序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
1 盖覆的坯体以及用于盖覆坯体的方法 CN201280071438.8 2012-12-28 CN104169460B 2017-05-10 R·皮通耐克; A·科勒普; R·韦森巴彻
发明涉及坯体,特别是切割元件,所述坯体至少部分地包括盖覆物,其中所述盖覆物是由一个或更多个盖覆层形成的,其中至少一个盖覆层包括和氮,或者是由这些元素形成的。根据本发明,具有铝、钛和氮的所述盖覆层至少部分地包括具有小于100nm的片层厚度的片层,其中所述片层包括具有不同相的连续的部分。本发明还涉及用于盖覆一坯体、特别是切割元件,的方法。
2 六刃铣刀 CN201310325207.1 2013-07-30 CN104338996A 2015-02-11 李志芬
发明涉及一种六刃铣刀,包括刀杆和刀头,所述刀头上设置六个螺旋状的侧切削刃以及对应的六个端刃,所述侧切削刃的螺旋α在45°-50°之间,所述侧切削刃之间设有螺旋状排屑槽,所述端刃的端刃第一后角为7°,端刃第二后角为16°,端刃前角为8°。所述刀头表面设置氮化涂层。采用上述结构后,本发明对工件被加工面进行加工时,端刃及侧切削刃对工件进行加工,加工的金属屑从螺旋角为45°-50°的排屑槽中顺利排出,不会出现金属屑堵在被加工面和刀具之间,保证被加工工件的加工精度以及质量,同时也延长了刀具的使用寿命。
3 锥度铣刀 CN201310325982.7 2013-07-30 CN104338999A 2015-02-11 李志芬
发明涉及一种锥度铣刀,包括刀柄以及刀体,所述刀体上设有若干个锥体切削刃以及若干个位于刀体端部且与锥体切削刃相对应的端刃,所述锥体切削刃呈螺旋状所述锥体切削刃的螺旋为30°,所述刀柄直径为4mm,所述刀体端部直径位于1-2.5mm之间。所述锥体切削刃设有2个。所述刀体表面设置氮化层。所述刀柄端部设有45°倒角。采用上述结构后本发明锥度铣刀加工精度高、使用寿命长且制作成本低,利于推广使用。
4 端面铣刀及其应用 CN201180012530.2 2011-03-04 CN102791408A 2012-11-21 L·博兹库尔特
一种周边分布有多个板状硬质材料切削嵌件(20)的端面铣刀(12)。所述硬质材料切削嵌件在一分度圆上设置在切削刃载体(16)的凹槽(18)内并且具有主切削边(24),所述主切削边与所述铣刀的工作面(26)之间夹一小于90°的主偏(Kr)。为了在确保较长刀具寿命的同时达到最高切削效率,选择介于10°与30°之间,优选介于15°与25°之间的主偏角(Kr),与此同时,所述主切削边(24)采用轻微外凸的设计。所述主切削边(24)通过过渡半径(R30)与副切削边(32)衔接,所述过渡半径的值介于0.5mm与1.5mm之间。轴向前角(ya)介于20°与30°之间,优选介于23°与27°之间。根据一种有益改进方案,径向前角(yr)介于-6°与-10°之间,优选介于-7°与-9°之间。
5 化物制切削工具及制造此类工具的方法 CN200780010706.4 2007-03-26 CN101410211B 2010-10-20 G·凯尔
发明涉及旋转的切削工具(1),所述工具具有一柱形支撑主轴(2)和多个单独的刀片(3),所述刀片具有基本径向的切削刃,其被螺旋地磨削并规则地分布在所述主轴的外表面上,每个刀片(3)具有一直线形的底部(4),所述底部插入与该底部形状相同的槽(5)中,每个单独的刀片(3)机械固定安装于所述主轴(2),其特征在于,所述工具还包括两盖体(8、9),所述两盖体固定在所述主轴(2)的相应底部(8′、9′)上,以加强所述刀片(3)的固定。
6 用于生产加工工具的方法以及加工工具 CN201610544522.7 2016-07-12 CN106363200A 2017-02-01 H.考珀
发明公开了用于生产加工工具的方法以及加工工具。为了实现该加工工具(2)、尤其是实心化物钻具的较长使用寿命,该加工工具设置有特殊防磨涂层(18)。在该方法中,第一步,为了形成该涂层,在切削刃(10)区域和邻接表面区域(具体为后刀面(22)和前刀面(24))中施加由第一材料制成的第一层(18A)。第二步,仅在切削刃除所施加的该第一层(18B)的第一材料。第三步,最后将由第二耐磨材料制成的第二层(18B)施加到切削刃(10)和面区域(22,24)两者。这样,使在面区域(22,24)中形成总厚度(D)较高的涂层(18)成为可能,而不存在破裂险。(10)区域中,选择性地至少部分、优选地完全去
7 用于沉积涂层的方法和涂层切削工具 CN201380028292.3 2013-05-28 CN104379796A 2015-02-25 乔恩·安德森; 马茨·约翰松; 雅各布·舍伦
发明涉及用于沉积硬质耐磨层至硬质合金的工具刀体(1)上的方法,所述硬质合金例如是烧结化物、金属陶瓷、陶瓷、立方氮化基材料或高速的硬质合金。所述方法包括使用包含元素Me的元素复合材料和/或合金化源材料,通过高度电离物理气相沉积来沉积所述层,其中Me为Ti、V、Cr、Y、Zr、Nb、Mo、Hf、Ta、W、B、Al和Si中的一种或多种,使用包含元素C、N、O和S中的一种或多种的工艺气体,和在总层沉积时间D总的至少一个部分Dhi期间,其中i=1、2、3……,施加第一基底偏置电位Ub1,其中-900V0.05D总,和在总沉积时间D总的至少一个部分Dli期间,其中i=1、2、3……,施加第二基底偏置电位Ub2,其中-150V金属加工的切削工具,其至少一部分上沉积有硬质耐磨涂层,其中所述涂层包含根据上述方法沉积的至少一个层(2)。
8 T型刀 CN201310325001.9 2013-07-30 CN104338992A 2015-02-11 李志芬
发明涉及一种T型刀,包括刀柄、刀颈以及刀头,所述刀柄与刀颈之间通过一个圆台体连接,所述刀柄、圆台体、刀颈以及刀头组成的T型刀为一体成形结构,所述刀柄的直径大于刀颈的直径,所述刀头端部设置有6个切削刃,所述刀柄的端部设有45°。所述T型刀的轴向长度L为50mm。所述刀颈的轴向长度L1为6mm,直径D为3mm。所述刀柄的直径d为6mm。所述刀头表面设有氮化层。采用上述结构后本发明能一次性加工完成外壳上的卡槽,同时能有效克服传统加工方法下无法下刀的问题,同时刀具上呃氮化铝钛镀层也有效提高了T型刀的整体性能,满足连续大规模生产的需求。
9 盖覆的坯体以及用于盖覆坯体的方法 CN201280071438.8 2012-12-28 CN104169460A 2014-11-26 R·皮通耐克; A·科勒普; R·韦森巴彻
发明涉及坯体,特别是切割元件,所述坯体至少部分地包括盖覆物,其中所述盖覆物是由一个或更多个盖覆层形成的,其中至少一个盖覆层包括和氮,或者是由这些元素形成的。根据本发明,具有铝、钛和氮的所述盖覆层至少部分地包括具有小于100nm的片层厚度的片层,其中所述片层包括具有不同相的连续的部分。本发明还涉及用于盖覆一坯体、特别是切割元件,的方法。
10 硬质多层涂层及硬质多层涂层涂敷工具 CN200580024898.5 2005-09-01 CN101102890B 2011-08-10 羽生博之; 户井原孝臣
一种硬质多层涂层,其包括:(a)基层,所述基层为在规定的部件表面交替层叠TiAlN层和TiAlN+CrN混合层;和(b)CrN层,所述CrN层设置在所述基层的上面并构成外表面。所述硬质多层涂层可进一步包括(c)中间层,所述中间层位于所述基层和CrN层之间。还公开了一种硬质多层涂层涂敷工具,其包括作为涂敷有所述硬质多层涂层的部件的工具基底。
11 化物制切削工具及制造此类工具的方法 CN200780010706.4 2007-03-26 CN101410211A 2009-04-15 G·凯尔
发明涉及旋转的切削工具(1),所述工具具有一柱形支撑主轴(2)和多个单独的刀片(3),所述刀片具有基本径向的切削刃,其被螺旋地磨削并规则地分布在所述主轴的外表面上,每个刀片(3)具有一直线形的底部(4),所述底部插入与该底部形状相同的槽(5)中,每个单独的刀片(3)机械固定安装于所述主轴(2),其特征在于,所述工具还包括两盖体(8、9),所述两盖体固定在所述主轴(2)的相应底部(8′、9′)上,以加强所述刀片(3)的固定。
12 硬质多层涂层及硬质多层涂层涂敷工具 CN200580024898.5 2005-09-01 CN101102890A 2008-01-09 羽生博之; 户井原孝臣
如图1所示,通过交替层叠TiAlN层22a和TiAlN+CrN混合层22b的基层22,能得到优异的耐磨损性和韧性,同时,由于借助于由TiAlN+CrN混合层构成的中间层24而设置在最上部并构成表面的CrN层26的摩擦系数小,提高了润滑性,即耐熔敷性。而且,由于CrN层26的化开始温度高达约700℃,在高温环境下也能稳定地保持优异的涂层特性。从而,按照用这种硬质多层涂层20涂敷的圆头铣刀10,从硬度低容易熔敷的系或合金等非铁系的被加工物到具有50HRC硬度的调质等高硬度材料,都能在大范围内得到优异的切削性能和耐久性能。
13 END-MILLS MADE OF HARD METAL AND CERAMIC COMBINED BY BRAZING METHOD US15567065 2016-12-13 US20180133811A1 2018-05-17 Evren BASKUT; Ugur Evrensel YILMAZ
The present invention is an end-mill (A) comprising a shank (B) and a cutting portion (C) along its longitudinal axis (4), and formed by combining ceramic and metal based materials via brazing method, comprising: a cutting diameter (1) varying between 2 to 20 mm, at least one web thickness (18) 0 found at a blade (26) part, at least one helix angle (10) having a cutting edge (13) thereon, a core diameter (16) that is at least 0.7 times the cutting diameter (1), at least one corner radius (5) found at the tip part of the blades (26) between the flutes (9) and axial and radial rake angles (17) at which cutting operation is made. TiAlN coating is applied over ceramic-metal based 5 end-mill (A) by PVD method in order to extend the service life of the end-mill, increase abrasion resistance, and minimize the welding (sticking) problem of chips on the cutting tools.
14 METHOD AND MILLING CUTTER FOR MACHINING HARDENED CRANKSHAFTS OR CAMSHAFTS US13874726 2013-05-01 US20130294849A1 2013-11-07 Markus Heinloth; Juergen Thomas Baer
The invention relates to a method for precision machining of crankshafts or camshafts to final dimensional tolerances Rz<10 μm, preferably ≦5 μm and concentricity tolerances ≦30 μm, preferably ≦6 μm, which have been machined and at least partially subjected to hardening, wherein after the first machining has been carried out and subsequent hardening to 45 to 60 HRC, preferably 50 to 53 HRC, a final machining is carried out by means of at least one milling tool, wherein it is provided that the final machining is carried out by means of cutting inserts made of coated hard metal. The invention further relates to a milling tool for precision machining of crankshafts or camshafts.
15 Hard Multilayer Coating, and Hard Multiyayer Coated Tool Including the Hard Multilayer Coating US11659338 2005-09-01 US20080124531A1 2008-05-29 Hiroyuki Hanyu; Takaomi Toihara
A hard multilayer coating including: (a) a backing layer which is to be disposed on a body and which includes a TiAIN layer and a TiAlN+CrN mixture layer that are alternately superposed on each other; and (b) a CrN layer which is disposed on the backing layer and which provides an outer surface of the hard multilayer coating. The hard multilayer coating may further includes (c) an intermediate layer which is interposed between the backing layer and the CrN layer. Also disclosed is a hard multilayer coated tool including a tool substrate as the body which is coated with the hard multilayer coating.
16 Radius end mill having radius edge enhanced in resistance to chipping and fracture US10390968 2003-03-18 US20030180104A1 2003-09-25 Takahito Kuroda; Ryousuke Okanishi; Yasushi Sakamoto; Katsutoshi Maeda
In a radius end mill having a bottom edge formed on the end face thereof, a radius edge designed in a substantially quarter arc shape and formed at a corner portion thereof, and an outer peripheral edge formed spirally on the side surface thereof, the bottom edge and the radius edge being continuously connected to each other at a connecting point A while the radius edge is continuously connected to each other at a connecting point B, when a view taken along a plane that passes through the connecting points A and B and crosses a rake face of the radius edge is represented by an R cross-sectional view, the rake face of the radius edge is designed to have a convex curved line extending from the connecting point A to the connecting point B in the R cross-sectional view.
17 SURFACE-COATED CUTTING TOOL AND METHOD OF MANUFACTURING THE SAME US15508298 2015-09-03 US20170283936A1 2017-10-05 Takashi Kimura; Masakuni Takahashi; Kazuaki Senbokuya; Tatsuo Hashimoto
This surface-coated cutting tool includes a cutting tool body made of tungsten carbide-based cemented carbide and a hard coating layer deposited on a surface of the cutting tool body, in which the hard coating layer has at least one (Ti1-xAlx)N layer (0.4≦X≦0.7, X is an atomic ratio) with an average layer thickness of 0.5 to 10 μm, the (Ti, Al)N layer has a cubic crystal structure, and Ia−Ib<5 is satisfied when Ia (%) is an average absorptance of the hard coating layer at a wavelength of 400 to 500 nm and Ib (%) is an average absorptance of the hard coating layer at a wavelength of 600 to 700 nm.
18 METHOD FOR PRODUCING TOOL FOR MACHINING, AND TOOL FOR MACHINING US15308321 2015-04-30 US20170051391A1 2017-02-23 Satoshi HIROTA
A tool for machining in which defective adhesion of a coating film at an interface of a layer containing titanium and an alumina layer is prevented. A method for producing a tool for machining is provided in which a coating film of a plurality of layers is formed on a surface of a base material by physical vapor deposition (PVD), the method including: a first layer formation step of forming a first layer containing a nitride or carbide of titanium on the surface of the base material; a first barrier layer formation step of forming a barrier layer that covers a surface of the first layer; and a second layer formation step of forming a second layer containing aluminum oxide on a surface of the barrier layer.
19 METHOD FOR PRODUCING A MACHINING TOOL AND MACHINING TOOL US15214909 2016-07-20 US20170021434A1 2017-01-26 HERBERT RUDOLF KAUPER
In order to achieve a long service life for a machining tool, in particular for a solid carbide drill, it is provided with a special wear protection coating. In a first method step, in order to form this coating, a first layer made of a first material is applied in the region of a cutting edge and in the adjoining surface regions, and specifically, a flank face and a rake face. In a second step, the applied first material of the first layer is selectively removed at least partially, and preferably completely, only in the region of the cutting edge. Finally, in a third method step, a second layer made of a second wear-resistant material is applied both to the cutting edge and to the face regions. In this way, a coating having a high overall thickness in the face regions is made possible, without the risk of cracking.
20 Face miller and use thereof US13592895 2012-08-23 US08979447B2 2015-03-17 Lutfi Bozkurt
The face miller is equipped with a plurality of plate-shaped hard material cutting inserts that are distributed over the circumference. The hard material cutting inserts are located on a graduated circle in pockets of a blade carrier and have a main cutting edge, which is adjusted at a cutting edge angle smaller than 90° relative to the working plane of the miller. In order to ensure maximum machining performance at a good service life, the cutting edge angle is selected to range between 10° and 30°, wherein the main cutting edge at the same time has a slightly convex design. The main cutting edge transitions into the secondary cutting edge via a transition radius having a value that ranges between 0.5 and 1.5 mm. The axial rake angle ranges between 20 and 30°. According to an advantageous further development, the radial rake angle ranges between −6° and −10°.
QQ群二维码
意见反馈