首页 / 专利库 / 环境工程 / 环境工程 / 绿色化学 / Green colored glasses

Green colored glasses

阅读:719发布:2023-12-24

专利汇可以提供Green colored glasses专利检索,专利查询,专利分析的服务。并且The present invention is related to the production of glasses in the Li.sub.2 O--Al.sub.2 O.sub.3 --SiO.sub.2 or Na.sub.2 O--Al.sub.2 O.sub.3 --SiO.sub.2 composition systems containing NiO and TiO.sub.2. Such glasses exhibit a brown coloration when first melted but the color is converted to a green hue after exposure to a particularly-defined heat treatment. The green coloration results from the growth of a small amount of very fine-grained crystallites of nickel spinel (NiO.Al.sub.2 O.sub.3). The crystallized articles can be chemically strengthened utilizing a low temperature ion exchange reaction.,下面是Green colored glasses专利的具体信息内容。

I claim:1. A method for making a transparent green glass article containing crystallities in an amount of less than about 5% by volume, said crystallites consisting of nickel spinel, which consists of the steps of:a. melting a batch for a glass having an overall composition selected from the group:A. a glass consisting essentially, by weight on the oxide basis, of about 3-7.5% Li.sub.2 O, 18-28% Al.sub.2 O.sub.3, 58-72% SiO.sub.2, 0.3-4.5% NiO, 2.5-8% TiO.sub.2, and 0-3% ZrO.sub.2, the molar ratio of Al.sub.2 O.sub.3 to the sum of all modifier ions being at least 0.95; andB. a glass approximating the stoichiometry of carnegieite consisting essentially, by weight on the oxide basis, of about 10-20% Na.sub.2 O, 30-35% Al.sub.2 O.sub.3, 35-40% SiO.sub.2, 1-3% NiO, 4-8% TiO.sub.2, 0-10% K.sub.2 O, and 0-3% ZrO.sub.2, the molar ratio of Al.sub.2 O.sub.3 to the sum of all modifier ions being at least 0.95;b. simultaneously cooling said melt to at least below the transformation range threof and shaping a transparent glass article therefrom;c. heating said transparent glass article to a temperature of at least about 675.degree. C., but not more than about 900.degree. C., for a period of time sufficient to cause the growth in situ of nickel spinel crystallites; and thend. cooling said crystallized article to room temperature, said article being transparent with a green coloration.2. A method according to claim 1 wherein said glass article is heated to a temperature between about 700.degree.-850.degree. C.3. A method according to claim 1 wherein said nickel spinel crystallites have diameters smaller than the wavelength of visible light.4. A transparent green glass article containing crystallites in an amount of less than about 5% by volume, said crystallites consisting of nickel spinel, made in accordance with claim 1.5. A transparent green glass article according to claim 4 wherein said nickel spinel crystallites have diameters smaller than the wavelength of visible light.6. A method for making a transparent green glass article containing crystallites in an amount of less than about 5% by volume, said crystallites consisting of nickel spinel, said article exhibiting a modulus of rupture of at least about 50,000 psi after being subjected to surface abrasion, and having an integral surface compression layer, which consists of the steps of:a. melting a batch for a glass having an overall composition selected from the group:A. a glass consisting essentially, by weight on the oxide basis, of about 3-7.5% Li.sub.2 O, 18-28% Al.sub.2 O.sub.3, 58-72% SiO.sub.2, 0.3-4.5% NiO, 2.5-8% TiO.sub.2, and 0-3% ZrO.sub.2, the molar ratio of Al.sub.2 O.sub.3 to the sum of all modifier ions being at least 0.95; andB. a glass approximating the stoichiometry of carnegieite consisting essentially, by weight on the oxide basis, of about 10-20% Na.sub.2 O, 30-35% Al.sub.2 O.sub.3, 35-40% SiO.sub.2, 1-3% NiO, 2, 4-8% TiO.sub.2 0-10% K.sub.2 O, and 0-3% ZrO.sub.2, the molar ratio of Al.sub.2 O.sub.3 to the sum of all modifier ions being at least 0.95;b. simultaneously cooling said melt to at least below the transformation range thereof and shaping a transparent glass article therefrom;c. heating said glass article to a temperature of at least about 675.degree. C., but not more than about 900.degree. C., for a period of time sufficient to cause the growth in situ of nickel spinel crystallites;d. subjecting said crystallized glass article, said article being transparent with a green coloration, to an ion exchange reaction selected from the group:I. contacting a surface of a transparent crystallized glass article made from a batch according to paragraph (A) above with an external source of Na.sup.+ and/or K.sup.+ ions at a temperature of at least 300.degree. C., but below the strain point of the glass, for a period of time sufficient to cause an exchange of Na.sup.+ and/or K.sup.+ ions on a molar basis for Li.sup.+ ions within the glass surface, this exchange causing the development of an integral surface compression layer on said transparent crystallized glass article; andIi. contacting a surface of a transparent crystallized glass article made from a batch according to paragraph (B) above with an external source of K.sup.+ ions at a temperature of at least 300.degree. C., but below the strain point of the glass, for a period of time sufficient to cause an exchange of K.sup.+ ions on a molar basis for Na.sup.+ ions within the glass surface, this exchange causing the development of an integral surface compression layer on said transparent crystallized glass article.7. A method according to claim 6 wherein said glass article is heated to a temperature between about 700.degree.-850.degree. C.8. A method according to claim 6 wherein said crystallized glass article is contacted with an external source of Na.sup.+ and/or K.sup.+ ions at a temperature between about 350.degree.-550.degree. C.9. A method according to claim 6 wherein said external source of Na.sup.+ and/or K.sup.+ ions is a bath of a molten sodium and/or potassium salt.10. A transparent green glass article containing crystallites in an amount of less than about 5% by volume, said crystallites consisting of nickel spinel, said article exhibiting a modulus of rupture of at least about 50,000 psi after being subjected to surface abrasion, and having an integral surface compression layer made in accordance with claim 6.11. A transparent green glass article according to claim 10 wherein said nickel spinel crystallites have diameters smaller than the wavelength of visible light.

说明书全文

BACKGROUND OF THE INVENTION

The instant invention is founded in the discovery that nickel oxide (NiO) has a unique ability to retard or totally suppress TiO2 -induced nucleation of the low temperature crystal phases in alkali metal aluminosilicate glasses, viz., beta-quartz solid solution (beta-eucryptite) in lithium aluminosilicate glasses and carnegieite (Na2 O.Al2 O3.2SiO2) in low silica, sodium or sodium-potassium aluminosilicate glasses. Hence, the heat treatment of such glass compositions, also containing TiO2, commonly results in the conversion of the glass to a glass-ceramic article. However, the inclusion of NiO inhibits the normal growth of silicate crystals during heat treating of the glass and, instead, causes a color change from brown to green to be effected. Colors ranging from light yellow-green to dark emerald to blue-green can be obtained, depending upon glass composition and heat treatment. The glassy products are transparent and, particularly in the case of Li2 O-containing compositions, can be chemically strengthened to very high values, utilizing low temperature exposures to baths of molten salts.

The heat-induced color shift from brown to green indicates a change in coordination of the Ni+2 ion from tetrahedral to octahedral. Whereas the inclusion of both NiO and TiO2 in the glass composition is essential for the development of the green coloration, the NiO inhibits TiO2 from performing its customary function as a nucleating agent for beta-quartz solid solution (s.s.) or carnegieite. It must be recognized, however, that the glassy, low crystalline, green state is metastable with respect to temperature. Sufficiently elevated temperatures will transform the Li2 O-containing, green glassy material to transparent, reddish-brown beta-quartz s.s. glass-ceramic articles and, at still higher temperatures, opaque beta-spodumene s.s. glass-ceramics will be produced. In like manner, the transparent Na2 O-containing glassy materials will first be converted to carnegieite glass-ceramic articles and, at still higher tempratures, nepheline glass-ceramics will be produced.

The ability of NiO to inhibit nucleation of TiO2 in this manner appears to be unique. Thus, the phenomenon was not observed with other transition metal oxides such as MnO, FeO, CoO, or CuO. Glasses having compositions in the alkali metal aluminosilicate field containing any one or more of those oxides with TiO2 were converted in the normal manner to beta-quartz s.s. or carnegieite glass-ceramics. Furthermore, no unusually colored intermediate glassy state was observed.

Although the reaction mechanism through which NiO suppresses nucleation is not completely understood, both the suppression of nucleation and the development of green color are associated with the growth of a small amount, i.e., less than about 5% by volume, of very fine-grained crystallites of nickel spinel (NiO.Al2 O3) during the prescribed heat treatment of the glass. This compound is well-developed in nickel-containing beta-spodumene s.s. and nepheline glass-ceramic bodies and imparts a bluish-green coloration thereto. X-ray diffraction analyses of the inventive green glasses have identified two very weak, diffuse, diffraction peaks, the intensities of which vary with the NiO content of the composition. These peaks, centered at d-spacings of about 2.43A and 2.01A, correlate to the two strongest lines of NiO.Al2 O3. It is known in the crystallographic literature that NiO.Al2 O3 is an "inverse" spinel wherein the Ni+2 ions occupy octahedrally coordinated positions, consistent with the green color.

The essentially complete freedom from haze exhibited by the green glass of the invention and the diffuse nature of the diffraction peaks are evidence that the size of the spinel crystallites is less than the wavelength of visible light, i.e., less than a few thousand angstroms in diameter.

It is postulated that the formation of the nickel spinel must in some way upset the nucleation process. Three possible mechanisms underlying the action of NiO have been hypothesized. First, the presence of NiO may prevent the development of Al2 Ti2 O7, believed to be the source of nuclei in the alkali metal aluminosilicate glass system. Second, a solid solution of NiO, Al2 O3, and TiO2 having the structure of spinel may be formed. Third, TiO2 may nucleate the nickel spinel preferentially to beta-quartz s.s or carnegieite. Any of those events might well result in the suppression of the conventional TiO2 nucleation of silicate crystal phases.

SUMMARY OF THE INVENTION

Glasses exhibiting a green coloration and containing a minor amount of nickel spinel crystallization can be prepared from compositions in the Li2 O--Al2 O3 --SiO2 --NiO--TiO2 quinary consisting essentially, by weight on the oxide basis, of about 3-7.5% Li2 O, 18-28% Al2 O3, 58-72% SiO2, 0.3-4.5% NiO, and 2.5-8% TiO2, and from compositions in the Na2 O--Al2 O3 --SiO2 --NiO-- TiO2 quinary approximating the stoichiometry of carnegieite (Na2 O.Al2 O3.2SiO2) consisting essentially, by weight on the oxide basis, of about 10-20% Na2 O, 30-36% Al2 O3, 35-40% SiO2, 1-3% NiO, and 4-8% TiO2. Up to about 10% K2 O may be included in the latter compositions which may enter into and form a carnegieite solid solution.

The method of the invention contemplates three general steps:

First, a glass composition of the proper proportions is melted;

Second, the melt is simultaneously cooled to a temperature at least below the transformation range of the glass and an article of a desired configuration shaped therefrom; and thereafter

Third, the glass article is exposed to a temperature of at least about 675° C., but not more than about 900° C., for a period of time adequate to cause the growth in situ of nickel spinel crystals therein.

Where a strengthened glass article is desired, the crystallized body will be contacted with an external source of Na+ and/or K+ ions at an elevated temperature, normally at least 300° C., but below the strain point of the glass. Conventionally, the external source of ions will be a bath of a molten sodium and/or potassium salt.

It has been observed that the molar ratio of Al2 O3 to the sum of all modifier ions in the glass composition, including NiO, will customarily be at least 0.95 to insure the development of the desired green coloration.

DESCRIPTION OF PREFERRED EMBODIMENTS

Table I records glass compositions, expressed in parts by weight on the oxide basis, which illustrate the compositional parameters of the present invention. Because the sum of the individual components of the several examples totals or closely approximates 100, the compositions can reasonably be considered to be expressed in terms of weight percent.

The batch ingredients, themselves, can comprise any materials, either the oxides or other compounds, which, upon being melted together, will be transformed into the desired oxide in the proper proportions. The ingredients of the batch were compounded, ballmilled together to aid in achieving a homogeneous melt, and then deposited into platinum crucibles. The crucibles were covered, placed into a furnace operating at 1650° C., and held therein for about 16 hours. Cane about 1/4 inch in diameter was hand drawn from the melt and the remainder was poured into a steel mold having the dimensions of 6 inch × 6 inch × 1/2 inch. The cane was allowed to cool to room temperature in the ambient air, but the slab was immediately transferred to an annealer operating at 450°-500° C., depending upon the composition of the glass. As2 O3 was included to perform its conventional function of a fining agent.

In the laboratory work described herein, the glass slabs and cane were cooled to room temperature to permit examination of the articles for glass quality, and the slabs were annealed to allow the sawing thereof into pieces suitable for conducting various physical property measurements thereon. However, such cooling to room temperature is not mandatory for the operability of the instant invention, but the glass bodies must be cooled to a temperature at least below the transformation range before being exposed to the heat treatment required to produce the in situ crystallization of NiO.Al2 O3. (The transformation range has been defined as that temperature at which a glass melt is deemed to have been converted into an amorphous solid, that temperature commonly being considered to lie in the vicinity of the glass annealing point.)

All of the glass bodies demonstrated a transparent appearance as formed with a brownish coloration, the intensity of the coloration varying with the NiO content.

              TABLE I______________________________________    1      2      3    4    5    6    7SiO2    68.9   68.8   68.1 68.0 67.7 61.9 60.5Al2 O3    20.5   20.5   20.3 20.3 20.2 22.8 27.0Li2 O    5.5    5.4    5.3  5.3  4.9  5.3  7.0NiO      0.6    0.8    0.8  0.9  0.9  0.9  1.2TiO2    4.1    4.1    5.0  5.0  5.0  5.0  3.6As2 O3    0.5    0.5    0.5  0.5  0.5  0.5  0.7Na2 O    --     --     --   --   0.8  --   --P2 O5    --     --     --   --   --   3.6  --    8      9      10   11   12   13   14SiO2    60.4   59.3   67.3 68.5 67.8 60.2 67.7Al2 O3    22.6   22.3   20.4 20.4 20.2 26.9 20.2Li2 O    3.8    3.8    4.8  4.2  4.5  7.5  4.7NiO      2.5    2.5    2.4  3.8  0.9  1.2  0.4TiO2    3.6    5.3    3.4  2.7  5.0  3.6  5.0As2 O3    0.4    0.4    0.4  0.5  0.5  0.7  0.5Na2 O    0.3    0.4    --   --   --   --   --P2 O5    6.3    6.2    --   --   --   --   --ZrO2    --     --     1.3  --   --   --   --MgO      --     --     --   --   1.0  --   0.5ZnO      --     --     --   --   --   --   1.0    15     16     17   18   19   20   21SiO2    67.5   67.0   68.1 68.7 59.9 59.3 67.9Al2 O3    20.1   20.0   20.3 20.5 26.8 26.5 20.2Li2 O    4.8    4.1    4.4  4.2  6.0  5.9  3.4NiO      0.9    1.9    1.1  1.9  1.2  1.2  3.8TiO2    5.0    5.1    4.0  2.7  3.5  4.4  2.7As2 O3    0.5    0.5    0.5  0.5  0.7  0.7  0.5MgO      0.5    0.5    0.5  0.5  0.7  0.7  0.5ZnO      1.0    1.0    1.0  1.0  1.4  1.3  1.0    22     23     24   25   26   27   28SiO2    65.2   38.8   38.0 71.2 70.6 69.6 68.9Al2 O3    19.4   34.6   33.9 21.2 21.0 20.8 17.9Li2 O    4.0    --     --   5.1  4.3  4.2  5.7NiO      1.8    1.6    1.6  2.0  2.0  1.9  1.9TiO2    7.7    6.9    6.7  --   --   1.4  5.1As2 O3    0.5    0.4    0.4  0.5  0.5  0.5  0.5MgO      0.5    1.7    1.7  --   0.5  0.5  --ZnO      1.0    --     --   --   1.1  1.1  --Na2 O    --     16.0   11.8 --   --   --   --K2 O    --     --     6.0  --   --   --   --______________________________________

Table II reports several heat treatments applied to the exemplary compositions of Table I and the visual appearance displayed by the examples after heat treatment. The articles were transparent except where noted otherwise. X-ray diffraction analyses are also reported where a silicate phase was observed. The presence of such phases indicates a heat treatment at too high a temperature and/or too long an exposure for the particular glass composition involved. The occurrence of the silicate phase results in the development of opacity in the glass and/or the appearance of a coloration other than green.

The heat treatments in Table II involved placing samples of the several glasses within an electrically-fired furnace and raising the temperature thereof at about 300° C./hour to the reported temperature. As a matter of convenience and control, a dwell period at a specific temperature was utilized. Nevertheless, that practice is not necessary, the sole requirement being that the glass body is maintained within the 675°-900° C. temperature range for a sufficient length of time to effect the growth of NiO.Al2 O3 crystals with the consequent development of green coloration. Where several heat treatments were applied to an example to illustrate the effect of composition, time, and temperature on the behavior of the glass and the stability of the green glassy state, the heat treatment effecting the most desirable product is underscored.

In the laboratory examples, the heat treated articles were cooled to room temperature by simply turning off the electric current to the furnace and allowing the furnace to cool with the crystallized articles retained therein. This was termed "cooling at furnace rate" which has been estimated to average about 200°-300° C./hour. That practice is not required and was only employed as a matter of convenience.

                                  TABLE II__________________________________________________________________________Example No.   Heat Treatment              Visual Appearance                         Crystallinity__________________________________________________________________________1       700° C. - 2 hours              Brown1       750° C. - 2 hours              Light yellow-green1       800° C. - 2 hours              Green1       850° C. - 2 hours              Red-brown  Beta-quartz, s.s.2       800° C. - 2 hours              Yellow-green3       800° C. - 2 hours              Yellow-green4       700° C. - 1 hour              Yellow-green4       750° C. - 1 hour              Green4       800° C. - 1 hour              Green4       800° C. - 5 hours              Red-brown  Beta-quartz, s.s.5       800° C. - 1 hour              Green6       750° C. - 1 hour              Bright green7       750° C. - 2 hours              Green8       825° C. - 4 hours              Deep green8       825° C. - 16 hours              Deep green8       900° C. - 4 hours              Deep green8       900° C. - 16 hours              Translucent green                         Beta-spodumene s.s.9       825° C. - 4 hours              Deep green9       875° C. - 4 hours              Hazy green Beta-quartz s.s.10      800° C. - 5 hours              Deep green10      800°  C. - 16 hours              Deep emerald green                         Beta-quartz s.s.10      825° C. - 4 hours              Deep green Beta-quartz s.s.10      825° C. - 16 hours              Deep red-brown                         Beta-quartz s.s.11      750° C. - 2 hours              Deep emerald11      850° C. - 2 hours              Very deep blue-green11      850° C. - 16 hours              Very deep blue-green12      750° C. - 1 hour              Bright green13      750° C. - 2 hours              Green14      750° C. - 1 hour              Brown14      800° C. - 1 hour              Olive green14      800° C. - 5 hours              Brown      Beta-quartz s.s.14      850° C. - 1 hour              Brown      Beta-quartz s.s.15      800° C. - 1 hour              Green16      750° C. - 1 hour              Emerald16      850° C. - 4 hours              Emerald17      700° C. - 1 hour              Yellow-green17      750° C. - 2 hours              Green18      800° C. - 2 hours              Weak green18      800° C. - 16 hours              Deep green18      850° C. - 2 hours              Deep green19      750° C. - 2 hours              Emerald19      800° C. - 2 hours              Opaque olive-green                         Beta-quartz s.s.20      675° C. - 5 hours              Olive green20      750° C. - 2 hours              Emerald21      800° C. - 2 hours              Very deep green21      850° C. - 16 hours              Very deep blue-green22      700° C. - 1 hour              Green23      750° C. - 1 hour              Deep green23      850° C. - 16 hours              Deep green24      750° C. - 1 hour              Deep green24      850° C. - 16 hours              Deep green__________________________________________________________________________

Examples 25-28 do not form a green-colored glass body upon heat treatment and, hence, act to delimit the compositional scope of the instant invention. Examples 25 and 26 contain no TiO2 whatever, and Example 27 has too low an amount. In Example 28 the molar ratio of Al2 O3 to the sum of Li2 O + NiO (the modifying ions) is less than 0.95.

Although heat treatment temperatures as low as 675° C. can be operable with some glass compositions, the preferred minimum is about 700° C. At temperatures much above about 900° C., crystallization of a silicate crystal phase becomes a severe problem. Therefore, the preferred maximum treating temperature is about 850° C.

In general, the stability of the green glassy state is enhanced as the level of NiO is increased. Hence, Example 14 exhibits the barest of greenish tints after an exposure of 1 hour to 800° C. In contrast, glasses such as Examples 8, 9, 11, and 21, containing high percentages of NiO, demonstrate extended stability ranges. Example 10 illustrates that the incorporation of ZrO2 can be tolerated with the resulting product having a deeper greenish hue. Normally, ZrO2 additions will advantageously be held below about 3%.

Where desired, the heat treated glasses, and particularly the Li2 O-containing glasses, can be chemically strengthened with relative ease at low temperatures to yield bodies exhibiting exceptional modulus of rupture measurements. The glassy materials are subjected to an external source of Na30 and/or K+ ions at a temperature above about 300° C., but below the strain point of the glass, for a length of time sufficient to cause the exchange, on a molar basis, of at least a portion of the Li30 or Na+ ions from the glass surface with Na+ and/or K+ ions from the external source. The mechanism of this ion exchange reaction by which an integral surface compression layer is developed on the glass article is well-known to the art, as is exemplified in U.S. Pat. No. 3,790,430. Thus, there is a concentration of larger alkali metal ions (Na+ and/or K+) which is greater in the surface layer of the glass article than in the interior and, conversely, the concentration of the smaller alkali metal ions (Li+ or Na+) is greater in the interior portion of the glass article than in the surface layer. It is this difference in concentration which creates the compressive stresses in the surface layer. With the glasses of the present invention, the ion exchange reaction will commonly be conducted at temperatures ranging between about 350°-550° C., depending upon glass composition. The highly glassy nature of the green colored materials results in strengths (expressed in terms of psi modulus of rupture) equivalent to those exhibited by the as-formed brown colored glasses after chemical strengthening. This phenomenon is manifested in Table III below. In general, modulus of rupture values in excess of 50,000 psi will be attained on abraded specimens. The high abraded and unabraded strengths demonstrated by these glasses, coupled with their transparency, recommend their utility for such consumer applications as bowls, decanters, tumblers, and the like. An explanation regarding abraded and unabraded strength measurements can be found in U.S. Pat. No. 3,790,430 above, and reference is made thereto for that discussion.

                                  TABLE III__________________________________________________________________________Example                 Ion Exchange                          Ion Exchange                                 Abraded                                      Unabraded                                            StrainNo.  Heat Treatment         Visual Appearance                   Medium Treatment                                 Strength                                      Strength                                            Point__________________________________________________________________________6    750° C. - 2 hours         Green     NaNO3 -KNO3                          370° C. - 2                                 61,500                                      112,000                   eutectic                          hours                   mixture7    "        "         "      420° C. - 0.5                                 109,400                          hour13   None     Brown     "      420° C. - 0.5                                 96,000                          hour13   750° C. - 2 hours         Green     "      "      115,60015   None     Deep brown                   None   None   11,600                                      24,900                                            656° C.15   None     Deep brown                   NaNO3 -KNO3                          370° C. - 2                                 56,100                                      92,300                   eutectic                          hours                   mixture15   750° C. - 2 hours         Green     None   None   8500 21,700                                            676° C.15   750° C. - 2 hours         Green     NaNO3 -KNO3                          370° C. - 2                                 55,000                                      101,000                   eutectic                          hours                   mixture19   None     Deep brown                   None   None   33,28019   750° C. - 2 hours         Emerald   NaNO3 -KNO3                          370° C. - 2                                 87,900                                      118,200                   eutectic                          hours                   mixture19   "        "         "      420° C. - 0.5                                 89,200                          hour20   "        "         "      370° C. - 2                                 97,600                                      124,500                          hours__________________________________________________________________________

高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈