首页 / 国际专利分类库 / 作业;运输 / 超微技术 / 通过操纵单个原子、分子或作为孤立单元的极少量原子或分子的集合而形成的纳米结构;其制造或处理 / 通过操纵单个原子、分子或作为孤立单元的极少量原子或分子的集合而形成的纳米结构
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
41 Nanostructure-reinforced composite article and method JP2013133735 2013-06-26 JP2013248731A 2013-12-12 WARDLE BRIAN L; HART ANASTASIOS JOHN; GARCIA ENRIQUE J; ALEXANDER HENRY SLOCUM
PROBLEM TO BE SOLVED: To provide methods for uniform growth of nanostructures such as nanotubes (e.g., carbon nanotubes) on the surface of a substrate, wherein the long axes of the nanostructures may be substantially aligned.SOLUTION: Nanostructures may be further processed for use in various applications, such as composite materials. For example, a set of aligned nanostructures may be formed and transferred, either in bulk or to another surface, to another material to enhance the properties of the material. In some cases, the nanostructures may enhance the mechanical properties of a material, for example, providing mechanical reinforcement at an interface between two materials or plies. In some cases, the nanostructures may enhance thermal and/or electronic properties of a material. The present invention also provides systems and methods for growth of nanostructures, including batch processes and continuous processes.
42 Composite article and methods of nano-structural reinforcement JP2010521889 2008-08-22 JP2010536706A 2010-12-02 エンリク ホータ. ガルシア,; アレクサンダー ヘンリー スロカム,; アナスタシオス ジョン ハート,; ブライアン エル. ワードル,
本発明は、基材の表面上でのナノチューブ(例えば、カーボンナノチューブ)等のナノ構造の均一な成長のための方法を提供し、ナノ構造の長軸は実質的に整列していてもよい。 ナノ構造はさらに、複合材料等の種々の用途で使用するために処理されてもよい。 例えば、一式の整列したナノ構造が、まとめて、または別の表面へと、別の材料に形成および移動させられて材料の性質を強化してもよい。 場合によっては、ナノ構造は、材料の機械的性質を強化してもよく、例えば、2つの材料または合板層の間の界面における機械的補強を提供する。 場合によっては、ナノ構造は、材料の熱的および/または電気的性質を強化してもよい。 本発明はまた、バッチプロセスおよび連続プロセスを含む、ナノ構造の成長のためのシステムおよび方法も提供する。
43 Functional molecular element, manufacturing method thereof, and functional molecular device JP2008160815 2008-06-19 JP2010003830A 2010-01-07 MATSUI ERIKO
<P>PROBLEM TO BE SOLVED: To provide a functional molecular element capable of reducing contact resistance in an interface between an organic molecule and an electrode; a manufacturing method thereof; and a functional molecular device. <P>SOLUTION: This functional molecular element 10 is composed of electrodes 5 and 6 each formed of pSi (polysilicon) and facing each other, and a molecule arrangement structure 7; and the molecule arrangement structure includes interface modifying molecules 2 covalently bonded with surfaces of the electrodes 5 and 6 and modifying the surfaces, and drive part molecules 1 repeatedly stacked thereon in one direction. The interface modifying molecule has a nearly-disc-shaped skeleton part composed of a π-electron conjugated system, and a side chain part, and a surface forming the skeleton part is arranged nearly parallel to the surfaces of both the electrodes, and covalently bonded with Si of both the electrodes in the side chain part. The drive part molecule is composed of a π-electron conjugated system, wherein its structure or orientation is varied by electric field application to change permittivity, that is, to change conductivity, and is a functional molecule composed of a complex having a Zn ion generally at the center part. Each interface modifying molecule and each drive part molecule, and the drive part molecules are stacked on one another by inter-molecule π-π stacking. <P>COPYRIGHT: (C)2010,JPO&INPIT
44 Method for detecting a target acid using gold nanoparticles having oligonucleotides JP50891798 1997-07-21 JP4245664B2 2009-03-25 エルガニアン、ロバート; ジェイ. ストロホフ、ジェームス; シー. ミューシク、ロバート; エー. ミルキン、チャド; エル. レットシンジャー、ロバート
45 And how to use them nanoparticles with attached oligonucleotide JP2001551239 2001-01-12 JP2004501340A 2004-01-15 エルガニアン、ロバート; ガリメラ、ヴィスワナダム; ストーホフ、ジェームズ ジェイ.; タトン、トーマス アンドリュー; マーキン、チャド エイ.; ミューシク、ロバート シー.; リー、ツィ; レッシンガー、ロバート エル.
本発明は核酸の検出方法を提供する。 該方法は、核酸を、オリゴヌクレオチドを付着した1または複数種類の粒子と接触させることから成る。 該方法の1実施形態では、オリゴヌクレオチドがナノ粒子に取り付けられ、核酸の配列の一部と相補的な配列を有する。 ナノ粒子上のオリゴヌクレオチドが核酸に対してハイブリダイズした結果として、検出可能な変化(好ましくは色の変化)が生じる。 本発明は粒子を含む組成物およびキットも提供する。 本発明はさらに、独自のナノ粒子−オリゴヌクレオチド共役体の合成方法、該方法によって得られた共役体、該共役体の使用方法も提供する。 その上、本発明はナノ粒子を含むナノ材料およびナノ構造とナノ粒子を使用したナノファブリケーションの方法を提供する。 最後に、本発明は選択核酸を他の核酸から分離する方法を提供する。
46 Colloidal rod particles as nano bar code JP2001527980 2000-10-02 JP2003529128A 2003-09-30 ナタン,マイケル・ジェイ; マロウク,トーマス・イー
(57)【要約】 複数のセグメントを含み、長さが10nmから50μm、幅が5nmから50μmである独立粒子。
47 For analyte detection, addressable array using morphology dependent resonances JP2001527223 2000-09-26 JP2003510607A 2003-03-18 オレグ エイ イェヴィン; デイヴィッド アイ クライマー
(57)【要約】 2つの光源(2、3)、バンドパスフィルタ(4)、ミラー(5、6)、偏光子(7)、基板(8)、光エネルギーを光源(2、3)からマイクロキャビティに送るための光ファイバ(10)、信号解析器(21)、及びデータプロセッサ(23)から成る装置。
48 Nanoparticle and the use oligonucleotides attached thereto JP50891798 1997-07-21 JP2000516460A 2000-12-12 エルガニアン、ロバート; ジェイ. ストロホフ、ジェームス; シー. ミューシク、ロバート; エー. ミルキン、チャド; エル. レットシンジャー、ロバート
(57)【要約】 本発明は核酸を検出するための方法を提供する。 その方法は、オリゴヌクレオチドが付着した一種類以上のナノ粒子を核酸と接触させることを含む。 方法に関する一実施形態において、オリゴヌクレオチドはナノ粒子に付着し、核酸配列の一部と相補的な配列を有する。 ナノ粒子上のオリゴヌクレオチドと核酸がハイブリッド形成した結果、検出可能な変化(色の変化が好ましい)が起こる。 本発明はナノ粒子を含む組成物およびキットをも提供する。 本発明は更に、ナノ粒子を有するナノ材料およびナノ構造と、ナノ粒子を使用したナノファブリケーションの方法を提供する。 最後に、本発明は選択核酸を他の核酸から分離するための方法を提供する。
49 CONTINUOUS PROCESS FOR THE PRODUCTION OF NANOSTRUCTURES EP11176264.7 2007-05-18 EP2385016B1 2018-08-08 Hart, Anastasios John; Slocum, Alexander Henry; Wardle, Brian L.; Garcia, Enrique J.
The present invention provides a continuous method for growing nanostructures comprising the steps of: depositing a catalyst material onto the surface of a growth substrate; exposing a first portion of the growth substrate to a first set of conditions to cause catalytic formation of nanostructures on the surface of the growth substrate; removing nanostructures from a second portion of the growth substrate; and while exposing the first portion of the growth substrate to the first set of conditions, treating the second portion of the growth substrate to a second set of conditions to reactivate the catalyst material. An apparatus for growing nanostructures is also provided.
50 APPARATUS FOR MANUFACTURING CARBON NANOTUBE FIBER EP16830799.9 2016-07-25 EP3202958B1 2018-04-11 OH, Eu-gene; LEE, Young-Ho; KIM, Ji-Eun; KIM, Ju-Han; CHOE, Yong-Jin
Disclosed is an apparatus for manufacturing a carbon nanotube fiber.
51 SEMICONDUCTOR TRANSPORT MEMBER AND SEMICONDUCTOR CARRYING MEMBER EP15834099.2 2015-08-18 EP3185285A1 2017-06-28 MAENO, Youhei

Provided is a semiconductor transport member that includes a semiconductor mounting member capable of expressing a strong gripping force and unlikely to cause a contaminant to adhere and remain on a semiconductor side. Also provided is a semiconductor mounting member capable of expressing a strong gripping force and unlikely to cause a contaminant to adhere and remain on a semiconductor side. The semiconductor transport member of the present invention includes: a carrying base; and a semiconductor mounting member, in which: the semiconductor mounting member includes a fibrous columnar structure; the fibrous columnar structure includes a fibrous columnar structure including a plurality of fibrous columnar objects; the fibrous columnar objects are each aligned in a direction substantially perpendicular to the carrying base; and a surface of the fibrous columnar structure on an opposite side to the carrying base has a coefficient of static friction against a glass surface of 4.0 or more.

52 FUEL CELL AND METHOD FOR MANUFACTURING SAME EP14858178 2014-10-31 EP2998269A4 2016-12-07 KIM KWANGHYUN; HWANG GYO HYUN; KIM SANG HOON; CHO JUN YEON
53 Nanoparticles having oligonucleotides attached thereto and uses therefor EP07105334.2 1997-07-21 EP1818417B1 2014-02-12 Mirkin, Chad A.; Letsinger, Robert L.; Mucic, Robert C.; Storhoff, James J.; Elghanian, Robert
54 SELF-ASSEMBLED STRUCTURES COMPOSED OF SINGLE POLYPEPTIDE COMPRISING AT LEAST THREE COILED-COIL FORMING ELEMENTS EP09764333.2 2009-10-15 EP2488546A1 2012-08-22 JERALA, Roman; FEKONJA, Ota; POHAR, Jelka; GRADISAR, Helena; BENCINA, Mojca; HAFNER BRATKOVIC, Iva; BREMSAK, Robert; MIKLAVIC, Spela; JELERCIC, Urska; LUKAN, Anja; DOLES, Tibor; BOZIC, Sabina; VERCE, Marko; DEBELJAK, Nika; FRIEDERICH, Jozefa
The invention provides a self-assembled nanostructure and a process for preparing self- assembled nanostructure from polypeptides characterized by comprising at least three coiled- coil forming segments within a single polypeptide chain in defined combinations that allow assembly into defined nano-cage or into the nano-network. Nanostructures are assembled from single polypeptide chain comprising three, four or six coiled-coil forming segments that can assemble into nano-cage or into the nano-network or into nano-tubes.
55 Method of forming a composite article EP11196015.9 2007-05-18 EP2441729A1 2012-04-18 Wardle, Brian L.; Hart, Anastasios John; Garcia, Enrique J.; Slocum, Alexander Henry

The present invention provides a method of forming a composite article, comprising:

providing a substrate with a surface comprising a set of substantially aligned nanostructures on or in the surface, wherein the long axes of the nanostructures are substantially aligned in an orientation that is substantially non-parallel to the surface; and

treating the substrate with a mechanical tool to change the orientation of the nanostructures such that the long axes of the nanostructures are substantially aligned in an orientation that is parallel to the surface.

56 Continuous process for the production of nanostructures EP11176264.7 2007-05-18 EP2385016A1 2011-11-09 Hart, Anastasios John; Slocum, Alexander Henry; Wardle, Brian L.; Garcia, Enrique J.

The present invention provides a continuous method for growing nanostructures comprising the steps of:

depositing a catalyst material onto the surface of a growth substrate;

exposing a first portion of the growth substrate to a first set of conditions to cause catalytic formation of nanostructures on the surface of the growth substrate;

removing nanostructures from a second portion of the growth substrate; and

while exposing the first portion of the growth substrate to the first set of conditions, treating the second portion of the growth substrate to a second set of conditions to reactivate the catalyst material.

An apparatus for growing nanostructures is also provided.

57 FUNCTIONALIZED MOLECULAR ELEMENT, MANUFACTURING METHOD THEREOF, AND FUNCTIONALIZED MOLECULAR DEVICE EP09766593.9 2009-06-12 EP2306543A1 2011-04-06 MATSUI, Eriko

A functional molecule (10) is constructed of electrodes (5,6), which are formed of pSi (polysilicon) and are opposing each other, and a molecular array structure (7), and the molecular array structure is formed of interface modifier molecules (2), which are covalently coupled to surfaces of the electrodes (5,6) to modify the surfaces, and driver molecules (1) repeatedly stacked in one direction between the interface modifier molecules. The interface modifier molecules each have a nearly discoid skeleton of a π-electron conjugated system and side chains, are arranged with planes of their skeletons lying substantially in parallel to the surfaces of both the electrodes, and are covalently coupled at their side chains to Si atoms in both the electrodes. The driver molecules are of a π-electron conjugated system, and upon application of an electrical field, change in structure or orientation and hence change in dielectric constant, in other words, conductivity. The driver molecules are functional molecules of a complex having a Zn ion approximately at its center. The interface modifier molecules and driver molecules are stacked together by intermolecular π-π stacking, and so the driver molecules themselves.

58 NANOPARTICLES HAVING OLIGONUCLEOTIDES ATTACHED THERETO AND USES THEREFOR EP00941713 2000-06-26 EP1198591A4 2007-10-24 MIRKIN CHAD A; LETSINGER ROBERT L; MUCIC ROBERT C; STORHOFF JAMES J; ELGHANIAN ROBERT; TATON THOMAS ANDREW; PARK SO-JUNG; GARIMELLA VISWANADHAM
The invention provides methods and kits for detecting nucleic acids. The methods employ particles and substrates having oligonucleotides attached to them. The presence of a nucleic acid produces a detectable change, such as a change in color, conductivity, or optical density. The invention further provides a method of synthesizing unique nanoparticle-oligonucleotide conjugates, the conjugates produced by the method, kits comprising the conjugates, nanomaterials and nanostructures comprising the conjugates, and methods of using the conjugates.
59 CARBON-BASED FINE STRUCTURE GROUP, AGGREGATE OF CARBON BASED FINE STRUCTURES, USE THEREOF AND METHOD FOR PREPARATION THEREOF EP05734218.0 2005-04-19 EP1777195A1 2007-04-25 NAKAYAMA, Yoshikazu; NOSAKA, Toshikazu; SUEKANE, Osamu; NAGASAKA, Takeshi,; GOTO, Toshiki, OTSUKA CHEMICL Ltd.,; TSUCHIYA, Hiroyuki, NISSIN ELECTRIC Co., Ltd.,; SHIONO, Keisuke, DAIKEN CHEMICAL Co., Ltd.,

An aggregate of carbon-based fine structures in which a plurality of carbon-based fine structures are collected, wherein respective carbon-based fine structures are oriented in the same direction. The above aggregate of carbon-based fine structures is an aggregate of a plurality of carbon-based fine structures in a state they are pulled by one another with strong interaction, and has such a length that allows the improvement of the handeability and workability thereof.

60 COLLOIDAL ROD PARTICLES AS NANOBAR CODES EP00968555 2000-10-02 EP1227929A4 2004-08-18 NATAN MICHAEL J; MALLOUK THOMAS E
Freestanding particles comprising a plurality of segments, wherein the particle length is from 10 nm to 50 νm and the particle width is from 5 nm to 50 νm.
QQ群二维码
意见反馈