首页 / 专利库 / 显示技术 / 维持电极 / 一种无缺陷密堆积石墨烯亚微米薄膜的制备方法与应用

一种无缺陷密堆积石墨烯亚微米薄膜的制备方法与应用

阅读:1发布:2020-06-09

专利汇可以提供一种无缺陷密堆积石墨烯亚微米薄膜的制备方法与应用专利检索,专利查询,专利分析的服务。并且本 发明 公开了一种无 缺陷 密堆积 石墨 烯亚微米 薄膜 及其制备方法与应用,该 石墨烯 膜中石墨烯 片层 紧密堆积,无气孔, 密度 高;石墨烯片层内部缺陷可控。通过特殊的三步 热处理 得到:在300度以下逐步脱落,将石墨烯表面部分 碳 原子 解离,形成孔洞缺陷。在1500度升温以及稳定过程中,官能团通过孔洞缺陷不断脱离,直至完全脱落,无官能团存在。在 温度 高于1600度时,石墨烯表面缺陷得到缓慢修复。致密的堆积结构以及无缺陷的原子结构,使得石墨烯膜具有极好的电导率。,下面是一种无缺陷密堆积石墨烯亚微米薄膜的制备方法与应用专利的具体信息内容。

1.一种无缺陷密堆积石墨烯亚微米薄膜,其特征在于,所述薄膜为亚稳态结构,其中,石墨烯片层内没有原子孔洞缺陷和SP3缺陷;片层之间的堆叠方式为乱序堆叠。
2.一种无缺陷密堆积石墨烯亚微米薄膜的制备方法,其特征在于,该方法为:对比为1.8~2.2的氧化石墨烯膜进行如下热处理:以1~5℃/min逐步升温到300度,维持1-2小时;降至室温后,1~20℃/min逐步升温到1500度,维持1-2小时,然后1~50℃/min继续升温到3000度,维持1-2小时。
3.根据权利要求1所述的制备方法,其特征在于,所述石墨烯膜通过刮膜法制备得到。
4.根据权利要求1所述的制备方法,其特征在于,所述氧化石墨烯膜的厚度小于3um。
5.一种权利要求1所述的无缺陷密堆积石墨烯亚微米薄膜的应用,其特征在于,应用于太阳能电池纳米级声波发生器等。
6.根据权利要求5所述的应用,其特征在于,所述薄膜作为太阳能电池电极
7.根据权利要求5所述的应用,其特征在于,纳米级声波发生器包括热导率低于200W/mK的基底、平铺于基底上的无缺陷密堆积石墨烯亚微米薄膜,以及电信号输入单元和两个音频电流输入用胶电极,两个银胶电极分别设置在声波发生薄膜的两端,声波发生薄膜、两个银胶电极和电信号输入单元串联形成回路。

说明书全文

一种无缺陷密堆积石墨烯亚微米薄膜的制备方法与应用

技术领域

[0001] 本发明涉及高性能纳米材料及其制备方法,尤其涉及一种无缺陷密堆积 石墨烯亚微米薄膜的制备方法与应用,通过该方法可以获得纳米级厚度的无 缺陷密堆积石墨烯亚微米薄膜。

背景技术

[0002] 2010年,英国曼彻斯特大学的两位教授Andre GeiM和Konstantin Novoselov因为首次成功分离出稳定的石墨烯获得诺贝尔物理学奖,掀起了全 世界对石墨烯研究的热潮。石墨烯有优异的电学性能(室温下电子迁移率可 达2×105cM2/Vs),突出的导热性能
2
(5000W/(MK),超常的比表面积(2630 M /g),其杨氏模量(1100GPa)和断裂强度(125GPa)。
石墨烯优异的导电 导热性能完全超过金属,同时石墨烯具有耐高温耐腐蚀的优点,而其良好的 机械性能和较低的密度更让其具备了在电热材料领域取代金属的潜
[0003] 宏观组装化石墨烯或者石墨烯纳米片的石墨烯膜是纳米级石墨烯的主 要应用形式,常用的制备方法是抽滤法、刮膜法、旋涂法、喷涂法和浸涂法 等。通过进一步的高温处理,能够修补石墨烯的缺陷,能够有效的提高石墨 烯膜的导电性和热导性,可以广泛应用于智能手机、智能随身硬件、平板电 脑、笔记本电脑等随身电子设备中去。
[0004] 但是目前,高温烧结过的石墨烯膜通常都是3000度处理,里面有很多微 气泡,在高压下形成褶皱,进而形成柔性。但是褶皱引入柔性的同时会给膜 带来热不稳定性:褶皱在高温下或者通电情况下会伸展,降低石墨烯膜的密 度以及性能。同时褶皱的存在本身又会减低石墨烯膜导热导电性能。为此, 急需一种无褶皱致密的石墨烯膜及其制备方法,从来进一步完善和提升石墨 烯膜的热学稳定性、力学强度等性能。

发明内容

[0005] 本发明的目的是克服现有技术的不足,提供一种无缺陷密堆积石墨烯亚 微米薄膜的制备方法与应用。
[0006] 本发明的目的是通过以下技术方案实现的:一种无缺陷密堆积石墨烯亚微 米薄膜,所述薄膜为亚稳态结构,其中,石墨烯单片层内没有原子孔洞缺陷和 SP3缺陷;片层之间的堆叠方式为乱序堆叠。
[0007] 一种无缺陷密堆积石墨烯亚微米薄膜的制备方法,该方法为:对氧比为1.8~2.2的氧化石墨烯膜进行如下热处理:以1~5℃/min逐步升温到300度, 维持1-2小时;降至室温后,1~20℃/min逐步升温到2000度,维持1-2小时, 然后1~50℃/min继续升温到3000度,维持1-2小时。
[0008] 进一步地,所述石墨烯膜通过刮膜法制备得到。
[0009] 进一步地,所述氧化石墨烯膜的厚度小于3um。
[0010] 无缺陷密堆积石墨烯亚微米薄膜的应用为太阳能电池、纳米级声波发生器 等。
[0011] 进一步地,所述薄膜作为太阳能电池电极
[0012] 进一步地,纳米级声波发生器包括热导率低于200W/mK的基底、平铺于 基底上的无缺陷密堆积石墨烯亚微米薄膜,以及电信号输入单元和两个音频电 流输入用胶电极,两个银胶电极分别设置在声波发生薄膜的两端,声波发生 薄膜、两个银胶电极和电信号输入单元串联形成回路;
[0013] 本发明的有益效果在于:本发明利用氧化石墨烯表面丰富的官能团,在300 度以下逐步脱落,将石墨烯表面部分碳原子解离,形成孔洞缺陷。在1500度升 温以及稳定过程中,官能团通过孔洞缺陷不断脱离,直至完全脱落,无官能团 存在。在温度高于1600度时,石墨烯表面缺陷得到缓慢修复。致密的堆积结构 以及无缺陷的原子结构,使得石墨烯膜具有极好的电导率。
[0014] 本发明利用无缺陷的片层结构,极大的提高了载流子迁移率,有利于电子 空穴的传输;而乱序堆叠的亚稳态结构,使得石墨烯内部电子呈现高能态结 构,相比于石墨结构,吸收相同的光,更容易吸收光子形成电子空穴对或者能 产生更多的的电子空穴对。使用时,该薄膜作为光阳极对电极等,具有更高 的电子迁移率,而且没有重金属污染问题存在,降低了成本,提高光转化效率。
[0015] 本发明利用致密的堆积结构以及无缺陷的原子结构,使得石墨烯膜具有极 好的热导率和力学性能,可实现自支撑,升降温速率快,决定此薄膜具有极好 的音质,声音清晰度高。
[0016] 本发明基于具有光生电子效应的无缺陷密堆积石墨烯亚微米复合薄膜,设 计出一种催化反应器,可用于二氧化碳的催化还原。其中无缺陷密堆积石墨烯 亚微米复合薄膜由石墨烯膜和纳米膜组成,其中,石墨烯膜的石墨烯单片层 内没有原子孔洞缺陷和SP3缺陷;片层之间的堆叠方式为乱序堆叠。无缺陷的 片层结构极大的提高了载流子迁移率,有利于电子空穴的传输;而乱序堆叠的 亚稳态结构,使得石墨烯内部电子云呈现高能态结构,相比于石墨结构,吸收 相同的光,更容易吸收光子形成电子空穴对或者能产生更多的的电子空穴对。 使用时,该薄膜具有更高的电子迁移率,而且没有重金属污染问题存在,降低 了成本,提高光转化效率。致密的堆积结构以及无缺陷的原子结构,使得石墨 烯膜具有极好的电导率;石墨烯无带隙的性质,有利于扩展光的吸收波段(紫 外到远红外0-10um)以及吸收率;同时,硅的存在有利于电子空穴分离,提高 光响应速率并且减少电子空穴对的复合,进而提高光利用效率;所述石墨烯纳 米膜层间交联,有利于提高石墨烯膜的强度,进而提升石墨烯膜的可操作性, 还可以提高电子孔穴对复合时间,提高内量子效率,进而提高光利用率。附图说明
[0017] 图1为实施例1制备的石墨烯膜的高分辨图,其中每个点可视为一个C原 子。
[0018] 图2为石墨烯膜的拉曼图。
[0019] 图3为石墨烯基染料敏化透明太阳能电池结构示意图,其中,石墨烯膜作 为光阳极。图中,石英玻璃1、石墨烯膜2、正极3、ITO4。
[0020] 图4为实施例1所得到的石墨烯膜的升温降温曲线;
[0021] 图5为T=1s时刻,石墨烯膜沿两个电极所在直线方向上的温度曲线。

具体实施方式

[0022] 实施例1:
[0023] 用刮膜法制备厚度为800nm,碳氧比为1.8的石墨烯膜;然后进行如下三步 升温热处理:
[0024] (1)以1℃/min逐步升温到300度,维持2小时;同时检测该过程中产生 的气体分子。检测过程中,发现有含碳的气体分子(包括二氧化碳、一氧化碳) 溢出,表明石墨烯表面部分碳原子解离,形成孔洞缺陷。
[0025] (2)降至室温后,1℃/min逐步升温到1500度,维持2小时;
[0026] (3)然后1℃/min继续升温到3000度,维持2小时;
[0027] 获得的石墨烯膜的厚度为240nm,密度为2.2。电导率为2MS/m。
[0028] 制备得到的石墨烯膜如图2所示,从图中可以看出,石墨烯膜仅有微弱的 边缘缺陷(不可避免),说明石墨烯片层内结构完全修复;另外,石墨烯膜2D 峰完全轴对称,说明石墨烯片层之间的堆叠方式是乱序堆叠,而不是稳态的AB 堆叠。
[0029] 将上述石墨烯膜作为光阳极装配有机薄膜太阳能电池①,如图3所示,相 比于采用ITO作为光阳极组装的染料敏化透明太阳能电池②,其光电转换效率 提高30%,相比于用常规石墨烯膜(在ITO上旋涂)作为光阳极组装的染料敏 化透明太阳能电池③,其光电转换效率提高20%。而用常规石墨烯膜(在ITO 上旋涂)作为光阳极时,使用2400h后,石墨烯膜可能由于微观结构受到破坏, 其导电率下降17%,太阳能电池③的光电转换效率下降10%;而本申请的石墨 烯膜在使用3600h后,导电率保持在原来的97%以上,太阳能电池①的光电转 换效率保持在原来的90%以上。
[0030] 在石墨烯膜的左右两侧连接两个电极,并用控温传感器测量石墨烯电热膜 的温度变化,这种石墨烯膜在大气环境下,在10V的直流电压下,只需要0.5 秒就达到了稳定温度400℃,而断电后,由于石墨烯膜优异的热传导性,膜的温 度在0.8秒内就降到接近室温,如图4所示。对T=1s时刻,利用红外探测仪获 得薄膜表面温度分布图,该石墨烯膜沿两个电极所在直线方向上,温度稳定, 均在400℃左右,图5所示。
[0031] 将上述石墨烯膜2×2cm2平铺于聚酰亚胺基底(热导率0.35W/mK)上,在 石墨烯薄膜两端涂覆银胶电极,将两个银胶电极分别与电信号输入单元的正负 极相连,构成本发明所述的纳米级声波发生器。由于该薄膜电导率高,在外加 电压情况下会剧烈放热升温,撤离外加电压,薄膜热逸散速度极高,两者共同 作用,使得薄膜可以快速的升降温,从而引起薄膜处空气的热震动,从而发声。 因此,通过10V的直流电压的辅助加载,另外通过电信号输入单元输入指定的 音频信号,以调节整体输入的电压和变化频率,便可以获得确定的空气热震动 幅度,即音高;调节输入信号频率便可以调节空气热震动频率,进而发声的频 率改变,发出不同的声音。
[0032] 实施例2:
[0033] 用刮膜法制备厚度为1800nm,碳氧比为2.2的石墨烯膜;然后进行如下三 步升温热处理:
[0034] (1)以5℃/min逐步升温到300度,维持1小时;同时检测该过程中产生 的气体分子。检测过程中,发现有含碳的气体分子(包括二氧化碳、一氧化碳) 溢出,表明石墨烯表面部分碳原子解离,形成孔洞缺陷。
[0035] (2)降至室温后,20℃/min逐步升温到1500度,维持1小时;
[0036] (3)然后5℃/min继续升温到3000度,维持1小时;
[0037] 获得的石墨烯膜仅有微弱的边缘缺陷(不可避免),片层内结构完全修复; 石墨烯膜2D峰完全对称,石墨烯片层之间的堆叠方式是乱序堆叠,而不是稳态 的AB堆叠。石墨烯膜的厚度为500nm,密度为2.1g/cm3。电导率为1.8MS/m, 热导率2310W/mK。
[0038] 将上述石墨烯膜作为光阳极装配染料敏化薄膜太阳能电池①,相比于采用 ITO作为光阳极组装的染料敏化透明太阳能电池②,其光电转换效率提高13%, 相比于用常规石墨烯膜(在ITO上旋涂)作为光阳极组装的染料敏化透明太阳 能电池③,其光电转换效率提高10%。在使用3600h后,导电率为原来的90%, 太阳能电池①的光电转换效率为原来的86%。
[0039] 在石墨烯膜的左右两侧连接两个电极,并用控温传感器测量石墨烯电热膜 的温度变化,这种石墨烯膜在大气环境下,在5V的直流电压下,只需要0.54 秒就达到了稳定温度430℃,而断电后,由于石墨烯膜优异的热传导性,膜的温 度在0.9秒内就降到接近室温。该石墨烯膜沿两个电极所在直线方向上,温度稳 定,均在430℃左右。
[0040] 将上述石墨烯膜2×2cm2平铺于聚酰亚胺基底(热导率0.35W/mK)上,在 石墨烯薄膜两端涂覆银胶电极,将两个银胶电极分别与电信号输入单元的正负 极相连,构成本发明所述的纳米级声波发生器。由于该薄膜电导率高,在外加 电压情况下会剧烈放热升温,撤离外加电压,薄膜热逸散速度极高,两者共同 作用,使得薄膜可以快速的升降温,从而引起薄膜处空气的热震动,从而发声。 因此,通过5V的直流电压的辅助加载,另外通过电信号输入单元输入指定的音 频信号,以调节整体输入的电压和变化频率,便可以获得确定的空气热震动幅 度,即音高;调节输入信号频率便可以调节空气热震动频率,进而发声的频率 改变,发出不同的声音。
[0041] 实施例3:
[0042] 用刮膜法制备厚度为4000nm,碳氧比为2.0的石墨烯膜;然后进行如下三 步升温热处理:
[0043] (1)以1.5℃/min逐步升温到300度,维持2小时;同时检测该过程中产 生的气体分子。检测过程中,发现有含碳的气体分子(包括二氧化碳、一氧化 碳)溢出,表明石墨烯表面部分碳原子解离,形成孔洞缺陷。
[0044] (2)降至室温后,2℃/min逐步升温到1500度,维持2小时;
[0045] (3)然后1℃/min继续升温到3000度,维持2小时;
[0046] 获得的石墨烯膜仅有微弱的边缘缺陷(不可避免),片层内结构完全修复; 石墨烯膜2D峰完全对称,石墨烯片层之间的堆叠方式是乱序堆叠,而不是稳态 的AB堆叠。石墨烯膜的厚度为940nm,密度为1.9。电导率为1.63MS/m,热 导率2150W/mK。
[0047] 将上述石墨烯膜作为正极,以ITO为光阳极装配有机薄膜太阳能电池①, 相比于采用铂电极作为正极组装的染料敏化透明太阳能电池②,其光电转换效 率提高4%,相比于用常规石墨烯膜(在ITO上旋涂)作为正极组装的染料敏化 透明太阳能电池③,其光电转换效率提高5%。在使用3600h后,导电率为原来 的81%,太阳能电池①的光电转换效率为原来的79%。
[0048] 在石墨烯膜的左右两侧连接两个电极,并用控温传感器测量石墨烯电热膜 的温度变化,这种石墨烯膜在大气环境下,在3V的直流电压下,只需要0.6秒 就达到了稳定温度400℃,而断电后,由于石墨烯膜优异的热传导性,膜的温度 在1.1秒内就降到接近室温。该石墨烯膜沿两个电极所在直线方向上,温度稳定, 均在400℃左右。
[0049] 将上述石墨烯膜2×2cm2平铺于聚酰亚胺基底(热导率0.35W/mK)上,在 石墨烯薄膜两端涂覆银胶电极,将两个银胶电极分别与电信号输入单元的正负 极相连,构成本发明所述的纳米级声波发生器。由于该薄膜电导率高,在外加 电压情况下会剧烈放热升温,撤离外加电压,薄膜热逸散速度极高,两者共同 作用,使得薄膜可以快速的升降温,从而引起薄膜处空气的热震动,从而发声。 因此,通过3V的直流电压的辅助加载,另外通过电信号输入单元输入指定的音 频信号,以调节整体输入的电压和变化频率,便可以获得确定的空气热震动幅 度,即音高;调节输入信号频率便可以调节空气热震动频率,进而发声的频率 改变,发出不同的声音。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈