序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
101 一种基于机载防撞系统的天线检测装置 CN201620488093.1 2016-05-26 CN205656303U 2016-10-19 郑红; 郭小杰; 邹亮; 王剑锋
本实用新型涉及一种天线信号检测领域,特别是一种基于机载防撞系统的天线检测装置。本实用新型针对现有技术存在的问题,提供一种检测装置。通过天线检测端口的电压值与限电压值进行比较,得到当前天线工作是否正常。能自动实现定向天线的自检测等。本装置中比较器基准电压电路产生门限电压最大值Vmax与门限电压最小值Vmin;当天线检测使能信号有效时,天线检测端口上形成压降V0,并与比较器电路进行比较;比较器电路将天线检测使能电路输入的压降V0与门限电压值Vmax与门限电压最小值Vmin进行比较,将比较结果输入至处理器;处理器输出比较器电路输入的比较结果,并判断天线状态是否正常。
102 基于ADS-B的机载防撞系统信号处理模 CN202021008880.4 2020-06-04 CN211928758U 2020-11-13 林琳; 徐文江; 刘志勇; 刘引川; 李妮锶; 姚成
本实用新型公开了一种基于ADS-B的机载防撞系统信号处理模,包括带通滤波单元、信号放大单元、模数转换单元、微处理器、电源及信号缓冲单元,电源用于为微处理器及其连接的元器件供电;带通滤波单元用于获取接收机输出的频率信号并进行选频滤波;信号放大单元用于将滤波后信号进行放大;模数转换单元用于将放大后模拟信号转换为数字信号;微处理器用于接收经模数转换单元转换的数字信号并处理,生成消息信号发送至信号缓冲单元;信号缓冲单元用于接收微处理器输出信号并进行暂存后输出。本实用新型应用时能提升获取的接收机输出频率信号强度和降低信号干扰,进而能消除频率信号强度不足和信号干扰对生成消息信号精度的影响,提升监视的准确性。
103 一种机载防撞系统的瞬时掉电保护电路 CN201620185878.1 2016-03-11 CN205407402U 2016-07-27 傅勇; 林云松; 叶睿
本实用新型公开了一种机载防撞系统的瞬时掉电保护电路,适于连接至机载防撞系统的系统电源,其特征在于,包括充电放电电路、控制电路和稳压电路,所述充电放电电路连接至上述系统电源,所述控制电路连接充电放电电路及上述系统电源,所述稳压电路连接控制电路。本实用新型结构简单,采用此种设计的机载防撞系统,解决了防撞系统的受电源瞬时断电影响需要长时间重启系统的问题,解决了由此而带来的对飞行安全造成的隐患。
104 一种用于机载防撞系统接口适配电路 CN201120388175.6 2011-10-13 CN202230615U 2012-05-23 李斌
本实用新型公开了一种用于机载防撞系统接口适配电路,涉及空中防撞技术,旨在针对将机载防撞系统运用到采用俄制协议的飞机上时,就会出现数据格式、信号电平不兼容的问题,提供一种实现机载平台模拟与数字信号之间转换的适配电路。本实用新型的技术要点:包括AD转换器1、AD转换器2、DA转换器、FPGA、处理器、ARING429编码芯片、ARING429电平转换芯片与ARING429接口芯片;AD转换器1与AD转换器2均和FPGA连接;FPGA、处理器、ARING429编码芯片与ARING429编码芯片顺序连接;ARING429接口芯片、处理器与DA转换器顺序连接。
105 一种对机载防撞与近地告警系统激励与测试的系统 CN201320776399.3 2013-11-29 CN203587370U 2014-05-07 吕强; 顾婷婷; 王阳; 陈东
本实用新型公开了一种对机载防撞与近地告警系统激励与测试的系统,系统包括一个激励测试主机和应答信号源、应答/询问/DME测试仪、频谱分析仪等标准设备。系统通过GPIB总线与标准设备交联,PXI控制器发送控制命令控制设备发送和接收机载防撞系统的询问应答信号;PXI控制器调用板卡资源发送机载防撞和近地告警功能所需的ARINC429和离散量数据来模拟本机状态和飞行场景;通过接收机载防撞和近地告警的告警输出信息来测试验证系统的功能、性能。本实用新型能大大的降低研制和测试验证保障的成本,减轻重量、体积、功耗,增加设备可靠性和可扩展性。
106 检测仪(机载防撞系统内场) CN201530535435.1 2015-12-16 CN303690191S 2016-06-01 达莎莎
1.本外观设计产品的名称:检测仪(机载防撞系统内场)。2.本外观设计产品的用途:本外观设计产品用于空中管理,对机载防撞系统内场进行故障检测。3.本外观设计产品的设计要点:产品外部形状。4.最能表明本外观设计设计要点的图片或照片:立体图。
107 Airborne collision avoidance system US40969764 1964-11-09 US3341812A 1967-09-12 PERKINSON ROBERT E; VON FANGE WILBUR H; BORROK MARTIN J; CHRISTOFFERSON FRANK E
108 Integrated airborne transponder and collision avoidance system US10167905 2002-06-12 US06789016B2 2004-09-07 Carl Raymond Bayh; Paul F. Drobnicki; Scott Esbin; Michael Murphy; Randolph Purdy; David Wolff
An airborne collision avoidance system includes a receiver stage constructed and arranged to detect (a) at a first radio frequency, first interrogation signals, and first collision resolution advisory (RA) signals transmitted from other nearby aircraft, and (b) at a second radio frequency, first acquisition signals including position information with respect to the nearby aircraft, and first reply signals from the nearby aircraft. A transmitter stage is constructed to produce (a) at the first radio frequency, second interrogation signals and second collision RA signals, and (b) at the second radio frequency, second acquisition signals including position information with respect to the given aircraft, and second reply signals from the given aircraft in response to the first interrogation signals. Tracking and collision avoidance information derived by a system processor from the detected first acquisition and first RA signals is shown on a cockpit display. The receiver and the transmitter stages are coupled to a single pair of upper and lower fuselage antennas through a T/R switch module.
109 Airborne system for preventing collisions of an aircraft with the terrain US11612649 2006-12-19 US07881866B2 2011-02-01 Hugues Meunier; Denis Ricaud
This Terrain Awareness and Warning System produces a new “Too Low Terrain” predictive alert of “Caution” type when the crew of the aircraft has the possibility of resolving a detected risk of collision with the terrain without interrupting the current maneuver to stabilize at a safety altitude by a leveling-off maneuver, without performing a vertical avoidance maneuver. To do this, it measures the ability of the airplane to avoid the terrain with a sufficient margin without performing a vertical avoidance maneuver, taking into account the location or locations of the penetration or penetrations of the terrain along an alert prober C as well as the capacity of the aircraft to level off knowing the flight conditions.
110 Method for reducing transmit power for traffic alert and collision avoidance systems and airborne collision avoidance systems US09943039 2001-08-29 US20020063653A1 2002-05-30 David Oey; Ruy C. Brandao; LuAn Vanness; Larry D. King
The present invention provides a method for efficient use of the transmit power of a Traffic Alert Collision Avoidance System (TCAS) that allows enhanced surveillance range and limits radio frequency (RF) interference in crowded airspace. The method reduces power density in crowded airspace by modifying Mode S, Mode A and Mode C interrogations. During Mode S broadcasts, tracking interrogation power is reduced as a function of range. Further transmit power reduction is achieved by broadcasting a variable power density whisper-shout interrogation technique for Mode A/C aircraft when garbling is detected. If garbling is observed during a medium whisper-shout interrogation sequence, the method of the present invention attempts to clear the garbling by using focused high-density whisper-shout steps but only in the ranges where garbling was detected. Formation members can account for other formation members that are TCAS equipped using a special E-TCAS Broadcast Interrogation. The presence of other E-TCAS will be used in the RF interference limiting calculations. Aircraft flying in formation further minimize broadcast power by sharing information between the formation leader and formation aircraft.
111 Method and system for automatically performing safety operations to prevent crash of an airborne vehicle US15246269 2016-08-24 US09823656B1 2017-11-21 Melwyn Anthony Dsouza; Usman Ali Abdul Rahiman
The present subject matter is related to a safety mechanism that comprises method and system for automatically performing safety operations to prevent crash of an airborne vehicle. When there is a deviation of current airborne vehicle path from predefined airborne vehicle path, the airborne vehicle safety system sends a notification to receive authentication of all aircraft operators in the airborne vehicle, as a safety measure. If the authentication is provided, then the airborne vehicle proceeds along the current path, otherwise control of the airborne vehicle is switched from manual control to automatic control that proceeds along the predefined path. Therefore, the airborne vehicle safety system prevents intentional crash or deviation from the current path. Further, the airborne vehicle safety system unlocks cockpit door of the airborne vehicle when authentication is not received from the aircraft operator in cockpit so that necessary measures can be taken to prevent the crash.
112 Onboard system for the prevention of collisions of an aircraft with the ground with end-of-conflict indication US11683989 2007-03-08 US07881867B2 2011-02-01 Didier Lorido; Nicolas Marty; Philippe Salmon
The TAWS system, in addition to an FTLA function for detecting the risk of collision with the terrain, has an end-of-conflict announcement function COT which is activated after the cessation of a warning or alarm concerning the risk of collision with the ground originating from the FTLA function. This COT function, when activated, checks that the aircraft (A) is observing minimum vertical and lateral safe distances, and estimates the lower vertical speed margin with which a new ground collision risk warning will not be retriggered. After confirming the observance of the minimum safe distances, the COT function has an end-of-conflict message (“Clear of terrain”) sent with a lower vertical speed margin indication.
113 Method for reducing transmit power for traffic alert and collision avoidance systems and airborne collision avoidance systems US09943039 2001-08-29 US06483453B2 2002-11-19 David Oey; Ruy C. Brandao; LuAn Vanness; Larry D. King
The present invention provides a method for efficient use of the transmit power of a Traffic Alert Collision Avoidance System (TCAS) that allows enhanced surveillance range and limits radio frequency (RF) interference in crowded airspace. The method reduces power density in crowded airspace by modifying Mode S, Mode A and Mode C interrogations. During Mode S broadcasts, tracking interrogation power is reduced as a function of range. Further transmit power reduction is achieved by broadcasting a variable power density whisper-shout interrogation technique for Mode A/C aircraft when garbling is detected. If garbling is observed during a medium whisper-shout interrogation sequence, the method of the present invention attempts to clear the garbling by using focused high-density whisper-shout steps but only in the ranges where garbling was detected. Formation members can account for other formation members that are TCAS equipped using a special E-TCAS Broadcast Interrogation. The presence of other E-TCAS will be used in the RF interference limiting calculations. Aircraft flying in formation further minimize broadcast power by sharing information between the formation leader and formation aircraft.
114 无人机与载人航空器共存环境下机载自主调度系统及方法 CN201610301282.8 2016-05-09 CN105957404B 2018-10-26 丁元沅
发明涉及无人机与载人航空器共存环境下机载自主调度系统及其调度方法,包括数据接口,机载自主调度系统通过所述数据接口与无人机或载人航空器的机载系统实现数据互联,所述机载自主调度系统集成在无人机或载人航空器的机载系统中;所述机载自主调度系统包括融合接口,用于与其他提供空中间隔配备功能的机载感知规避系统和机载防撞系统有效融合。在无人机和载人航空器共存的运营环境下,尤其是在无空管直接控制的降落设施和周边空域,该发明描述的机载自主调度系统可以确保所有飞行器安全高效的降落。所述的机载自主调度系统也可以在其分布式系统协调决策机制的基础上扩展到其他自主调度指令,例如编队完成指定飞行程序等。
115 无人机与载人航空器共存环境下机载自主调度系统及方法 CN201610301282.8 2016-05-09 CN105957404A 2016-09-21 丁元沅
发明涉及无人机与载人航空器共存环境下机载自主调度系统及其调度方法,包括数据接口,机载自主调度系统通过所述数据接口与无人机或载人航空器的机载系统实现数据互联,所述机载自主调度系统集成在无人机或载人航空器的机载系统中;所述机载自主调度系统包括融合接口,用于与其他提供空中间隔配备功能的机载感知规避系统和机载防撞系统有效融合。在无人机和载人航空器共存的运营环境下,尤其是在无空管直接控制的降落设施和周边空域,该发明描述的机载自主调度系统可以确保所有飞行器安全高效的降落。所述的机载自主调度系统也可以在其分布式系统协调决策机制的基础上扩展到其他自主调度指令,例如编队完成指定飞行程序等。
116 一种基于光通信的低空交通防撞系统 CN202411434344.3 2024-10-15 CN119445905A 2025-02-14 孟浩; 李雷; 何权荣; 王秋云; 卫靖夫
发明提供一种基于光通信的低空交通防撞系统,包括:地基基本型智能防撞灯、地基综合型智能防撞灯和机载型智能防撞灯;机载型智能防撞灯,安装在低空飞行器平台上,用于按照机载防撞光通信编码格式发送飞行器光敏信号,以发送低空飞行器的位置、速度和姿态信息;地基基本型智能防撞灯,安装在地物上,用于按照地基防撞光通信编码格式发送地物光敏信号,以发送所在地物的位置、外轮廓信息;地基综合型智能防撞灯,安装在预设区域范围内的最高地物上,用于按照地基防撞光通信编码格式发送地物光敏信号,用于接收预设区域范围内低空飞行器发送的飞行器光敏信号,生成区域内空中交通概略图,并按照广播防撞光通信编码格式号广播交通概略图光敏信号;机载型智能防撞灯,还用于接收地物光敏信号和交通概略图光敏信号,并自动进行低空交通防撞。可实现基于防撞灯光通信的自动防撞信息通信,设备简单,成本较低,为提高低空飞行安全性提供技术支撑
117 一种基于撞的系统安全性评估方法 CN201811311145.8 2018-11-05 CN109543252A 2019-03-29 王小辉; 张丽; 张冕; 黄海东; 车程
一种基于撞的系统安全性评估方法,其特征在于:包括确定鸟撞危害区域、建立鸟撞破坏模型、设备独立性破坏识别、系统更改或结构防护设计、结果评估步骤。本发明查找出飞机机载系统及其设备在抗鸟撞性能上的薄弱环节,指明设计的更改方向,从而在机载系统设计上采取防护措施尽可能降低鸟撞对飞机带来的危害,以表明飞机机载系统的设计能够满足适航条款要求。
118 一种基于撞的系统安全性评估方法 CN201811311145.8 2018-11-05 CN109543252B 2022-11-22 王小辉; 张丽; 张冕; 黄海东; 车程
一种基于撞的系统安全性评估方法,其特征在于:包括确定鸟撞危害区域、建立鸟撞破坏模型、设备独立性破坏识别、系统更改或结构防护设计、结果评估步骤。本发明查找出飞机机载系统及其设备在抗鸟撞性能上的薄弱环节,指明设计的更改方向,从而在机载系统设计上采取防护措施尽可能降低鸟撞对飞机带来的危害,以表明飞机机载系统的设计能够满足适航条款要求。
119 一种机载WIFI系统构型 CN201611153150.1 2016-12-14 CN106658536A 2017-05-10 李建峰; 胡颖琼; 董刚刚
一种机载WIFI系统构型,用于飞机舱内用户通过移动终端访问机上WIFI网络,享受影音、游戏、新闻和互联网等服务。该机载WIFI系统构型含有一个机载路由器、一个机载网络服务器、一个客舱接入点、WIFI天线和3G/4G天线,机载路由器与3G/4G天线通过射频电缆连接,可自动接入附近运营商基站3G/4G网络,与地面运营中心进行通信;机载网络服务器与机载路由器通过以太网连接,与客舱接入点通过以太网连接;客舱接入点与WIFI天线通过射频电缆连接;在机载路由器与供电系统之间设有第一控制开关和两个继电器,其中一个继电器接收飞机的防撞灯打开信号,另一个继电器接收飞机的舱关闭信号;在客舱接入点与供电系统之间设有第二控制开关用于控制客舱接入点供电的接通和断开。
120 一种无人机飞行防撞方法及装置 CN200910304200.5 2009-07-10 CN101593437A 2009-12-02 杨绍文
发明公开了一种无人机飞行防撞方法及装置。该方法是在无人机上设置机载应答识别系统,机载应答识别系统与无人机上的导航飞行控制系统连接;机载应答识别系统实时发送本机机号和飞行参数,告知地面和其它飞机本机的位置和飞行参数,同时接收其它飞机的机号和飞行参数判断与其它飞机的安全距离,当本机与其它飞机的距离小于安全距离时,机载应答识别系统通过无人机的导航飞行控制系统自动躲避其它飞机。其装置包括机载应答识别系统(1),机载应答识别系统与无人机上的导航飞行控制系统(4)连接。与现有技术相比,本发明可以防止无人机在飞行中与其它飞机相撞,扩大了无人机的应用范围,也为无人机进入公共空域飞行提供了有利条件。
QQ群二维码
意见反馈