首页 / 国际专利分类库 / 电学 / 基本电子电路 / 放大器 / 涉及放大器的索引表 / .两个放大级间作为耦合元件使用的匹配电路
序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
61 偏置电路、高功率放大器和便携信息终端 CN201010174684.9 2010-05-07 CN101902207A 2010-12-01 田中聪; 高桥恭一; 长谷昌俊; 伊藤雅广
发明提供一种偏置电路、高功率放大器和便携信息终端。提供一种可以在低功率输出时减少增益变化、有助于设置输出功率并且不太可能受元件值的变化和产品之间的变化所影响的用于增益控制的偏置电路。假设在让三个偏置电路串行连接的HPA中使用。第三偏置电路的电流随着平方律特性而变化。平方律特性由包括线性放大器及其外围电路的缓冲放大器放大。第三偏置电路的输出电流根据从恒定电流源与线性放大器之间的连接点分支的连接有二极管的FET的电流可驱动性系数而变化。通过提供如下电路来控制第三偏置电路的输出电流,该电路从FET中流动的电流汲取某一数量的电流。
62 具有离散功率控制的功率放大器 CN200910226068.0 2009-11-25 CN101741322A 2010-06-16 安奎焕; 李洞护; 李彰浩; 乔伊·拉斯卡尔
提供一种具有离散功率控制的功率放大器。提供一种用于具有离散功率控制的功率放大器的系统和方法。所述系统和方法可包括:多个单元功率放大器;多个初级绕组,其中,每一初级绕组连接到所述多个单元功率放大器中对应的一个单元功率放大器的至少一个对应的输出端口;次级绕组,感应地耦合到所述多个初级绕组,其中,次级绕组提供总输出;偏置控制器,其中,偏置控制器至少部分地基于输出功率的电平,将对应的偏置电压提供给所述多个单元功率放大器中的一个或多个;开关控制器,其中,开关控制器操作,以通过对应的控制信号,来激活所述多个单元功率放大器中的至少一个或使所述多个单元功率放大器中的至少一个无效。
63 在线性功率放大器中用于使能对静态电流的动态控制的可自适应的偏置电路 CN200380106182.0 2003-11-28 CN100557947C 2009-11-04 C·乔利
一种射频(RF)线性功率放大器,其具有一个输出晶体管并且包括:一个电路装置,用于生成一个偏置信号,从而产生流过输出晶体管的静态电流;一个检测器电路,用于检测输入到所述放大器的RF输入,并根据所述RF输入的功率电平生成一个驱动信号;以及一个自适应电路,用于接收所述驱动信号并自动修改所述偏置信号和通过所述输出晶体管的所述静态电流。在所述输出级处的所述静态电流被减小和优化,以用于在所有功率输出电平上的最小耗散和最优线性。用于所述射频(RF)线性功率放大器偏置电路包括一个可自适应电路,其通过自动跟踪输入到输出级放大器的RF信号而动态修改用于该放大器的静态电流,所述RF信号在超过一个特定功率输出阈值的功率范围内。
64 具有降低的低功率电流消耗的多模式功率放大器 CN200780015894.X 2007-03-19 CN101438492A 2009-05-20 G·奥
发明公开了一种多模式RF放大器,其具有由两个功率路径组成的高和低输出功率模式。当多模式RF放大器被偏置到高功率HP模式时,经由两个(第一和第二)路径来传递实际功率。而在低功率LP模式下,仅经由第二路径来传递功率,所述第二路径被设计为在低功率(回退)工作下降低电流消耗并改善效率。在一个实施例中,多模式RF放大器具有功率放大器,但没有机械或电子开关。多模式放大器利用其中阻抗在不同功率放大器偏置条件下改变的阻抗匹配电路以便优化两种工作模式下的电流消耗,并且对于便携式应用,功率效率高。需要注意的是,在优选实施例中,即使在HP模式下,传递到第二功率路径的功率也比传递到第一功率路径的功率高。
65 高频功率放大器、高频功率放大器和便携式电话 CN02126221.7 2002-07-15 CN100413212C 2008-08-20 加贺谷修; 大西正己; 关根健治; 田上知纪
为了提供一种小尺寸的高频功率放大器,用于通过少量的开关电路而防止振荡并且高效率地输出高功率和低功率的高频信号,还提供一种高频功率放大器和便携式电话,该高频功率放大器包括相并联的放大电路A和放大电路B,其中在放大电路B的输出级上的晶体管的尺寸等于或小于在放大电路A的输出级上的晶体管的尺寸的1/4,以及开关电路连接在从放大电路A的输出级引出的信号线与接地端之间。另外,当构成放大电路B的晶体管进入不工作状态并且开关电路截止时,放大电路A输出高功率的高频信号,以及当构成放大电路A的晶体管进入不工作状态并且开关电路导通时,放大电路B输出低功率的高频信号。
66 开关装置、可切换的功率放大装置以及使用其的移动通信终端装置 CN200510069732.7 2005-02-18 CN100411316C 2008-08-13 小林智雄; 楠繁雄; 岛田将之; 鲤森俊行
发明开关装置包括:第一输入端;第二输入端,具有比第一输入信号的电平更低的电平的第二输入信号被提供给第二输入端;用于经由多个开关元件输出从第一输入端提供的第一输入信号的第一开关;用于经由多个开关元件输出从第二输入端提供的第二输入信号的第二开关块;以及控制端,控制信号被提供给该控制端,其中当输出第一输入信号时,控制信号控制第一开关块,并且当输出第二输入信号时,控制信号控制第二开关块,其中第一开关块被配置为比第二开关块具有更少数量的开关元件。
67 使用功率合成器的功率放大器 CN200710182084.5 2007-10-31 CN101188404A 2008-05-28 朴昌根; 洪圣喆
在此公开一种使用功率合成器的功率放大器,该功率放大器通过使用传输线变压器合成由用在无线通信系统中的多个功率放大器所产生的功率从而能将功率损耗最小化并提高大输出功率的功率放大器的效率。
68 高频功率放大器 CN200710180124.2 2007-10-10 CN101162928A 2008-04-16 立冈一树; 稻森正彦; 小泉治彦
小巧的高性能高频功率放大器易于调节和切换阻抗。高频功率放大器包括:第一半导体芯片,包括一个或多个高频放大装置;以及第二半导体芯片,包括一个或多个高频匹配电路装置和一个或多个开关装置。第二半导体芯片包括用于高频放大器装置的匹配电路。第二半导体芯片也包括由电容和与电容串联或并联的开关装置组成的电路。开关装置接通或者断开,使得电容连接或者不连接作为匹配电路的一部分。
69 高输出放大器 CN200480042604.7 2004-07-14 CN1926760A 2007-03-07 森一富; 新庄真太郎; 服部公春; 高桥利成; 关博昭; 太田彰; 末松宪治
一种高输出放大器,根据放大元件(3)的输出功率,变更连接在最末级的放大元件(3)和输出端子(8)之间的输出匹配电路(5)的匹配条件。由此,无需降低最大输出时的效率,即可大幅度提高低输出时的效率。并且,不需要安装DC-DC转换器,所以能够防止大型化和高成本的产生。
70 射频放大装置 CN200610105971.8 2006-07-21 CN1905357A 2007-01-31 山本兴辉
从末级放大器15中输出的互调失真经由第一控制电路16和第二控制电路17反馈到级间匹配电路14。第一控制电路16和第二控制电路17控制要从末级放大器15反馈到级间匹配电路14的互调失真的幅度和相位,使得从第一级放大器13输入到末级放大器15并由末级放大器15放大的互调失真与由末级放大器15新产生的互调失真的合成标量减小。
71 功率放大器电路 CN01807552.5 2001-03-30 CN1252913C 2006-04-19 松本秀俊; 田上知纪; 田中聪; 山下喜市
在由多数放大器构成的功率放大器的每一级上设置模拟放大器工作的基准放大器,根据输入功率电平,对在该基准放大器核心的双极性晶体管基极上流过的电流进行检测、放大,作为上述放大器核心的晶体管的基极电流供给。
72 多级放大器 CN00805904.7 2000-02-08 CN1187894C 2005-02-02 森一富; 新庄真太郎; 北林文政; 池田幸夫
在对输入信号进行逐级放大及输出的多级放大器中,把1级高通滤波器型匹配器(28)与1级低通滤波器型匹配器(29)串联连接构成级间匹配电路(26)。该结构在多级放大器的级间匹配条件的最佳化方面是有效的,可提高多级放大器的整体效率。该多级放大器适合于卫星通信、地面微波通信及移动体通信等中发送信号及接收信号的放大。
73 偏置电路 CN201720379473.6 2017-04-12 CN206775475U 2017-12-19 田中聪; 安达彻朗; 渡边一雄; 沼波雅仁; 山本靖久
本实用新型提供一种与输入信号的信号电平无关而稳定地提供偏置电流的偏置电路偏置电路向对无线频率信号进行放大的放大器提供第1偏置电流或电压,其包括:FET,该FET的漏极被提供有电源电压,从源极输出第1偏置电流或电压;第1双极型晶体管,该第1双极型晶体管的集电极与FET的栅极相连接,基极与FET的源极相连接,发射极接地,且集电极被提供有恒定电流;以及第1电容器,该第1电容器的一端与第1双极型晶体管的集电极相连接,并抑制第1双极型晶体管的集电极电压的变动。
74 MATRIX POWER AMPLIFIER EP16702935.4 2016-02-04 EP3411950A1 2018-12-12 VAN RAAY, Friedbert
A power amplifier includes a two-dimensional matrix of N×M active cells formed by stacking main terminals of multiple active cells in series. The stacks are coupled in parallel to form the two-dimensional matrix. The power amplifier includes a driver structure to coordinate the driving of the active cells so that the effective output power of the two-dimensional matrix is approximately N×M the output power of each of the active cells.
75 MULTIPLE-STAGE RF AMPLIFIER DEVICES EP18153014.8 2018-01-23 EP3367563A1 2018-08-29 MIN, Seungkee; SZYMANOWSKI, Margaret A.; CHRISTANGE, Henry Andre

A multiple-stage RF amplifier and a packaged amplifier device include driver and final-stage transistors, each having a control terminal, a first current-carrying terminal, and a second current-carrying terminal. The control terminal of the final-stage transistor is electrically coupled to the first current-carrying terminal of the driver transistor. The amplifier further includes an inter-stage circuit coupled between the first current carrying terminal of the driver transistor and a voltage reference node. The inter-stage circuit includes a first inductance, a first capacitor, and a second capacitor. The first inductance and the first capacitor are coupled in series between the first current carrying terminal and the voltage reference node, with a first intermediate node between the first inductance and the first capacitor. The second capacitor has a first terminal electrically coupled to the first intermediate node and a second terminal electrically coupled to the voltage reference node.

76 DOHERTY AMPLIFIERS AND AMPLIFIER MODULES WITH SHUNT INDUCTANCE CIRCUITS THAT AFFECT TRANSMISSION LINE LENGTH BETWEEN CARRIER AND PEAKING AMPLIFIER OUTPUTS EP17198589.8 2017-10-26 EP3337037A1 2018-06-20 WU, Yu-Ting David; KRVAVAC, Enver; SCHULTZ, Joseph Gerard

A Doherty amplifier module includes first and second amplifier die. The first amplifier die includes one or more first power transistors configured to amplify, along a first signal path, a first input RF signal to produce an amplified first RF signal. The second amplifier die includes one or more second power transistors configured to amplify, along a second signal path, a second input RF signal to produce an amplified second RF signal. A phase shift and impedance inversion element is coupled between the outputs of the first and second amplifier die. A shunt inductance circuit is coupled to the output of either or both of the first and/or second amplifier die. Each shunt inductance circuit at least partially resonates out the output capacitance of the amplifier die to which it is connected to enable the electrical length of the phase shift and impedance inversion element to be increased.

77 INTER-STAGE NETWORK FOR RADIO FREQUENCY AMPLIFIER EP16306705.1 2016-12-16 EP3337035A1 2018-06-20 Blednov, Igor

A device includes a substrate and a package input terminal. The device includes a driver amplifier mounted to the substrate and configured to receive a radio frequency input signal. A first amplifier is mounted to the substrate. The first amplifier includes a first amplifier input terminal. A second amplifier is mounted to the substrate. The second amplifier includes a second amplifier input terminal. An inter-stage network is connected between the driver amplifier and the first amplifier and between the driver amplifier and the second amplifier. The inter-stage network includes a first capacitor connected between the driver amplifier and the first amplifier input terminal, and an inductor having a first terminal and a second terminal. The first terminal of the inductor is connected to the first capacitor. The inter-stage network includes a second capacitor connected between the second terminal of the inductor and the second amplifier input terminal.

78 MULTI-PATH LOW-NOISE AMPLIFIER AND ASSOCIATED LOW-NOISE AMPLIFIER MODULE AND RECEIVER EP16178555.5 2016-07-08 EP3131205A2 2017-02-15 LU, Ying-Tsang

A receiver (100) is provided to support a plurality of carrier aggregation modes. The receiver (100) includes a low-noise amplifier (LNA) module (120) including a plurality of LNAs (124_1-124_M), wherein the LNAs (124_1 -1 24_M) are arranged to receive input signals from a plurality of input ports (110_1-110_M), respectively, and each of the LNAs (124_1-124_M) generates and outputs a plurality of noise-cancelled signals at a plurality of output terminals (122_1-122_N) of the LNA module (120).

79 Power amplifier EP11194872.5 2011-12-21 EP2515435B1 2016-04-20 Ng, Choon Yong; Takagi, Kazutaka
80 AMPLIFIER CIRCUIT WITH CROSS WIRING OF DIRECT-CURRENT SIGNALS AND MICROWAVE SIGNALS EP12877594 2012-06-19 EP2854291A4 2016-01-27 ZHANG BIN; TAO HONGQI
Disclosed is an amplifier circuit with cross wiring of direct-current signals and microwave signals. The circuit includes a circuit network unit formed of a direct-current feeding circuit and a microwave power signal circuit. The direct-current feeding circuit starts from a high-electron-mobility transistor (HEMT) drain power-up bonding point (211), and is connected to a feeding end of a tail-level HEMT transistor core (250) via a corresponding line after being connected to a first Metal-Insulator-Metal (MIM) capacitor (221) in parallel, and connected to a first micro-strip inductor (222) and symmetrical branch micro-strips (223) in series, the branch micro-strips (223) being connected to one of electrodes of second MIM capacitors (231, 234) in series. The microwave power signal circuit starts from a signal end of the tail-level HEMT transistor core (250), is combined into two paths by a corresponding line, the two paths being respectively connected to two third MIM capacitors (241, 242) in parallel, being respectively connected to the other electrode of the second MIM capacitors (231, 234) in series, being respectively connected to ground micro-strip inductors (232, 235) in parallel and respectively connected to second micro-strip inductors (233, 236) in series, and being combined into one path to be connected to a third micro-strip inductor (238), and is output by a fourth MIM capacitor (239) connected in parallel. This solution reduces the tuning allowance of a matching network, improves the output impedance of a combined port, improves a chip space utilization rate, improves heat dissipation performance, and improves power density.
QQ群二维码
意见反馈