首页 / 专利库 / 特殊效果 / 变形 / 一种自适应共焦线扫描谐波显微成像方法及装置

一种自适应共焦线扫描谐波显微成像方法及装置

阅读:514发布:2024-02-12

专利汇可以提供一种自适应共焦线扫描谐波显微成像方法及装置专利检索,专利查询,专利分析的服务。并且本 发明 涉及一种用于活体 生物 样品的三维微细结构快速成像的自适应共焦线扫描谐波显微成像方法及装置,属于光学显微成像技术领域;本发明利用柱面镜形成线状聚焦光对样品进行谐波 信号 的激发,用扫描系统实现激发光的线扫描,最后对采集到的谐波信号进行图像重建和 数据处理 ,实现了线扫描激发探测代替传统谐波显微中的点扫描激发探测,从而提升成像速度;在系统中引入自适应像差校正装置,用于校正对样品进行大深度探测时存在的像差。本发明在保证 分辨率 的 基础 上可有效提升谐波显微成像的成像速度,且在大深度探测时保持了成像 质量 。,下面是一种自适应共焦线扫描谐波显微成像方法及装置专利的具体信息内容。

1.一种自适应共焦线扫描谐波显微成像装置,其特征在于所述装置包括:飞秒激光器、第一准直扩束系统、像差校正系统、分束器、第一柱面镜、光束扫描系统、第二准直扩束系统、聚焦物镜、三维微位移台、第二柱面镜、第三柱面镜、狭缝、第四柱面镜、滤光片、EMCCD相机、收集物镜、第三准直扩束系统、第五柱面镜、反射镜;
其中:飞秒激光器出射端依次放置第一准直扩束系统、像差校正系统;像差校正系统出射端放置分束器;分束器透射端依次放置第一柱面镜、光束扫描系统;光束扫描系统出射端放置第二准直扩束系统、聚焦物镜;样品放置于三维微位移台且与聚焦物镜前焦面对齐;第二柱面镜、第三柱面镜、狭缝、第四柱面镜、EMCCD依次放置于谐波信号探测路径;在EMCCD前放置滤光片;所有光学元件的光学面中心与入射激光和谐波信号的中心光束形成的光轴重合,所有透镜均垂直于光轴。
2.根据权利要求1所述的一种自适应共焦线扫描谐波显微成像装置,其特征在于所述的像差校正系统为可变形反射镜或空间光调制器,或可变形反射镜、空间光调制器组成的联用系统。
3.根据权利要求1所述的一种自适应共焦线扫描谐波显微成像装置,其特征在于所述的光束扫描系统可以是扫描振镜或声光偏转器。
4.根据权利要求1所述的一种自适应共焦线扫描谐波显微成像装置,其特征在于所述的飞秒激光器的波长范围落在780纳米至1560纳米。
5.根据权利要求1所述的一种自适应共焦线扫描谐波显微成像装置,其特征在于狭缝位置与样品探测面关于系统共轭。
6.一种自适应共焦线扫描谐波显微成像方法,其特征在于包括下列步骤:
(1)飞秒激光器发出的飞秒脉冲激光经过准直扩束后进入像差校正系统进行系统像差以及样品折射率失配像差的校正;
(2)像差校正系统出射光束经过柱面镜形成主轴平的椭圆形光束;
(3)椭圆形激发光束经过光束扫描系统形成扫描光束,并再一次进行准直扩束;
(4)准直扩束后的椭圆形激发光由高数值物镜聚焦形成线状聚焦光斑对样品进行谐波信号的激发;
(5)携带样品信息的谐波信号由高数值物镜收集,再经过柱面镜形成圆形谐波信号光;
(6)圆形谐波信号光再连续经过两个柱面镜形成线形谐波信号光穿过狭缝;
(7)狭缝出射的线形谐波信号光再穿过一柱面镜,由滤光片滤除杂散光进入EMCCD相机;
(8)对EMCCD相机收集到的各个扫描位置激发的线形谐波信号进行数据处理,合成宽场谐波图像。
7.根据权利要求6所述的一种自适应共焦线扫描谐波显微成像方法,其特征在于使用柱面镜结合高数值孔径物镜对样品进行线扫描谐波激发。
8.根据权利要求6所述的一种自适应共焦线扫描谐波显微成像方法,其特征在于谐波信号既可以前向探测也可以后向探测。
9.根据权利要求6所述的一种自适应共焦线扫描谐波显微成像方法,其特征在于可调节飞秒激光器波长以及滤光片中心波长实现二次、三次谐波的选择性探测。

说明书全文

一种自适应共焦线扫描谐波显微成像方法及装置

技术领域

[0001] 本发明属于光学显微测量领域,主要涉及一种用于活体生物样品的三维微细结构快速成像的自适应共焦线扫描谐波显微成像方法及装置。

背景技术

[0002] 随着科学技术的不断发展,对活体生物样品进行高分辨率的快速成像已成为系统生物学研究不可或缺的条件。谐波显微成像方法是一种三维光学成像技术,具有非线性光学成像特有的成像特性。谐波信号的激发需要高强度激光脉冲,因此仅在焦点区域才有谐波信号产生。非线性的强局域效应减少了成像时焦点外的背景噪声干扰,具有很高的信噪比。谐波信号是样品自身产生的非线性效应,不需要外在荧光标记,从而不影响生物样品的活性。谐波信号的激发通常使用近红外的激发光,可以实现很高的探测深度。传统谐波显微成像为了满足活体散射组织成像的迫切需求和大强度的激发,大多基于激光扫描共聚焦技术,以利用其具备的层析能且一定程度上可克服散射的劣势。但对于点扫描成像方式,提升成像速度受到极大挑战。
[0003] 在对活体生物组织进行高深度成像时,由于样品自身光学特性的不均匀性以及折射率失配,成像过程中存在明显的像差。像差的存在会降低谐波信号的强度以及成像质量。且探测深度越大,像差的影响就越大。一些具有重大研究意义的细节信息会因为像差的存在而无法成像。为了实现大深度高质量的成像,必须对生物样品引起的像差进行校正。
[0004] 因此,目前需要本领域技术人员迫切解决的一个技术问题就是:如何能够在保证成像分辨率的前提下有效地提升谐波显微成像的成像速度。此外,在利用谐波显微成像进行大深度探测时,能够对样品引起的像差进行校正。

发明内容

[0005] 本发明的目的是为了克服已有技术的不足之处,提出一种自适应共焦线扫描谐波显微成像方法及装置。本发明利用柱面镜形成线状聚焦光来实现线扫描激发探测代替传统谐波显微中的点扫描激发探测,从而提升成像速度;且在系统中引入自适应像差校正装置,用于校正对样品大深度探测时存在的像差。本发明克服了传统谐波显微成像探测速度不足以及大深度探测时存在像差的挑战。
[0006] 为了实现上述目的,本发明采用如下技术方案:
[0007] 本发明提出的一种自适应共焦线扫描谐波显微成像装置,其特征在于所述装置包括:飞秒激光器、第一准直扩束系统、像差校正系统、分束器、第一柱面镜、光束扫描系统、第二准直扩束系统、聚焦物镜、三维微位移台、第二柱面镜、第三柱面镜、狭缝、第四柱面镜、滤光片、EMCCD相机、收集物镜、第三准直扩束系统、第五柱面镜、反射镜。
[0008] 上述各元器件的连接关系为:所有光学元件的光学面中心与入射激光和谐波信号的中心光束形成的光轴重合,所有透镜均垂直于光轴;其中:飞秒激光器出射端依次放置第一准直扩束系统、像差校正系统;像差校正系统出射端放置分束器;分束器透射端依次放置第一柱面镜、光束扫描系统;光束扫描系统出射端放置第二准直扩束系统、聚焦物镜;样品放置于三维微位移台且与聚焦物镜前焦面对齐;对于反射式探测,第二柱面镜、第三柱面镜、狭缝、第四柱面镜、EMCCD相机依次放置于谐波信号探测路径;对于透射式探测,在第二柱面镜、第三柱面镜、狭缝、第四柱面镜、EMCCD相机之前依次放置收集物镜、第三准直扩束系统、第五柱面镜、反射镜;在EMCCD相机前放置滤光片。
[0009] 进一步地,所述的像差校正系统为可变形反射镜或空间光调制器,或可变形反射镜、空间光调制器组成的联用系统。
[0010] 进一步地,所述的光束扫描系统可以是扫描振镜或声光偏转器。
[0011] 进一步地,所述的飞秒激光器的波长范围落在780纳米至1560纳米。
[0012] 进一步地,所述的狭缝其位置与样品探测面关于系统共轭;EMCCD相机放置于第四柱面镜的后焦面处。
[0013] 一种自适应共焦线扫描谐波显微成像方法,其特征在于包括下列步骤:
[0014] (1)飞秒激光器发出的飞秒脉冲激光经过准直扩束后进入像差校正系统进行系统像差以及样品折射率失配像差的校正;
[0015] (2)像差校正系统出射光束经过柱面镜形成主轴平的椭圆形光束;
[0016] (3)椭圆形激发光束经过光束扫描系统形成扫描光束,并再一次进行准直扩束;
[0017] (4)准直扩束后的椭圆形激发光由高数值物镜聚焦形成线状聚焦光斑对样品进行谐波信号的激发;
[0018] (5)携带样品信息的谐波信号由高数值物镜收集,再经过柱面镜形成圆形谐波信号光;
[0019] (6)圆形谐波信号光再连续经过两个柱面镜形成线形谐波信号光穿过狭缝;
[0020] (7)狭缝出射的线形谐波信号光再穿过一柱面镜,由滤光片滤除杂散光进入EMCCD相机;
[0021] (8)对EMCCD相机收集到的各个扫描位置激发的线形谐波信号进行图像重建和数据处理,合成宽场谐波图像。
[0022] 本发明所述的谐波成像方法其特征在于使用柱面镜结合高数值孔径物镜对样品进行线扫描谐波激发。
[0023] 本发明所述的谐波成像方法其特征在于谐波信号既可以前向探测也可以后向探测。
[0024] 本发明所述的谐波成像方法其特征在于可调节飞秒激光器波长以及滤光片中心波长实现二次、三次谐波的选择性探测。
[0025] 本发明的有益效果在于,通过将传统谐波显微方法中的点扫描方式替换为共焦线扫描方式,在保证成像分辨率的同时,提升了成像速度。此外,通过在成像系统中引入自适应像差校正模,用于校正大深度成像时样品引起的像差,从而提升了谐波显微成像的成像深度和成像质量。附图说明
[0026] 图1是本发明实施例1的自适应共焦线扫描谐波显微成像方法及装置示意图。
[0027] 图2是本发明实施例2的自适应共焦线扫描谐波显微成像方法及装置示意图。
[0028] 其中:1-飞秒激光器、2-第一准直扩束系统、3-像差校正系统、4-分束器、5-第一柱面镜、6-光束扫描系统、7-第二准直扩束系统、8-聚焦物镜、9-样品、10-三维微位移台、11-第二柱面镜、12-第三柱面镜、13-狭缝、14-第四柱面镜、15-滤光片、16-EMCCD相机、17-收集物镜、18-第三准直扩束系统、19-第五柱面镜、20-反射镜。

具体实施方式

[0029] 为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施实例对本发明做进一步详细的描述。
[0030] 本发明提出的一种自适应共焦线扫描谐波显微成像方法,该方法包括以下步骤:
[0031] (1)飞秒激光器发出的飞秒脉冲激光经过准直扩束后进入像差校正系统进行系统像差以及样品折射率失配像差的校正;
[0032] (2)像差校正系统出射光束经过柱面镜形成主轴水平的椭圆形光束;
[0033] (3)椭圆形激发光束经过光束扫描系统形成扫描光束,并再一次进行准直扩束;
[0034] (4)准直扩束后的椭圆形激发光由高数值物镜聚焦形成线状聚焦光斑对样品进行谐波信号的激发;
[0035] (5)携带样品信息的谐波信号由高数值物镜收集,再经过柱面镜形成圆形谐波信号光;
[0036] (6)圆形谐波信号光再连续经过两个柱面镜形成线形谐波信号光穿过狭缝;
[0037] (7)狭缝出射的线形谐波信号光再穿过一柱面镜,由滤光片滤除杂散光进入EMCCD相机;
[0038] (8)对EMCCD相机收集到的各个扫描位置激发的线形谐波信号进行图像重建和数据处理,合成宽场谐波图像。
[0039] 本发明还根据上述方法提出一种自适应共焦线扫描谐波显微成像装置。
[0040] 实施例1:
[0041] 本实施例1的一种自适应共焦线扫描谐波显微成像装置示意图如图1所示。该装置包括飞秒激光器1、第一准直扩束系统2、像差校正系统3、分束器4、第一柱面镜5、光束扫描系统6、第二准直扩束系统7、聚焦物镜8、样品9、三维微位移台10、第二柱面镜11、第三柱面镜12、狭缝13、第四柱面镜14、滤光片15、EMCCD相机16。上述各元器件的连接关系为:所有光学元件的光学面中心与入射激光和谐波信号的中心光束形成的光轴重合,所有透镜均垂直于光轴;其中,飞秒激光器1出射端依次放置第一准直扩束系统2、像差校正系统3;像差校正系统出射端放置分束器4;分束器透射端依次放置第一柱面镜5、光束扫描系统6;光束扫描系统出射端放置第二准直扩束系统7、聚焦物镜8;样品9放置于三维微位移台10且与聚焦物镜8前焦面对齐;第二柱面镜11、第三柱面镜12、狭缝13、第四柱面镜14、EMCCD相机16依次放置于从分束器4反射端引出的谐波信号探测路径;在EMCCD相机16前放置滤光片15。
[0042] 本实施例中,谐波信号的探测方式为反射式探测;
[0043] 所述的像差校正系统为空间光调制器;
[0044] 所述的光束扫描系统是扫描振镜;
[0045] 所述的飞秒激光器的波长范围落在780纳米至1560纳米;
[0046] 所述的狭缝其位置与样品探测面关于系统共轭;EMCCD相机放置于第四柱面镜的前焦面处。
[0047] 实施例2:
[0048] 本实施例2的一种自适应共焦线扫描谐波显微成像装置示意图如图2所示。该装置包括飞秒激光器1、第一准直扩束系统2、像差校正系统3、第一柱面镜5、光束扫描系统6、第二准直扩束系统7、聚焦物镜8、样品9、三维微位移台10、第二柱面镜11、第三柱面镜12、狭缝13、第四柱面镜14、滤光片15、EMCCD相机16、收集物镜17、第三准直扩束系统18、第五柱面镜
19、反射镜20。上述各元器件的连接关系为:所有光学元件的光学面中心与入射激光和谐波信号的中心光束形成的光轴重合,所有透镜均垂直于光轴;其中,飞秒激光器1出射端依次放置第一准直扩束系统2、像差校正系统3;像差校正系统出射端放置分束器4;分束器透射端依次放置第一柱面镜5、光束扫描系统6;光束扫描系统出射端放置第二准直扩束系统7、聚焦物镜8;样品9放置于三维微位移台10且与聚焦物镜8前焦面对齐;收集物镜17放置于样品9的透射端;其后依次放置第三准直扩束系统18、第五柱面镜19、反射镜20;第二柱面镜
11、第三柱面镜12、狭缝13、第四柱面镜14、EMCCD相机16依次放置于反射镜20的反射端;在EMCCD相机16前放置滤光片15。
[0049] 本实施例中,谐波信号的探测方式为透射式探测;
[0050] 所述的像差校正系统为空间光调制器;
[0051] 所述的光束扫描系统是扫描振镜;
[0052] 所述的飞秒激光器的波长范围落在780纳米至1560纳米;
[0053] 所述的狭缝其位置与样品探测面关于系统共轭;EMCCD相机放置于第四柱面镜的前焦面处。
[0054] 以上对本发明所提出的自适应共焦线扫描谐波显微成像方法及装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,这些改变都应属于本发明所附的权利要求的保护范围。综上所述,本说明书内容不应理解为对本发明的限制。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈