首页 / 国际专利分类库 / 作业;运输 / 超微技术 / 通过操纵单个原子、分子或作为孤立单元的极少量原子或分子的集合而形成的纳米结构;其制造或处理 / 通过操纵单个原子、分子或作为孤立单元的极少量原子或分子的集合的纳米结构的制造或处理
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
101 Products manufactured by the product or said use method for carrying out the method and said use using the scanning probe microscope tip JP2001587865 2001-05-25 JP5042432B2 2012-10-03 リチャード パイナー; スンフン ホン; チャド エー. マーキン
102 Nanowire array methods and deposition methods JP2009533413 2007-11-09 JP5009993B2 2012-08-29 ジェイ.パース ウォーラス; マーティン サミュエル; エム.ハミルトン ジェームス; ミラー ジェフリー; デュアン シャンファン; エックス.ワイ.ペレイラ チェリィ; ピー.スタンボ デイヴィット; レオン フランシスコ; ジョン シュウレ ポウル; 博 大木; 恭伸 岡田; 浩 岩田; 晃秀 柴田; 哲 根岸; 克正 藤井
The present invention provides methods and systems for nanowire alignment and deposition. Energizing (e.g., an alternating current electric field) is used to align and associate nanowires with electrodes. By modulating the energizing, the nanowires are coupled to the electrodes such that they remain in place during subsequent wash and drying steps. The invention also provides methods for transferring nanowires from one substrate to another in order to prepare various device substrates. The present invention also provides methods for monitoring and controlling the number of nanowires deposited at a particular electrode pair, as well as methods for manipulating nanowires in solution.
103 Patterning of direct write nano lithographic printing with solid feature JP2009282559 2009-12-14 JP4999913B2 2012-08-15 ミン スー; ビナヤク ピー. ドラビド; チャド エイ. マーキン; シアオガン リウ
104 Method and system for printing nanowires and other electrical elements are oriented JP2010507581 2008-05-05 JP2010530810A 2010-09-16 フリーア エリック; マーティン サミュエル; パース ジェイ.ウォーラス; エム.ハミルトン ジェームス
ナノワイヤーおよび電気的素子を表面に成長させるための方法およびシステムについて説明する。 第1の態様では、少なくとも1つのナノワイヤーを、電極対に近接するように供給する。 電極対の2つの電極によって電界を発生させて、2つの電極に少なくとも1つのナノワイヤーを関連付ける。 電極対を、転写対象となる目標面の領域に位置合わせする。 少なくとも1つのナノワイヤーを電極対からその領域に堆積させる。 別の態様では、複数の電気的素子を電極対に近接するように供給する。 電極対の2つの電極によって電界を発生させて、2つの電極に、複数の電気的素子のうちの1つの電気的素子を関連付ける。 電極対を、転写対象となる目標面の領域に位置合わせする。 上記1つの電気的素子を、電極対からその領域に堆積させる。
105 Method of manufacturing a matrix of carbon nanotubes JP2006198687 2006-07-20 JP4546428B2 2010-09-15 守善 ▲ハン▼; 亮 劉
A method for making a carbon nanotube-based device is provided. A substrate having a shadow mask layer to define an unmasked surface area thereon is provided. A sputter source is disposed on the shadow mask layer. The sputter source is configured for supplying a catalyst material and depositing the catalyst material onto the substrate. A catalyst layer including at least one catalyst block is formed on the substrate. A thickness of the at least one catalyst block is gradually decreased from one end to another opposite end thereof. The at least one catalyst block has a region with a thickness proximal or equal to an optimum thickness. A carbon source gas is introduced. At least one carbon nanotube array extending from the catalyst layer using a chemical vapor deposition process is formed. The at least one carbon nanotube array is arc-shaped, and bend in a direction of deviating from the region.
106 Inorganic-organic hybrid particle and method for producing the same JP2009030628 2009-02-13 JP2010185023A 2010-08-26 YABU HIROSHI; HIGUCHI TSUYOSHI; MOTOYOSHI KIWAMU; KOIKE KAZUTAKA
<P>PROBLEM TO BE SOLVED: To provide an inorganic-organic hybrid particle having a phase-separated structure of organic material consisting of two or more components and including inorganic material in the phases; and a method for producing the same. <P>SOLUTION: To a solution of organic material consisting of two or more components dissolved in a good solvent, a poor solvent of the organic material miscible with the good solvent is added, then the good solvent is evaporated to obtain an organic particle having a phase-separated structure of organic material. Subsequently, the organic particle and salts of one or more inorganic materials which can be coordinated with at least one of the components are mixed to obtain an inorganic ion-organic hybrid particle. Finally, the inorganic ion-organic hybrid particle is reduced to obtain an inorganic-organic hybrid particle. Thus, the inorganic-organic hybrid particle which has a phase-separated structure of organic material consisting of two or more ingredients and including one or more inorganic materials in at least one phase is obtained. <P>COPYRIGHT: (C)2010,JPO&INPIT
107 Nanotube separation and alignment equipment and, atomic force microscope of the alignment device JP2006063385 2006-03-08 JP4512054B2 2010-07-28 クラウソン、ジョセフ、イー、ジュニア
A nanodevice is disclosed wherein the gating member (150, 153'-157) can be either transverse to the conducting nanotube (150), or substantially surround the conducting nanotube (153'-157). A pseudo P-channel nanoswitch construction (150-151-152-153) as well as pseudo-CMOS nanoinverters (170-171-173-174-177-179) are disclosed and a nanomultivibrator (170-171-174-179-170'-171'-174'-179') and nanomultivibrator frequency dividing chain (174-190-190'-192-193) are disclosed operating in the sub-picosecond region. A pseudo P-channel enhancement mode power device (259, 259') is disclosed and is preferably used with an RC time constant compensation scheme (247i, 241i) to provide substantially simultaneous switching over the entire power nanoswitch (259, 259'). Nanotube separationand alignment apparati (300, 300') are disclosed, as well as improved atomic microscope probes (281-282-283-284-285-286-287, 291-292-293-294-295-297-298) and heads (310) to make and use the invention.
108 Programmable molecular manipulating method and device JP2010011350 2010-01-21 JP2010142950A 2010-07-01 BERSTIS VIKTORS
<P>PROBLEM TO BE SOLVED: To provide a method and a system for manipulating molecules. <P>SOLUTION: The system manipulates molecules by using a set of proximal probes such as those used in atomic force microscopes. An electrostatic pattern is arranged on a set of proximal probes such that each proximal probe may exert electrostatic force. The molecules are captured using those electrostatic force, and after that, the molecules can be manipulated during a state where the molecules are captured by the proximal probes. The electrostatic pattern can be modified such that the molecule moves or rotates over the set of proximal probes during the state where the molecules are captured by the set of proximal probes The electrostatic pattern can be used to bend or split the molecules during the state where the molecules are captured by the set of proximal probes, thereby it is possible for the system to bring the molecules in chemical reactions, e.g. to act as a synthetic catalyst or a synthetic enzyme. <P>COPYRIGHT: (C)2010,JPO&INPIT
109 Patterning of solid state features by direct-write nanolithographic printing JP2009282559 2009-12-14 JP2010080977A 2010-04-08 MIRKIN CHAD A; DRAVID VINAYAK P; SU MING; LIU XIAOGANG
<P>PROBLEM TO BE SOLVED: To improve a high-resolution direct patterning technology in which ink is transferred onto a substrate using a nanoscopic chip. <P>SOLUTION: A method of fabricating organic and inorganic composite nanostructures on a substrate includes a step of depositing a solution having a block copolymer and an inorganic precursor on the substrate using dip pen nanolithography. The nanostructure includes arrays of lines and/or dots having widths/diameters less than 1 micron. A device including an organic/inorganic composite nanoscale region having a nanoscale diameter other than height is provided. <P>COPYRIGHT: (C)2010,JPO&INPIT
110 Method for producing a nanowire crossbar structure, and use of the structure manufactured in that way JP2003289164 2003-08-07 JP4340961B2 2009-10-07 ヤスダ アキオ; イー フォード ウィリアム; ウェッセルズ ジュリナ
The present invention relates to a method for preparing a nanowire crossbar structure, comprising: (a) providing a substrate; (b) depositing thereon a composite structure comprising a nucleic acid-block copolymer having equidistant nucleic acid-catalyst binding sites and at least one catalyst nanoparticle functionalized to bind specifically to nucleic acid segments of the copolymer; (c) applying a directed gas flow and/or an alternating electric field onto the composite structure; and (d) applying chemical vapor deposition techniques, a use of such a structure and a structure obtainable by such a method.
111 Method of depositing a high aspect ratio structures JP2008557776 2007-03-07 JP2009528971A 2009-08-13 エスコ カウピネン; デイヴィッド ゴンザレス; アルバート ナシブリン; デイヴィッド ブラウン
【課題】HARM構造を切り離す新規な方法の提供。 合成材料の利用効率及び製品収率の改善、プロセスの間におけるHARM構造の分解の減少若しくは抑止、束を形成したHARM構造と単離状のHARM構造の分離、並びに、工業的及び商業的に有益である多種多様な基材上への、均一若しくはパターン化された堆積物の低温での形成のための方法の提供。
【解決手段】高アスペクト比分子構造(HARMS)を堆積させる方法であって、当該方法では、1つ以上のHARM構造を含んでなるエアゾールにが印加され、その力により、1つ以上の物理学的な性質及び特性に基づき、1つ以上の予め定められた位置に1つ以上のHARM構造が移動し、印加された力による1つ以上のHARM構造のパターン形成がなされる、前記方法。
【選択図】図2a
112 Molecule for processing member JP2003054656 2003-02-28 JP4168137B2 2008-10-22 淳 三宅; 史 中村; 徳幸 中村; 育夫 小幡谷; 晴治 武田
A member for molecular elaboration comprising a surface scanning probe provided so as to be able to be positioned by positioning means and, immobilized on a distal end of the probe, an enzyme. With the use of this member for molecular elaboration, for example, a strikingly high-precision enzymatic reaction, such as fragmentation, linkage or modification, can be conducted on substrate molecules arranged on a base material. Thus, the use of this member for molecular elaboration can realize a superfine elaboration on molecular level.
113 Nanostructure devices and equipment JP2000601693 2000-02-18 JP4039600B2 2008-01-30 クラウソン、ジョセフ、イー、ジュニア
A nanodevice is disclosed wherein the gating member (150, 153'-157) can be either transverse to the conducting nanotube (150), or substantially surround the conducting nanotube (153'-157). A pseudo P-channel nanoswitch construction (150-151-152-153) as well as pseudo-CMOS nanoinverters (170-171-173-174-177-179) are disclosed and a nanomultivibrator (170-171-174-179-170'-171'-174'-179') and nanomultivibrator frequency dividing chain (174-190-190'-192-193) are disclosed operating in the sub-picosecond region. A pseudo P-channel enhancement mode power device (259, 259') is disclosed and is preferably used with an RC time constant compensation scheme (247i, 241i) to provide substantially simultaneous switching over the entire power nanoswitch (259, 259'). Nanotube separationand alignment apparati (300, 300') are disclosed, as well as improved atomic microscope probes (281-282-283-284-285-286-287, 291-292-293-294-295-297-298) and heads (310) to make and use the invention.
114 Products manufactured by the product or said use method for carrying out the method and said use using the scanning probe microscope tip JP2000592858 2000-01-07 JP3963650B2 2007-08-22 パイナー、リチャード; ホン、センフン; エイ. マーキン、チャド
115 Method and apparatus for forming a three-dimensional nanoscale structures JP2006541498 2004-12-01 JP2007523468A 2007-08-16 ジェオン,セオクー; パーク,ジャンガン; ロジャーズ,ジョン,エー.
本発明は、3D構造の対称パターン及び非対称パターンを含む3D構造及び3D構造のパターンを基板表面上に形成するための方法及び装置を提供する。 本発明の方法は、数十ナノメートル〜数千ナノメートルの範囲の横寸法及び縦寸法を含む正確に選択された物理的寸法を有する3D構造を形成するための手段を与える。 一態様においては、フォトプロセスを受ける放射線感応材料とのコンフォーマル接触を確立できる適合可能なエラストマー位相マスクを備えるマスク要素を使用する方法が提供される。 他の態様においては、形成される構造の厚さ全体にわたって延在しないナノスケール形態を有する複雑な構造を形成するために、フォトプロセスのために使用する電磁放射線の時間及び/又は空間コヒーレンスが選択される。
【選択図】 図1A
116 Method for assembling carbon nano-tube and carbon nano-tube element JP2006054790 2006-03-01 JP2006247832A 2006-09-21 GI YO; FAN FENG-YAN
PROBLEM TO BE SOLVED: To provide a method for assembling a carbon nano-tube and a carbon nano-tube element capable of enhancing efficiency and being easily controlled. SOLUTION: The method includes a stage in which two conductive bodies are immersed in a solution containing the carbon nano-tube while ends of two conductive bodies are made opposed to each other; and a stage in which at least one carbon nano-tube is assembled to the ends of the two conductive bodies by applying A.C. voltage to the two conductive bodies. Further, the carbon nano-tube is provided. COPYRIGHT: (C)2006,JPO&NCIPI
117 Patterning of direct write nano lithographic printing with solid feature JP2003553339 2002-12-17 JP2005513768A 2005-05-12 ミン スー; ビナヤク ピー. ドラビド; チャド エイ. マーキン; シアオガン リウ

本発明は、ディップペン・ナノリソグラフィを用いて、ブロックコポリマーおよび無機前駆体を有する溶液を基板上に付着させる段階を含む、基板上に有機/無機複合ナノ構造を製造する方法を含む。 ナノ構造は、1ミクロン未満の幅/直径を有するラインおよび/またはドットのアレイを含む。 本発明は、高さ以外のナノスケール直径を有する無機/有機複合ナノスケール領域を含む装置を含む。
118 Nanoscale molecular arrangement equipment JP2002557883 2001-08-14 JP2004538443A 2004-12-24 エリック・ヘンダーソン; カーティス・モーシャー
本発明による装置は、1以上の堆積材料から成る1以上の堆積ドメインを含む配列を形成する専用の配列装置である。 この装置は、X,Yコントローラ、X,Y平行移動ステージ、搭載基板、堆積基板、Zコントローラ及び堆積プローブを含む。 コンピュータは、各々の構成要素の相対的な位置の全てを制御する。 さらに、この配列装置は、湿度制御システムを利用し、プローブと基板との間に、搭載基板、堆積プローブ及び堆積基板の間で堆積材料を移動させるキャピラリーブリッジを生成する。
119 Method of producing self-aligning nanochannel-array, and method of producing nanodot using self-aligning nanochannel array JP2004123814 2004-04-20 JP2004323975A 2004-11-18 YOO IN-KYEONG; JEONG SOO-HWAN; SEO SUN-AE; KIM IN-SOOK
<P>PROBLEM TO BE SOLVED: To provide a method of producing a self-aligning nanochannel-array, and to provide a method of producing nanodots using the self-aligning nanochannel-array. <P>SOLUTION: The method of producing a self-aligning nanochannel-array comprises: a stage where a first alumina layer having a channel array consisting of many channels is formed on an aluminum substrate 11 by primary anodization; a stage where the first aluminum layer is etched so as to have a prescribed depth, and many recessed grooves corresponding to the bottom part of each channel in the first alumina layer are formed on the aluminum layer 11; and a stage where a second alumina layer 14 having a channel-array consisting of many channels 14a corresponding to many recessed grooves is formed on the aluminum substrate 11 by secondary anodization. In the method of producing the self-aligning nanochannel-array, a finely aligned channel part can be obtained, and dots of a nanosize can be produced by utilizing the same. <P>COPYRIGHT: (C)2005,JPO&NCIPI
120 A method for manufacturing a semiconductor super-atom and its conjugate JP2000157613 2000-05-29 JP3527941B2 2004-05-17 史郎 塚本; 信行 小口
The present invention probides a novel method for fabricating a semiconductor super-atom and an aggregate thereof, which allows the formation of a semiconductor nano-structure with a diameter in the order of 10 nm, which is meant for constituting a core, and allows the doping of impurity atoms only to the core portion with the number of the impurity atoms being controlled. For example, droplet epitaxy is employed for the formation of the semiconductor nano-structure which constitutes the core, and scanning tunnel microscopy is employed for the doping of impurity atoms into the semiconductor nano-structure, so as to selectively introduce the impurity atoms only into the core, with the number of the impurity atoms controlled with a single-atom level accuracy
QQ群二维码
意见反馈