首页 / 专利库 / 物理 / 热膨胀系数 / 具有带织纹的陶瓷摩擦层的摩擦盘

具有带织纹的陶瓷摩擦层的摩擦盘

阅读:1031发布:2020-11-11

专利汇可以提供具有带织纹的陶瓷摩擦层的摩擦盘专利检索,专利查询,专利分析的服务。并且本 发明 涉及一种圆柱形环状摩擦盘,所述圆柱形环状摩擦盘包括 支撑 体和至少一个摩擦层,并且在每种情况下还包括 中间层 ,中间层布置在支撑体和摩擦层之间,所述中间层具有相互邻接的平坦区域,所述相互邻接的平坦区域具有不同的 热膨胀 系数。本发明还涉及用于制造摩擦盘的方法,并且涉及其作为特别地用于 机动车辆 的 制动 和 离合器 系统的部件的用途。,下面是具有带织纹的陶瓷摩擦层的摩擦盘专利的具体信息内容。

1.一种圆柱形环状摩擦盘,所述圆柱形环状摩擦盘包括支撑体和至少一个摩擦层以及布置在每个支撑体和摩擦层之间的中间层,其中,所述中间层具有如下的邻近面积区域,所述邻近面积区域具有不同的热膨胀系数。
2.根据权利要求1所述的圆柱形环状摩擦盘,其特征在于,具有不同的热膨胀系数的相邻区域的热膨胀系数的差为对于线性热膨胀系数而言相应较高的值的至少5%,优选地为该值的至少10%。
3.根据权利要求1所述的圆柱形环状摩擦盘,其特征在于,所述中间层中的面积区域在与所述圆柱形环状摩擦盘的底表面或盖表面平行的平面中具有至少0.5mm且不超过
10mm的尺寸。
4.一种用于制造根据权利要求1至3中的任一项所述的圆柱形环状摩擦盘的方法,即,一种用于制造如下的微观结构的方法,所述微观结构被故意地设计和形成在所述摩擦层中,所述方法包括以下步骤:
-制备用于多孔的支撑体的预成型体,优选地利用耐高温纤维增强所述用于多孔碳的支撑体的预成型体;
-制备用于多孔碳的摩擦层体的预成型体,优选地所述用于多孔碳的摩擦层体的预成型体含有碳化作为填料;
-借助于粘接剂层将至少一个摩擦层预成型体通过粘接剂粘结在用于所述支撑体的预成型体上,所述粘接剂层作为有机粘结剂包含:热固性树脂和可选择的沥青和/或热塑性塑料;和至少一种添加剂,所述添加剂选自元素碳,元素周期表中的根据当前的国际理论和应用化学联合会命名的第13、14和15族的金属和半金属的碳化物、氮化物和硅化物,选自碳纤维的耐高温纤维,元素Si、C、N、B、O和P的二元和三元化合物的纤维,以及难熔金属的晶须;
-在没有化剂的情况下热解产生的复合材料,由此从所述有机粘结剂获得碳;和-利用液体硅或含有至少50%的质量分数的硅的液体合金来浸润碳化复合物,由此形成硅的以及可能的其它合金成分的碳化物;和
-根据可选择的温度曲线冷却硅化复合物,其中通过利用随后的反应进行碳化和浸润以形成碳化物的步骤,由所述粘接剂层形成中间层。
5.根据权利要求4所述的方法,其特征在于:
-所述粘接剂层由具有平纹组织的碳丝束网眼编织织物形成,其中所述碳丝束网眼编织织物利用粘接剂浸渍或涂布,且能够通过在没有氧化物质的情况下加热到约800℃或更高的温度而转化成碳;
-所述粘接剂层通过以下方式形成:不均匀涂敷粘接剂,优选地以网格形式不均匀涂敷粘接剂,所述网格更优选地以直相交;或者以蜘蛛网形式不均匀涂敷粘接剂,所述蜘蛛网具有同心的圆或螺旋以及与所述圆或螺旋相交的半径;丝网印刷;或者由计算机控制的涂敷器;
-所述粘接剂层通过以下方式形成:使粘接剂在经过耐粘接处理的光滑表面上固化以形成膜,从所述膜冲出网格状覆盖物,所述网格状覆盖物之后在达到交联和非熔热固性状态之前在进一步加热下返回到粘接剂状态。
6.根据权利要求4或5所述的方法,其特征在于,所述粘接剂是热固性树脂或沥青或其混合物,其中,所述粘接剂还能含有其它耐热性无机材料添加剂。
7.根据权利要求6所述的方法,其特征在于,耐热性无机材料被用作添加剂,其选自碳化硅、碳化、硼化和氮化硼的粉末及其混合物。
8.根据权利要求4或5所述的方法,其中,通过喷洒选自碳、碳化硅或氮化硅的纤维的耐热性纤维以及陶瓷或金属材料的晶须,或者将这些物质与所述粘接剂混合以使当所述粘接剂固化时这些外加剂引起各向异性结构形成,来改变所述粘接剂。
9.根据权利要求4至8中的一项或多项所述的方法,其特征在于,在所述中间层中形成的结构中的各面积区域的平均尺寸在2mm到8mm的范围内,所述各面积区域通过碳化转化成具有不同的热膨胀系数的含碳层。
10.根据权利要求4至9中的一项或多项所述的方法,其特征在于,在碳化状态中,在所述中间层中的区域的厚度在0.2mm和2mm之间。
11.根据权利要求1所述的摩擦盘作为制动离合器系统的部件的用途,所述制动和离合器系统的部件特别地为用于机动车辆的制动和离合器系统的部件。

说明书全文

具有带织纹的陶瓷摩擦层的摩擦盘

技术领域

[0001] 本发明涉及:具有结构化陶瓷摩擦层的摩擦盘,具体是制动盘,其包括陶瓷支撑体和至少一个摩擦层,其中,所述支撑体和/或所述摩擦层可以由纤维增强陶瓷材料(碳陶瓷)制成;以及用于制造该制动盘的方法。

背景技术

[0002] 在其它来源中,由欧洲专利EP1273818B1已知具有陶瓷摩擦层的碳陶瓷制动盘。欧洲专利EP1251290B1描述了这种摩擦盘,其中摩擦层设有凹部,所述凹部可以是在径向上呈梯形、螺旋或渐开线曲线形、椭圆形、圆形或多边形的形状,并有助于改善碳陶瓷制动盘的冷却。根据欧洲专利EP1314708B1已知一种成形体,所述成形体由纤维增强复合材料制成,具有分段的覆盖层。在这种情况下,优选陶瓷部分通过网或网状区域彼此分离,所述网或网状区域由与摩擦材料不同的材料制成。所述部分的平均直径优选为至少3mm,网的厚度优选为0.1mm至10mm。根据专利申请EP2213902A2已知具有结构化摩擦层的摩擦盘,其中摩擦层由槽分为多个部分。这里,槽的宽度在0.1mm和5mm之间,其深度为至少0.4mm。
这种摩擦盘表现出对潮湿条件的改善的响应。
[0003] 在通向本发明的研究过程中发现,在存在或水溶液或水泥浆的情况下,制动衬垫与碳陶瓷制动盘的摩擦表面接触时,对潮湿条件的响应和稳定摩擦系数的发展仍然需要改进。

发明内容

[0004] 因此,目的是设计一种摩擦盘,具体是一种碳陶瓷制动盘,使得可以改善其对潮湿条件的响应和摩擦系数的发展。
[0005] 已经发现能够通过选择性构造摩擦层的在冷却摩擦盘具体是碳陶瓷制动盘的过程中形成的膨胀裂纹微观结构来实现该目标,所述摩擦盘包括具有包含碳化的基质的支撑体和至少一个摩擦层,优选在利用硅对一个摩擦层进行处理后,将该摩擦层布置在圆柱形环状支撑体的上盖表面和下盖表面中的每个上,并且将其以面积分布方式附接到上盖表面和下盖表面中的每个上。
[0006] 在于硅的熔化温度1420℃以上利用液体硅进行硅化之后在冷却过程中,也就是说,当温度降低至少1000K时,支撑体和摩擦层或附着到其的层的材料的不同热膨胀性质通常导致在摩擦层中形成随机的裂纹图案。
[0007] 如果所述摩擦层通过以确定方式形成的裂纹图案散布,在下文中确定方式也被称为“有意图的”方式,也就是说以故意的方式而不是随机地,则在由制动衬垫和制动盘构成的制动系统中,当在存在水的情况下制动衬垫与摩擦表面接触时,对潮湿条件的响应和稳定摩擦系数的发展可以通过这样的方式被影响以便获得稳定的致动行为,其中响应时间在小于2秒的范围内,更具体地在1秒至3秒的范围内,摩擦系数为低于50%,低于干式制动。此外,随着使用制动盘的时间段增加,没有观察到该响应时间增加。因此可以避免摩擦系数急剧下降至对于在干燥条件下利用没有经过仔细考虑构造的摩擦层的相同功能对的值的
25%。
[0008] 发现裂纹图案的目标形成的特征在于,可以经由位于摩擦层和支撑体之间的中间层或粘接剂层的组成和厚度来控制处于在摩擦层中的由裂纹包围的凸起部分之间的裂纹的宽度以及这些部分的尺寸和尺寸分布,当用于支撑体的生坯体和摩擦层被组装时,所述中间层或粘接剂层介于摩擦层和支撑体之间。
[0009] 在随后的处理步骤之前,在处于多孔碳纤维增强支撑体上的碳陶瓷制动盘的情况下,该中间层或粘接剂层否则仅用于固定至少一个摩擦层。例如根据专利申请DE4438456A1已知这样的中间层,其中,在制造过程中,由多孔的基于纤维素的可热解材料构成的、但也可以是无纺垫或碳垫的插入件可以定位在多层碳陶瓷制动盘的支撑体和摩擦层之间。该中间层覆盖在支撑体和摩擦层之间的整个接触表面。在硅化过程中,该中间层在不存在化性气体的情况下被加热时首先被碳化,然后与一个摩擦层(或更多个摩擦层)和支撑体一起利用硅渗透,其中,在中间层的材料被热解时形成的碳中的至少一些碳被转换成碳化硅。
[0010] 该中间层现在需要完成新的任务。将在现有技术的文件中是均匀的该中间层构造成具有不同热膨胀系数的层区域,例如,通过利用不同材料的复合物,比如通过将碳化硅粉末或碳粉末添加到粘接化合物中或将不同的粘结剂添加到粘接化合物、例如不同混合比的酚树脂沥青中,在硅化后的冷却过程中在处于摩擦层和支撑体之间的中间层中产生张,所述张力导致裂纹选择性地也就是说有意图地形成在陶瓷摩擦层中。
[0011] 热膨胀差还可以通过借助于包括优选由碳制成的丝束的机织织物的中间层的优选方式实现。碳丝以通常的方式成束,其中,优选利用每股线具有3000、6000或12,000(“3k”、“6k”、“12k”)条丝的常用丝线。由于这些丝的在纵向方向上的热膨胀系数明显不同于在与其垂直的方向上的热膨胀系数(在聚丙烯腈基的碳化丝中,纵向的热膨胀系数为-6 -1 -6 -1 -6 -1 -6 -10.6·10 K 到0.75·10 K ,而横向的热膨胀系数为8·10 K 到9·10 K ),如果适当选择每股线的丝数和在机织织物中的粘结物,在中间层中能够产生张力图案,所述张力图案在冷却时导致有意图的裂纹的形成。此外,优选还可以在经线和纬线中在每股之间留出空白区域,使得网眼状编织物或编带形成有在每条纬线和经线的线股之间的空间。
[0012] 该中间层的以这种方式赋予的结构导致在硅化后的冷却过程中的在摩擦层中的有意限定的,也就是说根据计划形成的膨胀裂纹微观结构,这继而利用合适的尺寸选择导致在湿条件下进行制动时的摩擦系数的发展的改善。在这方面,摩擦系数发展的速度以令人惊讶的方式受到摩擦层的邻近区域的尺寸的影响,所述邻近摩擦层区域通过裂缝彼此分离。结果发现,摩擦系数的发展速度与所述邻近的摩擦层区域的尺寸近似成反比,也就是说与所述邻近的摩擦层区域的表面的平面中的平均尺寸近似成反比。
[0013] 因此,本发明涉及一种摩擦盘,所述摩擦盘包括支撑体和至少一个摩擦层,以及一个中间层,所述中间层每个均布置在支撑体和摩擦层之间,其中,所述中间层具有带有不同热膨胀系数的相邻面积区域。具有不同热膨胀的相邻区域的热膨胀的差异优选为对于线性热膨胀系数而言较高的值的至少5%,优选为该值的至少10%。在中间层中的如下区域被指定为面积区域,该区域在与圆柱形环状摩擦盘的对称轴线或旋转轴线垂直的平面中延伸。
[0014] 本发明进一步涉及一种用于制造摩擦盘的方法,所述摩擦盘具有有意图的膨胀裂纹微观结构,也就是说在所述摩擦层中以经过考虑的方式计划形成的微观结构,所述方法包括以下步骤:
[0015] -制备用于多孔碳的支撑体的预成型体,优选利用耐高温纤维增强所述用于多孔碳的支撑体的预成型体,
[0016] -制备用于多孔碳的摩擦层体的预成型体,所述用于多孔碳的摩擦层体的预成型体有利地含有碳化硅作为填料,
[0017] -利用粘接剂层将至少一个摩擦层预成型体通过粘接剂粘结在支撑层体上,所述粘接剂层作为有机粘结剂包含:热固性树脂和可选择的沥青和/或热塑性塑料;和至少一种添加剂,所述添加剂选自元素碳,元素周期表中的根据旧国际理论和应用化学联合会(IUPAC)命名的IIIb、IVb和Vb族、也就是根据新国际理论和应用化学联合会命名的13、14和15族的金属和半金属的碳化物、氮化物和硅化物;耐高温纤维,所述耐高温纤维选自碳纤维、元素Si、C、N、B、O和P的二元和三元化合物的纤维和难熔金属的晶须,[0018] -在没有氧化剂的情况下热解产生的复合材料,由此从有机粘结剂得到碳,和[0019] -利用液体硅或含有至少50%的质量分数的硅的液体合金来浸润碳化复合物,由此形成硅的以及可能的其他合金成分的碳化物,和
[0020] -根据可选择的温度曲线冷却硅化复合物,其中通过利用随后的反应进行碳化和浸润以形成碳化物的步骤由所述粘接剂层形成中间层。
[0021] 根据本发明,所述粘接剂层由以下各项形成:
[0022] -利用粘接剂浸渍或涂布的、通过在没有氧化物质的情况下被加热到约800℃或以上的温度能够转化成碳的、具有平纹组织的碳丝束网眼编织织物,
[0023] -通过不均匀涂敷粘接剂,其中由载体形成的粘接剂珠可以优选以网格形式涂敷,所述网格优选以直相交,或者通过以蜘蛛网形式不均匀涂敷粘接剂,所述蜘蛛网具有同心的圆或螺旋和与所述圆或螺旋相交的半径;通过丝网印刷;或者通过由计算机控制的涂敷器,
[0024] -通过使粘接剂在经过耐粘接处理的光滑表面比如玻璃或抛光金属上固化,通过加热到允许由固化形成的膜被冲压以形成网格状覆盖物的状态(对于甲阶酚醛树脂而言处于“B阶段”),所述网格状覆盖物之后在达到用于交联和非熔热固性的C阶段(对于甲阶酚醛树脂而言形成丙阶酚醛树脂)之前在进一步加热下返回到粘接剂状态。
[0025] 该粘接剂优选是热固性树脂或沥青或其混合物,其中所述粘接剂还可以含有其他添加剂,比如耐热性无机材料。优选的,如碳化硅、碳化、硼化、氮化硼的粉末。根据本发明,还可以通过喷洒耐热性纤维比如碳、碳化硅或氮化硅的纤维以及陶瓷或金属材料的晶须,或者将这些物质与粘接剂混合以使当粘接剂固化时这些外加剂引起各向异性结构形成,来改变粘接剂。通常用于该目的的纤维具有达5mm的平均长度。
[0026] 在中间层中形成的结构优选具有在0.5mm到10mm的范围内,特别优选为2mm到8mm,最特别优选从3mm到7mm,尤其是从4mm到6mm的平均尺寸,该平均尺寸平行于各面积区域的圆柱形环状摩擦盘的底表面和盖表面,所述各面积区域通过碳化转化成具有不同热膨胀系数的含碳层。在不规则结构中,由该结构所形成的区域的平均尺寸由图像分析得到,其中平均尺寸通过对每个区域的测量长度进行平均得到,也就是说,通过对在区域边界之间所测量的距离进行平均得到,每个所述距离以至少三个角度(0°、60°、120°)等距,优选以四个角度(0°、45°、90°和135°)等距。裂缝的宽度优选为0.05mm至0.3mm,更具体地是至少0.07mm,尤其是达0.25mm。如果裂缝宽度过小,响应潮湿条件的有益效果减弱,如果裂缝宽度过大,制动衬片的磨损不成比例地增加。因此在实验中已经发现所述区域是特别有利的。
[0027] 在碳化状态中在中间层中的区域的厚度(与圆柱形环状盘的对称或旋转轴线平行的长度)优选在0.2mm和2mm之间。
[0028] 本发明还涉及将这样得到的摩擦盘用作制动和离合器系统的部分,具体用作用于机动车辆的制动和离合器系统的部分。
[0029] 支撑体优选由主要利用碳短纤维或短纤维束加强且含有碳化硅、硅和碳的陶瓷材料制成。具有达60mm的长度的纤维称为短纤维。束优选含有从约1000条至约12,000条单条纤维。对于支撑体,还可以利用具有大于50mm的长度的长纤维(丝线或丝束,优选每束或线股各具有1,000至12,000条丝)进行加强。纤维和丝通常是优选由碳或石墨制成的含碳纤维或含碳丝,具体优选还涂布有碳。纤维和丝的质量百分数处于从20%到60%的范围内,SiC的质量百分比处于从30%到70%的范围内,且Si的质量百分比处于从0%到30%的范围内,其中,所有质量百分比值(%)相对于支撑体的总质量而言。在支撑体中的不以纤维或丝的形式存在的未反应的碳的质量百分比一般小于15%。
[0030] 相对于摩擦层的总质量而言,摩擦层的复合物通常具有处于从0%到35%的范围内的(短)纤维质量比例,在摩擦层中的SiC的质量分数处于从45%至100%的范围内,且在摩擦层中的Si的质量分数处于从0%到30%的范围内。
[0031] 如果在摩擦层中的上述SiC含量高于在支撑体中的SiC含量至少10%,则对于根据本发明的摩擦盘是特别有益的。在用于支撑体和摩擦层的材料之间的这种差异还反映在3 3 3
密度中。支撑体的密度优选为至少1.9g/cm,更优选在2.2g/cm 和2.5g/cm 之间。摩擦
3 3 3
层的密度优选为至少2g/cm,具体优选在从2.3g/cm 到2.6g/cm 的范围内。摩擦层的密度优选为大于支撑体的密度至少5%。
[0032] 在这方面,在一个实施例中,在所述中间层中的具有不同热膨胀性质的面积区域可以表现为邻近区域,所述邻近区域在与盘状或圆柱形环状体的底部表面或顶部表面平行的平面中具有的尺寸优选是至少0.5mm且不超过10mm,特别优选为在1mm和8mm之间;特别优选的是将中间层形成为纤维增强区域,其中,增强纤维优选被提供为机织织物或编带,其中,形成具有不大于4:1、更具体是1.5:1至0.7:1的纵横比的、每个相邻的优选是矩形的、特别优选是方形或大致方形的区域,更优选的是在每个区域中的纤维取向垂直于相邻区域中的至少一个相邻区域的纤维取向。
[0033] 另一个选择是纤维线股线与无纤维空间的松散结合,如在机织网眼中。另外,还可以利用斜纹编织构造线股,以在膨胀裂纹微观结构中产生对角交叉或人字形图案。
[0034] 结合的类型以及最有利的线股宽度取决于用于支撑体和摩擦层的陶瓷复合物的热膨胀系数;在摩擦盘中的膨胀裂纹微观结构的形成和区域尺寸还可以经由利用硅浸润之后的冷却速率以及对裂纹形成具有成核效果的添加剂的量来进行调节。

具体实施方式

[0035] 将通过以下示例更详细地说明本发明。
[0036] 示例1制备用于支撑体的碳纤维增强塑料(CFRP)预成型体
[0037] 将15kg每束具有约3000条纤维且平均长度50mm的碳短纤维束、6kg具有10μm的平均晶粒尺寸的石墨粉末以及9kg的甲阶酚醛树脂( ,树脂的质量百分比为约71%的水溶液,Momentive Specialty Chemicals,Inc.(迈图专用化学品公司))的混合物在高剪切混合器中混合五分钟,其中,所述碳短纤维束在上一步骤中已经利用甲阶酚醛树脂的水溶液进行浸润、挤压、在滚筒式干燥机中在约180℃进行干燥,并且在温和氩流中在约800℃利用热解碳层涂敷且碳化酚醛树脂沉积在纤维上。从该混合物中取出3kg并放在玻璃模具中,以180℃的温度和2MPa的压强进行压缩以形成具有30mm的厚度、400mm的外径和200mm的内径的圆柱形环状碳纤维增强塑料(CFRP)体。脱模后,该体在氮气中在
900℃的温度碳化以产生多孔碳纤维增强碳体(CFRC体)。
[0038] 示例2制备用于摩擦层的碳纤维增强塑料(CFRP)预成型体
[0039] 为生产摩擦预成型体,将7.5kg具有40μm的平均晶粒直径的碳化硅粉末与2.5kg的甲阶酚醛树脂 进行混合,对300g的该混合物进行压缩以形成具有3mm的厚度、400mm的外径和200mm的内径的平坦的圆柱形环状盘,并在180℃进行固化,并且脱模后,在氮气中在900℃的温度进行碳化以产生填充有碳化硅粉末的多孔碳体。
[0040] 示例3.1利用网眼织物的中间层的涂敷
[0041] 由500g具有6.0μm的平均晶粒尺寸的SiC粉末和500g的甲阶酚醛树脂在高剪切混合器中混合成糊状粘接剂复合物。利用缺口镘刀将该糊状粘接剂复合物涂敷在示例1的用于支撑体的多孔预成型件的顶部上作为具有约1mm的厚度的全表面层。将具有由3k碳丝(具有约3,000个单丝的束,单丝具有约为6μm的直径)构成的平纹组织、且在经线和纬线中在相邻平行丝束之间的距离各为5mm的碳丝束网眼编织织物引入到该层,将其放置在沉积在整个接触面积上的粘接剂层上。从而利用粘接剂部分地浸润以这种方式布置的丝束。然后在支撑体的每一侧上将用于摩擦层的一个预成型体应用到以这种方式获得的中间层,所产生的叠层然后通过加热以粘接方式粘结,同时在130℃在挤出机上施加压力(0.5兆帕)。
[0042] 示例3.2通过丝网印刷涂敷中间层
[0043] 通过丝网印刷将示例3.1的液体粘接剂涂敷到圆柱形环状支撑体的底表面和盖表面,形成由5mm宽的沟中断的粘接剂层,所述沟彼此距离特定距离且以直角与所述层相交以形成隔离的方形岛。粘接剂层的层厚度为0.8mm。将用于摩擦层的预成型体应用到这些粘接剂层,并且如在示例3.1中所描述的那样对所产生的叠层进行压缩。
[0044] 示例3.3通过丝网印刷涂敷中间层
[0045] 由500g具有4.5μm的平均晶粒尺寸的硼化钛粉末和500g的甲阶酚醛树脂在高剪切混合器中混合成糊状粘接剂复合物。通过丝网印刷将液体粘接剂涂敷到圆柱形环状支撑体的底表面和盖表面,形成由5mm宽的沟中断的粘接剂层,所述沟彼此距离特定距离且以直角与所述层相交以形成隔离的方形岛。粘接剂层的层厚度为
0.8mm。将用于摩擦层的预成型体应用到这些粘接剂层,并且如在示例3.1中所描述的那样对所产生的叠层进行压缩。
[0046] 示例3.4将中间层作为膜涂敷
[0047] 由500g具有6.0μm的平均晶粒尺寸的SiC粉末和500g的甲阶酚醛树脂在高剪切混合器中混合成糊状粘接剂复合物。将该糊状粘接剂复合物以1.4mm的层厚度涂抹到背衬膜上并在烘炉中在90℃在氮流中进行干燥。对所得到的复合物膜进行冲压以形成格状网格,其中,形成4mm宽的网,所述网彼此以直角相交并通过具有也为4mm的边长的正方形空间彼此分离。将该膜放置在经预加热的支撑体上且酚醛树脂侧面向所述体,并施加轻微的压力,然后将铝背衬膜去除,其中,具有格状结构的膜被保留在多孔支撑体上。放置用于摩擦层的预成型体后,如在示例3.1中那样对所产生的叠层进行压制。
[0048] 示例3.5涂敷中间层作为膜
[0049] 由500g具有4.5μm的平均晶粒尺寸的硼化钛粉末和500g的甲阶酚醛树脂在高剪切混合器中混合成糊状粘接剂复合物。将该糊状粘接剂复合物以1.4mm的层厚度涂抹到铝背衬膜上并在烘炉中在90℃在氮流中进行干燥。对所得到的复合物膜进行冲压以形成格状网格,其中,形成4mm宽的网,所述网彼此以直角相交并通过具有也为4mm的边长的正方形空间彼此分离。将该膜放置在经预加热的支撑体上且酚醛树脂侧面向所述体,并施加轻微的压力,然后将铝背衬膜去除,其中,具有格状结构的膜被保留在多孔支撑体上。放置用于摩擦层的预成型体后,如在示例3.1中那样对所产生的叠层进行压制。
[0050] 示例3.6利用数字控制涂敷器涂敷粘接剂层
[0051] 由5kg具有6.0μm的平均晶粒尺寸的SiC粉末和5kg的甲阶酚醛树脂在高剪切混合器中混合成糊状粘接剂复合物,然后在减小的压力下在
70℃使所述糊状粘接剂复合物变浓直至残留的水含量(质量百分比)为0.5%。所述化合物在该温度沉积在支撑体的两侧上作为成矩形格图案的2mm直径的线股,其中所述矩形格图案利用粘接剂线股涂敷器在每个矩形之间分开6mm。放置用于摩擦层的预成型体后,如在示例3.1中那样对所产生的叠层进行压制。
[0052] 示例3.7利用数字控制涂敷器涂敷粘接剂层
[0053] 利用与示例3.6的过程一样的过程,但不添加SiC粉末。将具有0.6mm的平均长度的基碳纤维喷洒到具有粘接剂线股涂层的支撑体上,并利用氮流将保持未附接的碳纤维吹走。保留格状图案,其中,粘接剂线股具有纤维层。当对在一侧进行涂布的支撑体进行称重时,发现,剩余纤维质量构成所涂敷的粘接剂的质量的40%。将用于摩擦层的预成型体放置于在两侧进行涂布的支撑体上,并以上文所描述的方式提供碳纤维,如在示例3.1中所描述的那样对所产生的叠层进行压制。
[0054] 示例4热解及硅化复合物体
[0055] 在900℃于氮气气氛中对示例1.3至3.7的粘结叠层进行热解以形成用于制动盘的多孔预成型件之后,进行硅化。通过多孔CFC(氟氯化碳)灯芯在1700℃的温度在减小的压力(3百帕斯卡)下将液体硅引入到多孔预成型体,与在碳化过程中形成的碳进行放热反应以形成碳化硅。在冷却至室温的过程中,在中间层中的不同热膨胀系数在得到的陶瓷体4.1至4.7中产生张力状态,所述张力通过形成在摩擦层的区域中的裂纹至少部分地消除。
以这种方式引入的网格织物结构反映在摩擦层的膨胀裂纹微观结构的结构中。
[0056] 出于比较目的,制备由用于支撑体的预成型体构成的粘合叠层,其中,仅将在上文中所描述的酚醛树脂粘合到用于摩擦层的每个预成型体的盖表面中的每个盖表面。以相同
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈