳源气,N2为稀释气,C3H6 与N2的体积比为C3 H6 :N2 =1.5-4:1、炉温为1000-1100℃、炉压为21-30kPa,累计化学气相渗碳100-
200h后出炉,得到碳增密碳基面板坯;
步骤四:高温石墨化处理
将碳增密碳基面板坯在0.11-0.13MPa氩气气氛下,于2100-2300℃、保温为1-2h进行高温石墨化后,随炉冷却,得到超薄碳基面板。
7.根据权利要求6所述的一种超薄碳基面板制备方法,其特征在于:所述金属支撑骨架的材料选自金属钨、钼、铌中的一种。
8.根据权利要求7所述的一种超薄碳基面板制备方法,其特征在于:所制备的碳基复合材料面板密度为1.8-2.0g/cm3,厚度为0.60-0.96mm。

说明书全文

一种超薄基复合面板及制备方法

技术领域

[0001] 本发明涉及一种碳基复合面板及制备方法,特别是一种超薄C/C‐Mo复合面板的制备方法。

背景技术

[0002] 碳基材料与金属材料相比具有防溅射、热膨胀很小和小孔排列稳定等优点,缺点是机械强度较低,抗震性差。超薄碳基复合面板,要求材料厚度非常薄、光洁度非常高、导电性能好、机械强度高。
[0003] C/C复合材料具有高强度、高模量、高断裂韧性、高导热、隔热优异和低密度等优异特性,其制备方法有三个基本步骤:预制炭纤维胚体、基体炭增密和高温热处理
[0004] 现有技术中,针对板状C/C复合材料,其炭纤维胚体的制备通常是采用针刺的手段,利用倒钩针将碳纤维网胎层中的短纤维与单向无纬布钩织在一起,叠层成毡。很多学者借鉴此种手法,在制作C/C-金属复合材料预制体胚体的时候,在无纬布或碳纤维网胎上洒上一层金属粉末或在期间夹装金属丝网,然后进行针刺钩织成毡,制备出了C/C-金属复合材料。这种方法制备出的板状C/C-金属复合材料厚度最少在5mm以上,这主要是由于采用针刺钩织的方式制备的预制体,厚度至少在3mm以上,经后续致密化、高温石墨化后,整体厚度将超过5mm,因此,现有C/C复合材料制备工艺,无法净成型制作厚度尺寸在1mm以下的碳基复合面板材料。
[0005] 因此,开发一种可以净成型制作厚度尺寸在1mm以下的碳基复合面板材料的制备工艺,成为超薄碳基复合面板制备技术领域的亟需,而采用钼丝网和平纹碳纤维布制备超薄碳基面板材料,在相关文献中还未见报道。

发明内容

[0006] 本发明的目的在于克服现有技术之不足而提供一种工艺简单,周期短,成本低的超薄碳基复合面板及制备方法。
[0007] 本发明从碳基复合面板材料制备的源头出发,重新设计了预制体的结构及制作方法,经CVI碳基体增密和高温石墨化处理后,可以净成型直接得到厚度在1mm以下的碳基复合面板材料。
[0008] 本发明采用热固性酚树脂为粘结剂,将平纹碳纤维布同钼丝网交替叠放于模具中,经加压固化、碳化、CVI增密、高温石墨化处理等处理,制备出了厚度仅为0.60-0.96mm的碳基面板材料。
[0009] 本发明一种超薄碳基面板,所述面板包括基体和金属支撑骨架,所述金属支撑骨架至少为1层并处于所述基体中,且金属支撑骨架与基体冶金结合;所述面板厚度≤0.96mm;所述基体为C/C复合材料。
[0010] 本发明一种超薄碳基面板,所述金属支撑骨架的材料选自热膨胀系数为4.0×10-6-7.38×10-6/k,熔点高于2300℃的金属。
[0011] 本发明一种超薄碳基面板,所述金属支撑骨架的材料选自金属钨、钼、铌中的一种。
[0012] 本发明一种超薄碳基面板,所述面板是在钼丝网的两侧通过热固性酚醛树脂粘接碳纤维布构成的预制体经加压固化、碳化、CVI增密、高温石墨化处理后得到,金属支撑骨架每侧通过热固性酚醛树脂粘接的碳纤维布至少为1层。
[0013] 本发明一种超薄碳基面板,所述面板中金属支撑骨架为1-3层;在金属支撑骨架每侧粘接有1-4层碳纤维布。
[0014] 本发明一种超薄碳基面板,所述碳纤维布为1K或3K平纹碳布,厚度为0.12-0.26mm;本发明具体采用的是日本东丽T700平纹碳布。
[0015] 本发明一种超薄碳基面板,所述金属支撑骨架为金属丝网,金属丝网的网孔形状为正多边形,网孔内切圆直径为0.10-0.3mm,厚度为0.10-0.25mm,金属或合金丝直径为0.05-0.10mm。
[0016] 本发明一种超薄碳基面板,所述热固性酚醛树脂经900-920℃碳化后,残炭率≥65%;所述热固性酚醛树脂具体选用济宁宏明化学试剂公司生产的热固性酚醛树脂,型号为HM-2158和HM-6580。
[0017] 本发明一种超薄碳基面板制备方法,包括下述步骤:
[0018] 步骤一:碳基面板预制体制备
[0019] 将涂刷有热固性酚醛树脂的碳纤维布和金属或合金丝网交替放入模具中,使金属或合金丝网夹在碳纤维布之间;在压为5-10Mpa,温度为120-160℃;保温30-60min固化后,保压冷却至室温,得到碳基面板预制体;
[0020] 步骤二:碳化碳基面板初坯制备
[0021] 将碳基面板预制体以5-10℃/min的升温速率,从室温升至300-320℃,保温15-30min后,继续升温至700-720℃,保温15-30min后,继续升温至900-920℃,保温15-30min后随炉冷却,得到碳化碳基面板初坯;
[0022] 步骤三:碳增密碳基面板坯制备
[0023] 将碳基面板初坯置于化学气相渗碳炉中,以C3H6为碳源气,N2为稀释气,C3H6与N2的体积比为C3H6:N2=1.5-4:1、炉温为1000-1100℃、炉压为21-30kPa,累计化学气相渗碳100-200h后出炉,得到碳增密碳基面板坯;
[0024] 步骤四:高温石墨化处理
[0025] 将碳增密碳基面板坯在0.11-0.13MPa氩气气氛下,于2100-2300℃、保温为1-2h进行高温石墨化后,随炉冷却,得到超薄碳基面板。
[0026] 本发明一种超薄碳基面板制备方法,所述金属支撑骨架的材料选自金属钨、钼、铌中的一种。
[0027] 本发明一种超薄碳基面板制备方法,所制备的碳基复合材料面板密度为1.8-2.0g/cm3,厚度为0.60-0.96mm。
[0028] 优点及积极效果
[0029] 通过选择1K或者3K平纹碳布,通过热固溶胶与金属或合金支撑骨架结合,通过预制体固化成型工艺的改进,即采用加压冷却的方式,确保面板预制体不会发生翘曲,获得表面平整度满足要求的面板预制体;碳化过程中,采用三段升温并控制每一段的升温速度,杜绝了树脂碳化过程中冒泡剧烈,造成碳布层之间剥离、分层的情况,从源头上确保了金属支撑骨架与碳布的结合牢固可靠。
[0030] 选择的金属或合金的熔点大大高于C/C复合材料制备过程的高温石墨化处理温度,一方面,确保金属或合金在制备过程中不会发生熔化,起到支撑、骨架的作用;另一方面,又可以使金属或合金在制备过程中稍微发生一些软化,与基体C/C复合材料之间产生相互渗透,实现冶金结合,提高基体C/C复合材料与金属支撑骨架的结合强度,最大限度降低C/C复合材料与金属支撑骨架之间产生开裂、剥落的机率。
[0031] 选择的金属或合金,热膨胀系数与C/C复合材料热膨胀系数较为接近,可有效避免因热应力而造成的剥离分层;制备出了C/C-Mo复合面板材料。本发明与现有技术相比,具有以下优点:
[0032] 1、本发明的C/C-Mo复合面板材料中,钼丝网与纤维布叠层分布,采用的都是长纤维,因此避免了薄板材料易翘曲,尺寸不稳定的现象。
[0033] 2、本发明的C/C-Mo复合面板材料中,部分钼与碳纤维表面热解碳反应生成Mo2C,促进钼与碳纤维的冶金结合,起到进一步的增强作用,使制备的复合面板材料机械强度高。
[0034] 3、本发明的C/C-Mo复合面板材料,因其有很小的热膨胀系数和较低的离子溅射系数,是用来制造长寿命、高可靠超薄碳基面板的理想材料。
[0035] 综上所述,本发明工艺简单,周期短,成本低,可以净成型直接得到厚度在1mm以下的碳基复合面板材料,所制备的复合材料光洁度高、热膨胀系数和离子溅射系数小、机械强度高,便于产业化应用。附图说明
[0036] 附图1为本发明制备碳/碳-钼复合材料的工艺流程图

具体实施方式

[0037] 实施例1:
[0038] (1)将2层钼丝网(所用钼丝网参数为:丝径0.05mm,厚度0.1mm)和3层平纹T700碳纤维布(所用碳布参数为:3K,厚度0.26mm)剪裁成220×220mm尺寸大小,将酚醛树脂均匀涂刷在碳布和钼丝网上,交替铺叠,放入模具中;
[0039] (2)将模具放入压机中,加压固化,固化温度为120℃,固化时间为60min,控制压力为10Mpa;树脂固化后,模具加压降到常温,得到碳基面板预制体;
[0040] (3)将碳基面板预制体放入真空退火炉中,进行碳化,碳化工艺参数为以5℃/min的升温速率,从室温升至300℃,保温30min后,继续升温至700℃,保温30min后,继续升温至900℃,保温30min,随炉冷却得到碳基面板多孔体。
[0041] (4)将碳基面板多孔体,置于化学气相渗碳炉中,进行基体碳增密,CVI增密参数为:以C3H6为碳源气,N2为稀释气,实施化学气相渗碳,控制C3H6:N2体积比为3:1、炉温为1100℃、炉压为30kPa,累计化学气相渗碳200h后出炉。
[0042] (5)将增密后的碳基面板材料,进行高温石墨化处理,工艺参数为:控制炉内气氛为氩气0.11-0.13Mpa、炉温为2300℃、保温时间为2h,随炉冷却。
[0043] 本实施例制备得到具有优异综合性能的C/C-Mo复合面板材料,其密度为1.86g/cm3,厚度为0.96mm,采用千分尺测量,平整度误差不超过0.02mm。
[0044] 实施例2:
[0045] (1)将2层钼丝网(所用钼丝网参数为:丝径0.05mm,厚度0.1mm)和3层平纹T700碳纤维布(所用碳布参数为:1K,厚度0.16mm)剪裁成220×220mm尺寸大小,将酚醛树脂均匀涂刷在碳布和钼丝网上,交替铺叠,放入模具中。
[0046] (2)将模具放入压机中,加压固化,固化温度为120℃,固化时间为60min,控制压力为10Mpa;树脂固化后,模具加压降到常温,得到碳基面板预制体。
[0047] (3)将碳基面板预制体放入真空退火炉中,进行碳化,碳化工艺参数为以5℃/min的升温速率,从室温升至300℃,保温30min后,继续升温至700℃,保温30min后,继续升温至900℃,保温30min,随炉冷却得到碳基面板多孔体。
[0048] (4)将碳基面板多孔体,置于化学气相渗碳炉中,进行基体碳增密,CVI增密参数为:以C3H6为碳源气,N2为稀释气,实施化学气相渗碳,控制C3H6:N2体积比为3:1、炉温为1050℃、炉压为25kPa,累计化学气相渗碳200h后出炉。
[0049] (5)将增密后的碳基面板材料,进行高温石墨化处理,工艺参数为:控制炉内气氛为氩气0.11-0.13Mpa、炉温为2200℃、保温时间为2h,随炉冷却。
[0050] 本实施例制备得到具有优异综合性能的C/C-Mo复合面板材料,其密度为1.92g/cm3,厚度为0.64mm,采用千分尺测量,平整度误差不超过0.02mm。
[0051] 实施例3:
[0052] (1)将3层钼丝网(所用钼丝网参数为:丝径0.05mm,厚度0.1mm)和4层平纹T700碳纤维布(所用碳布参数为:1K,厚度0.16mm)剪裁成220×220mm尺寸大小,将酚醛树脂均匀涂刷在碳布和钼丝网上,交替铺叠,放入模具中。
[0053] (2)将模具放入压机中,加压固化,固化温度为120℃,固化时间为60min,控制压力为10Mpa;树脂固化后,模具加压降到常温,得到碳基面板预制体。
[0054] (3)将碳基面板预制体放入真空退火炉中,进行碳化,碳化工艺参数为以5℃/min的升温速率,从室温升至300℃,保温30min后,继续升温至700℃,保温30min后,继续升温至900℃,保温30min,随炉冷却得到碳基面板多孔体。
[0055] (4)将碳基面板多孔体,置于化学气相渗碳炉中,进行基体碳增密,CVI增密参数为:以C3H6为碳源气,N2为稀释气,实施化学气相渗碳,控制C3H6:N2体积比为3:1、炉温为1080℃、炉压为28kPa,累计化学气相渗碳180h后出炉。
[0056] (5)将增密后的碳基面板材料,进行高温石墨化处理,工艺参数为:控制炉内气氛为氩气0.11-0.13Mpa、炉温为2300℃、保温时间为2h,随炉冷却。
[0057] 本实施例制备得到具有优异综合性能的C/C-Mo复合面板材料,其密度为2.0g/3
cm,厚度为0.86mm,采用千分尺测量,平整度误差不超过0.02mm。
[0058] 实施例4:
[0059] (1)将2层钨丝网(所用钨丝网参数为:丝径0.05mm,厚度0.1mm)和3层平纹T700碳纤维布(所用碳布参数为:1K,厚度0.16mm)剪裁成360×360mm尺寸大小,将酚醛树脂均匀涂刷在碳布和钨丝网上,交替铺叠,放入模具中。
[0060] (2)将模具放入压机中,加压固化,固化温度为120℃,固化时间为60min,控制压力为10Mpa;树脂固化后,模具加压降到常温,得到碳基面板预制体。
[0061] (3)将碳基面板预制体放入真空退火炉中,进行碳化,碳化工艺参数为以5℃/min的升温速率,从室温升至300℃,保温30min后,继续升温至700℃,保温30min后,继续升温至900℃,保温30min,随炉冷却得到碳基面板多孔体。
[0062] (4)将碳基面板多孔体,置于化学气相渗碳炉中,进行基体碳增密,CVI增密参数为:以C3H6为碳源气,N2为稀释气,实施化学气相渗碳,控制C3H6:N2体积比为3:1、炉温为1100℃、炉压为30kPa,累计化学气相渗碳180h后出炉。
[0063] (5)将增密后的碳基面板材料,进行高温石墨化处理,工艺参数为:控制炉内气氛为氩气0.11-0.13Mpa、炉温为2200℃、保温时间为2h,随炉冷却。
[0064] 本实施例制备得到具有优异综合性能的C/C-Mo复合面板材料,其密度为1.96g/cm3,厚度为0.62mm,采用千分尺测量,平整度误差不超过0.02mm。
[0065] 实施例5:
[0066] (1)将1层钼丝网(所用钼丝网参数为:丝径0.05mm,厚度0.1mm)和2层平纹T700碳纤维布(所用碳布参数为:12K,厚度0.42mm)剪裁成220×220mm尺寸大小,将酚醛树脂均匀涂刷在碳布和钼丝网上,交替铺叠,放入模具中。
[0067] (2)将模具放入压机中,加压固化,固化温度为120℃,固化时间为60min,控制压力为10Mpa;树脂固化后,模具加压降到常温,得到碳基面板预制体。
[0068] (3)将碳基面板预制体放入真空退火炉中,进行碳化,碳化工艺参数为以5℃/min的升温速率,从室温升至300℃,保温30min后,继续升温至700℃,保温30min后,继续升温至900℃,保温30min,随炉冷却得到碳基面板多孔体。
[0069] (4)将碳基面板多孔体,置于化学气相渗碳炉中,进行基体碳增密,CVI增密参数为:以C3H6为碳源气,N2为稀释气,实施化学气相渗碳,控制C3H6:N2体积比为3:1、炉温为1050℃、炉压为25kPa,累计化学气相渗碳200h后出炉。
[0070] (5)将增密后的碳基面板材料,进行高温石墨化处理,工艺参数为:控制炉内气氛为氩气0.11-0.13Mpa、炉温为2100℃、保温时间为2h,随炉冷却。
[0071] 本实施例制备得到具有优异综合性能的C/C-Mo复合面板材料,其密度为1.70g/cm3,厚度为0.96mm,采用千分尺测量,平整度误差不超过0.04mm。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈