首页 / 国际专利分类库 / 作业;运输 / 飞行器;航空;宇宙航行 / 飞机;直升飞机 / 用于驱动飞行操纵面,增升襟翼,空气动力制动装置或扰流片的操纵系统或传动系统
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
41 Automatic camber controller and control method JP2031486 1986-02-03 JPS61188299A 1986-08-21 DAGURASU AARU FUREI
42 Fluid actuator JP13530283 1983-07-26 JPS5940003A 1984-03-05 JIEEMUSU ENU TOUUTORU; YUUJIN JIEE MAACHIN
43 JPS5637805B2 - JP12055372 1972-12-01 JPS5637805B2 1981-09-02
44 JPS5027280B1 - JP11523970 1970-12-22 JPS5027280B1 1975-09-06
45 JPS491438B1 - JP6500668 1968-09-11 JPS491438B1 1974-01-14
46 JPS4863859A - JP12055372 1972-12-01 JPS4863859A 1973-09-05
47 JPS4863152A - JP11942072 1972-11-30 JPS4863152A 1973-09-03
48 JPS4615706B1 - JP777869 1969-02-01 JPS4615706B1 1971-04-27
49 착륙장치에 조종면이 구비된 무인 비행체 KR1020150015982 2015-02-02 KR1020160094687A 2016-08-10 송용규; 김태욱
본발명에따른착륙장치에조종면이구비된무인비행체는내부에엔진을탑재하고, 엔진의동력을전달받아회전하는블레이드가구비된몸체; 및몸체에서양측으로전후방에형성된복수의착륙장치;를포함하되, 복수의착륙장치각각에소정각도만큼상하로회동하는조종면을구비하여, 부착물과의엉킴없이용이하게조종할수 있는효과가있다.
50 조종면 교정 시스템 KR1020140044598 2014-04-15 KR1020140145974A 2014-12-24 크리스토퍼제이.일레스
본 발명은 변환기의 세트(120)를 교정하기 위한 방법 및 장치에 관한 것이다. 하나의 실례로 되는 실시예에 있어서, 장치는 타킷 장치(137), 이미징 장치(139), 및 교정기(136)를 구비하여 구성된다. 이미징 장치(139)는 타킷 장치(137)가 제2 구조물(112)에 관하여 피봇 축(115)에 대해 회전되는 제1 구조물(110)에 응답하여 제1 구조물(110) 및 제2 구조물(112) 사이의 인터페이스(113)에 형성된 피봇 축(115)에 대해 이미징 장치(139)에 관하여 회전됨에 따라 타킷 장치(137)에 의해 형성된 타킷(138)의 다수의 이미지(140)를 발생시킨다. 교정기(136)는 다수의 이미지(140)를 이용해서 피봇 축(115)에 대한 타킷(138)의 다수의 각도(142)를 식별한다. 교정기(136)는 다수의 각도(142)를 이용해서 교정 정보(130)를 더 식별한다.
51 다기종 무인기용 표준 소프트웨어를 이용한 시리얼통신처리장치 KR1020130050690 2013-05-06 KR101431110B1 2014-08-19 최두열
The present invention provides a serial communication processing device using standard software for multiple kinds of unmanned aerial vehicles. The serial communication processing device includes: a flight control computer electrically connected to all kinds of equipment loaded on an aircraft to monitor the operation status, controls a sub system including a control-surface driver loaded on the aircraft, receives a data link task from a ground remote control facility, and fulfills the task; a navigation device unit electrically connected to the flight control computer, operates in an integrated GPS/INS/air data module (ADM) navigation mode, generates a data signal to compensate the posture error and velocity error of INS, and transmits the signal to the flight control computer; and a data link module loaded on the flight control computer, processes data link messages, and executes an interface function for loaded communication equipment by performing functions such as processing ground commands, transmission of flight data to the ground, and monitoring the status of the wireless communication equipment, communication quality, and communication blockage. As described above, in the present invention, by connecting a navigation sensor (NSU), a data link (ADTC), and a task control sensor (EO/IR) to the flight control computer, serial communication interfaced with multiple kinds of unmanned aerial vehicles is performed, such that the posture error and velocity error of an unmanned aerial vehicle can be quickly corrected through serial communication. As a result, the unmanned aerial vehicle can continue a safe flight, and the system stability of the unmanned aerial vehicle can be maximized.
52 조종명령 전환 시스템 및 방법 KR1020120009566 2012-01-31 KR1020130088366A 2013-08-08 김종섭; 이승덕
PURPOSE: A control command conversion system and a method thereof are provided to obtain stability by preventing the occurrence of transient response. CONSTITUTION: A control command conversion system (1) includes one or more control command control systems (10a-10n). A command converter (20) selects the one of the control command system. The control command system gives a feedback on a control command input value of an operator. A control command feedback unit (101a-101b) calculates the error of a current control command value and the given control command input value. An error maintenance device (102a-102b) maintains the calculated errors. A command compensator (104a-104b) compensates for the errors in a current control command value. [Reference numerals] (101a) First control command exchanger; (101b) Second control command exchanger; (102a) First error calculator; (102b) Second command compensator; (103a) First error maintainer; (103b) Second error maintainer; (104a) First command compensator; (104b) Second error calculator; (20) Command switch; (30a) First control command; (30b) Second control command; (AA) Final control command
53 항공기 모니터링 시스템 KR20170129155 2017-10-10 KR20180039570A 2018-04-18 GRIFFITHS ROBERT C; VOTH MITCHELL D
항공기모니터링시스템을위한방법및 장치가제공된다. 항공기모니터링시스템은항공기의날개와연관된타깃들, 카메라시스템및 모니터를포함한다. 카메라시스템은항공기의운항중에날개상의타깃들의이미지들을생성하도록구성된다. 모니터는이미지들을사용하여타깃들의움직임을측정하여, 날개움직임의식별을가능하게하도록구성된다.
54 항공기용 전륜조향장치 선택 제어기 및 그 선택의 제어 방법 KR1020140181978 2014-12-17 KR1020160073549A 2016-06-27 임강빈
본발명은항공기용전륜조향장치선택제어기및 그선택의제어방법에관한것으로, 더욱상세하게는모멘터리(Momentary) 타입스위치로형성되어전방석및 후방석에위치하는제 1 및제 2 선택스위치(110, 120)와, 항공기의비행여부를판단하여비행중 전륜조향장치에유압공급차단을선택하는 WOW(Weight On Wheel) 제한스위치(130)로이루어지며, 항공기용전륜조향장치에유압공급여부를선택하는스위칭부(100) 및상기스위칭부(100)의선택여부에따라, 항공기용전륜조향장치선택신호를판단하여유압공급을제어하는제어부(200)를포함하여구성되며, 상기제어부(200)는상기제 1 또는제 2 선택스위치(110, 120)에서홀수번째선택신호가입력될경우, 항공기용전륜조향장치선택신호로판단하고, 상기제 1 또는제 2 선택스위치(110, 120)에서짝수번째선택신호가입력될경우, 항공기용전륜조향장치선택해제신호로판단하여유압공급을제어하는것을특징으로하는항공기용전륜조향장치선택제어기에관한것이다.
55 비행기 날개, 비행기 및 플랩 시스템 KR1020157015111 2013-10-29 KR1020150094623A 2015-08-19 바스티앙센아드리아뉘스마리누스프란키스쿠스; 춘호벤미첼
비행기 날개는 주 날개와 주 날개의 트레일링 에지(trailing edge)에 플랩(flap)이 장착된 플랩 시스템을 포함한다. 연장 플랩 트랙 부재(elongate flap track member)는 주 날개에 연결되어 실질적으로 세로방향으로 이동할 수 있고, 전측 수축 위치와 후측 신장 위치 사이의 주 날개와 관계되는 지지 베어링 요소에 의해 작동된다. 플랩은 플랩 트랙 부재의 후단에 회전이 가능하도록 연결되어, 주 날개의 트레일링 에지에 실질적으로 평행한 상태로 연장되는 회전축을 중심으로 회전할 수 있다. 이를 통해 플랩은 플랩 트랙 부재가 이동할 때, 플랩 트랙 부재와 함께 이동할 수 있으며, 플랩 트랙 부재의 위치 및 이동과는 독립적으로 회전축을 중심으로 회전할 수 있다. 플랩 시스템은 2개의 액츄에이터를 가지는 액츄에이터 시스템을 포함한다. 제 1 액츄에이터는 주 날개에 연결되어 있고, 플랩과 플랩 트랙 부재에 작용하여 플랩과 플랩 트랙 부재가 함께 움직이도록 함으로써, 플랩 트랙 부재가 수축 위치와 신장 위치 사이에서 움직일 수 있도록 하는 결합부재를 갖는다. 제 2 액츄에이터 플랩 트랙 부재에 연결되어 있어, 플랩 트랙 부재가 제 1 액츄에이터에 의해 이동할 때, 제 2 액츄에이터가 플랩 트랙 부재와 함께 움직일 수 있도록 한다. 제 2 액츄에이터는 플랩이 회전축을 중심으로 회전하도록 결합하는 결합부재를 갖는다.
56 UNITIZED ROTARY ACTUATOR HINGE FITTING PCT/US2005015595 2005-05-04 WO2006076018A3 2006-10-19 AMBROSE DAVID R
An apparatus and method for installing a plurality of rotary actuator segments in a device includes a unitary hinge fitting. The unitary hinge fitting includes a first side couplable to a control surface, and a plurality of bays. Each bay is configured to receive at least one of the rotary actuator segments. The unitary hinge fitting reduces the number of components required to install rotary actuators by eliminating the shims, the shear clips, and some of the fasteners required to attach the shims and the shear clips to the hinge fittings. The resulting assembly is typically much simpler and lower in cost and weight than conventional rotary actuator installations.
57 SOLAR POWERED AIRCRAFT WITH A VARIABLE GEOMETRY WING AND TELECOMMUNICATIONS NETWORKS UTILIZING SUCH AIRCRAFT EP16756283 2016-02-24 EP3261924A4 2018-07-25 KAREM ABE; TIGNER BENJAMIN
A solar powered aircraft having segmented wings that can be reconfigured during flight to optimize collection of solar energy are described. The aircraft have rigid construction that is resistant to inclement weather and is configured to rely on free flight control at high altitude and under conventional conditions, thereby providing flight duration in excess of 2 months. The aircraft is particularly suitable for use as part of a telecommunications network. A telecommunications network incorporating such aircraft is also discussed.
58 HAPTIC FEEDBACK FOR REALTIME TRAJECTORY CONSTRAINTS EP15843757 2015-09-15 EP3198349A4 2018-05-16 CHEREPINSKY IGOR; SANE HARSHAD S
A system for receiving feedback in a flight plan of a vehicle includes a haptic-enabled device comprising a crew seat with an inceptor mounted thereto; and a processor with memory having instructions stored thereon that, when executed by the processor, cause the system to: receive signals indicative of the flight plan for the vehicle; receive deviation signals indicative of a proposed deviation in a trajectory for the flight plan; and transmit signals to the haptic-enabled device representing trajectory constraints in the proposed deviation in response to the receiving of the deviation signals.
59 Actuator-link assembly manufacturing method, actuator-link assembly designing method, and actuator-link assembly EP11156337.5 2011-03-01 EP2368796B8 2018-01-24 Ogawa, Toshiaki; Itoh, Koji; Nagashima, Makoto
In a material determining step, the material constituting an actuator and the material constituting a link are determined such that at least one of the materials contains fiber reinforced plastic. In a computing step, a computation model that defines the relationship between a control surface, the actuator, and the link is used to compute the change in gain margin with the change in a rigidity ratio, which is the ratio of the rigidity of the link to the rigidity of the actuator. The rigidities of the actuator and the link are determined in a rigidity determining step based on a result of the above-described computation, the shapes of the actuator and the link are determined in a shape determining step, and the actuator and the link are formed in a formation step, and are assembled in an assembly step.
60 SYSTEM AND METHOD FOR OPTIMIZING HORIZONTAL TAIL LOADS EP15162586.0 2015-04-07 EP2944566B1 2017-11-08 Mahmulyin, Vedad
A method of controlling an elevator of an aircraft may include identifying a current stabilizer angle of incidence of a stabilizer of the aircraft. The stabilizer may include an elevator pivotably coupled to the stabilizer. The method may further include comparing the current stabilizer angle of incidence with a threshold stabilizer angle of incidence, and selecting an elevator position limit that is more restrictive if the current stabilizer angle of incidence is greater than or equal to the threshold stabilizer angle of incidence. The method may additionally include moving the elevator to a commanded elevator position that is no greater than the elevator position limit.
QQ群二维码
意见反馈