序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
121 Power generation methods and systems US11333754 2006-01-17 US20060186669A1 2006-08-24 Frank Ruggieri; Dave Lackstrom; Napoleon Salvail; R. Draaisma
Thermodynamic energy methods and systems that provides all electrical energy and heat needs of a single residential house, commercial business or office building. The system is small enough to be stored inside the house or building. The system can generate excess electrical energy which can be sold over a power grid and allow for the house owner, building owner or energy provider (utility company) to provide income. The method and system can have combined energy conversion efficiency up to approximately 97%. Components can include amorphous materials, and the mono-tube steam generator boiler which is explosion proof when punctured, and only emits a puff of steam when punctured. The tubes can be built to pressure vessel code. The invention can use steam generators to power A/C units, domestic hot water, hot water air space heaters, other loads such as pools and spas and underground piping to eliminate ice and snow. Additionally, the invention can be used to power vehicles such as cars, and the like. Other embodiments can use thermodynamic energy methods and systems that provides electrical energy and heat needs of a residence, commercial business, or office building, that include supertropically expanding ammonia vapor against a vacuum, as generated by chemosorption, in order to convert moderate amounts of heat into mechanical energy at high efficiencies. A supertropic package system can include a source of ammonia/water, a thermal generator for heating the source of ammonia/water and generating ammonia gas, a positive displacement device for expanding the gas, and generating electricity from a power source driven by the expander.
122 System and method for hydronic space heating with electrical power generation US10832611 2004-04-27 US20050161521A1 2005-07-28 Eric Guyer
This invention provides a system and method for cogeneration of electric power and building heat that efficiently interfaces a liquid-cooled electric power generator with a multi-zone forced hot water (hydronic) space heating system. The system and method utilizes an electric generator with an electric output capacity (kW) that is near the time-averaged electric power consumption rate for the building and with a heat generation capacity that is useful for meeting building heating needs. This generator is operated as the priority source of heat for the building, but normally only when there is a demand for heat in building, with the intent of running the generator for long periods of time and generating a total amount of electric energy (kWhs) that is significant in comparison to the total electric energy consumption of the building over time. The actual onsite time-variable power demand (kW) is met by a combination of the cogenerated electric power produced on site and quantities of electric power from the public electric power grid or another external power source. Hence, useful electric power is generated on site as a by-product of the required generation of heat for space or water heating. The generator is run at a speed/operating condition that is appropriate to maintaining a long operational life.
123 System and method for warm air space heating with electrical power generation US10704358 2003-11-07 US20050098643A1 2005-05-12 Eric Guyer
This invention provides a system and method for cogeneration of building heat and electric power and that efficiently interfaces a warm air heating system with a liquid-cooled electric power generator. The system and method utilizes an electric generator that is rated at near the time-averaged electric power consumption for the building. This generator is operated as the priority source of heat for the building, but normally only when there is a demand for heat in building. In this manner, the generator can run to generate a significant part of the building's electric power but in a manner that is typically supplemented in variable quantities by power from a public power grid. The heat output is directed via a liquid coolant circuit on the generator, as needed, to the warm air heating unit for the building. The warm air heating unit blows return air through a cabinet and out to the supply duct(s). The warm liquid coolant is directed through a primary heat exchanger in the cabinet. The air is passed over this primary heat exchanger to provide heat to the building. When heat from primary heat exchanger is insufficient to heat the building fully, an auxiliary heater, operated typically by burning fuel, supplements the heat through one or more auxiliary heat exchangers arranged in line along the airflow path with the primary heat exchanger. The blower that directs the airflow is controlled variably in speed to create the most efficient use of electric power by the blower and a desirable heated air delivery temperature.
124 Cogeneration system US10943619 2004-09-17 US20050061003A1 2005-03-24 Shinji Miyauchi; Tetsuya Ueda; Masataka Ozeki
A cogeneration system of the present invention includes: a power generation system equipped with a power generator; waste heat utilization system for recovering waste heat from the power generator, storing the heat, and utilize the waste heat as an effective output thermal energy; and a waste heat utilization promoting system for promoting utilization of the effective output thermal energy in the waste heat utilization system to avoid a stop of the system associated with a heat storage amount reaching a full amount. The waste heat utilization promoting system is equipped with a stop predicting function to predict an operation stop of the power generation system by comparing a current operating state with a reference pattern and computing an operation sustainable time, and a stop warning function to give the user a warning of the operation stop with an image or sound according to stop prediction information obtained.
125 Hydraulic microturboalternator US26633 1987-02-06 US4740725A 1988-04-26 Jean-Claude Charron
The hydraulic microturboalternator comprises a plastic molding which wraps the laminated stator (2) of the microalternator while providing an interior water chamber (20) intended to receive the rotor (1) and of which the inner diameter is at least equal to the outer diameter of the rotor increased by a fraction of the radial thickness of an airgap of particular shape and size, said molded body being sealingly closed by a casing (14) which limits a water chamber (21) containing the turbine (15) and which communicates with the chamber (20). Application is to gas-operated apparatuses for the production of hot water but designed to function without a permanent ignition pilot.
126 コージェネレーションシステム及びコージェネレーションシステムの運転方法 JP2014536605 2013-09-20 JPWO2014045593A1 2016-08-18 洋文 國分; 吉村 晃久; 晃久 吉村; 楠村 浩一; 浩一 楠村; 中村 彰成; 彰成 中村
本発明に係るコージェネレーションシステムは、発電器(2)と、第1循環経路(3)と、第1熱媒体循環器(4)と、第1加熱器(5)と、第1温度検知器(7)と、第1タンク(10)と、第1弁(11A、11B)と、制御器(16)と、を備え、第1熱媒体循環器(4)は、第1加熱器(5)から第1温度検知器(7)に向かって、第1熱媒体を通流させるように構成され、制御器(16)は、第1加熱器(5)で第1熱媒体を加熱し、かつ、第1熱媒体循環器(4)が動作するよう制御する第1加熱動作を行い、第1加熱動作後に第1温度検知器(7)が検知する温度が、予め設定される第1所定温度未満である場合、又は、第1加熱動作の前後で第1温度検知器(7)が検知する温度の温度差が予め設定される第1温度差未満の温度変化である場合に、コージェネレーションシステムが異常と判定する。
127 熱電併給システムおよびその運転方法 JP2014131598 2014-06-26 JP5906421B2 2016-04-20 島田 孝徳; 加藤 玄道; 藤井 正史
128 Solar thermal system JP2010548053 2009-02-04 JP5456701B2 2014-04-02 ビスゲス・ミヒャエル
A thermal solar system including a collector that is connected to a heat sink, in particular a heat storage medium, by way of a solar circuit containing a heat exchange medium. To reduce overheating of the system during idling and to improve the efficiency of the solar system, the solar circuit is connected temporarily to at least one heat exchanger by way of a valve control unit disposed at a hot side of a thermogenerator receiving an inflowing heat flow. A thermal insulation reduces the exchange of thermal energy between the collector of a thermal solar system and the heat exchanger.
129 Combined heat and power system for home use JP2013545996 2011-07-19 JP2014505221A 2014-02-27 チャン クォン パク,
【課題】本発明は、家庭用熱電併給システムに関し、発電部と、前記発電部の廃熱が伝達されて直に蓄熱させる蓄熱タンクと、前記蓄熱タンクと連結されて、水を温水又は暖房水として活用するためにバーナーによって加熱される主熱交換器を備えた家庭用熱電併給システムにおいて、前記発電部と蓄熱タンクとの間に熱媒体が充填された廃熱熱交換器が設けられるが、前記廃熱熱交換器内の一側には前記発電部の廃熱パイプがコイル状に配管され、他側には前記蓄熱タンクの蓄熱パイプがコイル状に配管されて、前記熱媒体を介して前記発電部の廃熱が前記蓄熱タンクに間接的に熱交換されるように設けられ、前記蓄熱タンクから引き出された温水配管は、温水熱交換器を経て間接的に熱交換されるように配管され、前記蓄熱タンクから引き出された暖房配管は、前記暖房水熱交換器と連結され、暖房配管のうちの一部は、再び引き出されて前記温水熱交換器を経て間接的に熱交換されるように配管されたことを特徴とする、家庭用熱電併給システムを提供する。
【解決手段】本発明によれば、発電部と蓄熱タンクが間接熱交換方式に切り換えられることによって、無駄なコストとエネルギーの浪費が抑えられ、蓄熱タンクとボイラーとの間で重複する機能を共通化させて効率的なシステム設計を可能化し、多様性を確保し且つ互換性を高め、システムの嵩を減らして設置スペースの効率化が可能になる効果が得られる。
【選択図】図2
130 Thermoelectric generator JP2010548065 2009-02-12 JP5298138B2 2013-09-25 ビスゲス・ミヒャエル
A thermogenerator including several thermocouples that are electrically connected together. The thermocouples are arranged between one hot side of the thermogenerator receiving a thermal flow and a cold side that is arranged at a distance from the hot side. The thermoelectric generator that at least temporarily uses the fed thermal energy efficiently. The thermoelectric generator can be designed as a module including a collector for a thermal solar system and the thermal carrier medium flowing through the collector is guided, at least temporarily, to a thermoelectric generator by a heat exchanger.
131 Control method of distributed power generation systems and distributed power generation system JP2012558122 2012-09-13 JP5254500B1 2013-08-07 正史 藤井; 玄道 加藤; 孝徳 島田
A distributed power generation system according to the present invention includes: a distributed power generator (1) configured to generate electric power and heat, and supply the electric power and the heat to an electrical load (26) and a heat load (32); and a controller (24) configured to create an operation plan of the distributed power generator (1). The controller (24) is configured to receive load data of at least one of the electrical load (26) and the heat load (32). The controller (24) is further configured to execute a first operation mode including: setting at least one of a start-up time and a stop time of the distributed power generator (1) to create the operation plan, by setting a priority period based on at least one of a sunrise time and a sunset time, such that power generation by the distributed power generator (1) in the priority period is prioritized over power generation by the distributed power generator (1) in other periods, and determining based on at least the load data whether to cause the distributed power generator (1) to perform power generation in the other periods different from the priority period; and controlling the distributed power generator (1) based on the operation plan.
132 Optimized control of the energy supply system or energy consumption system JP2012528332 2010-09-06 JP2013504728A 2013-02-07 リッデル,フェドル デ
本発明は、局所的エネルギー供給および/またはエネルギー消費システムのための燃料制御システムに関する。 局所的エネルギーシステムは、一連の時間周期において、電を出力しつつ第1の熱流を生成する少なくとも第1の制御可能な電気ユニットと、当該一連の時間周期において、他の熱流を出力するための制御可能な燃料駆動加熱ユニットと、当該一連の時間周期において、熱流を蓄えつつ第4の熱流を出力するための制御可能な熱用バッファと、当該熱用バッファに熱的に結合されている熱流使用体を備えている。
133 Water supply system by re-circulation JP2012506647 2010-04-25 JP2012524848A 2012-10-18 カーメル,アーロン; カッツ,モシェ; ゴレリック,ボリス; フリードマン,ラム; ペテル,ヤニヴ; ポッパー,シェイ; ラルコ,イゴー; リトバク,アリー
建物内のユーザに温および冷水を供給するためのシステムは、ユーザに水を供給するための第1モードと、温水配管から冷水配管へと温水を循環させることにより所望の温度の水を供給するために準備するための第2モードと、混合チャンバを有する蛇口と、温水吸水口と、冷水吸水口と、流出口と、人間および器具を含む様々な種類のユーザに対してシステムを適応させるための機構とを備える。
【選択図】図2
134 エネルギー供給システム JP2010534168 2010-03-04 JPWO2010109781A1 2012-09-27 小原 英夫; 英夫 小原; 尾関 正高; 正高 尾関; 田中 良和; 良和 田中; 鵜飼 邦弘; 邦弘 鵜飼
及び/または熱の供給を行うエネルギー供給装置(1a)と、複数個の第2所定期間を有する第1所定期間においてエネルギー供給装置の運転時間の上限値である第1最大運転時間を設定すると共に、第1所定期間内のエネルギー供給装置の運転時間が第1最大運転時間を超えないように、第1所定期間に属する第2所定期間のそれぞれについて、エネルギー供給装置の運転時間の上限目標値である第2目標最大運転時間を演算により求めることで設定し、ある第1所定期間に含まれる過去の第2所定期間にエネルギー供給装置が実際に運転された時間に基づいて、その第1所定期間に含まれる将来の第2所定期間の第2目標最大運転時間を再設定する制御装置(6)とを備える、エネルギー供給システム。
135 Boiler unit JP2011538049 2009-11-26 JP2012510040A 2012-04-26 ジョン エヴァンズ クリストファー; デヴリアント ジェームス; ガーヴァン ブルース; バーナード ポール; モルガン ロバート
【解決手段】筐体に収容されるボイラーユニット(100)であって、ボイラーユニット(100)はソリッドステートの熱電併給装置(130)を受け入れるように構成される。 ボイラーユニット(100)は、熱を発生する暖房装置(110)と、この暖房装置(110)及びソリッドステートの熱電併給装置(130)のそれぞれを独立して制御する制御ユニット(120)とを備えている。 ボイラーユニット(100)は、ソリッドステートの熱電併給装置(130)が存在しなくても動作可能である。
【選択図】図1
136 Thermoelectric generator JP2010548065 2009-02-12 JP2011515830A 2011-05-19 ビスゲス・ミヒャエル
A thermogenerator including several thermocouples that are electrically connected together. The thermocouples are arranged between one hot side of the thermogenerator receiving a thermal flow and a cold side that is arranged at a distance from the hot side. The thermoelectric generator that at least temporarily uses the fed thermal energy efficiently. The thermoelectric generator can be designed as a module including a collector for a thermal solar system and the thermal carrier medium flowing through the collector is guided, at least temporarily, to a thermoelectric generator by a heat exchanger.
137 Topology for control of solar power supply system, the system and method JP2009523986 2007-08-08 JP2010506125A 2010-02-25 リード プレイステッド,ジョシュア
制御システムまたはコントローラ太陽モジュールアレイは、(i)目標位置における1つ以上のエネルギ消費資源による、太陽モジュールアレイ出に対する需要を、所与の期間に対してプログラムで決定すること、および(ii)決定された需要に少なくとも部分的に基づいて、太陽モジュールアレイの効率に影響を及ぼすことによって、動作させてもよい。
138 System and method for controlling cogeneration equipment JP2005283231 2005-09-29 JP2007097304A 2007-04-12 KOMURA AKIYOSHI; WATANABE MASAHIRO
<P>PROBLEM TO BE SOLVED: To efficiently supply power and heat, and to maintain power quality by restricting a voltage of a low-voltage distribution system within an allowed value, in a dispersion power source installed for respective demanders connected to the low-voltage distribution system and for supplying power and heat. <P>SOLUTION: This cogeneration equipment control system includes an operating combination calculating device for the allowed voltage range which calculates such an operational combination that the voltage of a distribution line is within the range of a specified allowable value, on the basis of the combination of the predicted value of the demand power of each demander calculated by a predicted demand power value calculating device, impedance of the distribution line recorded by a distribution line recording device, and cogeneration equipment to be operated calculated by the operating combination calculating device. <P>COPYRIGHT: (C)2007,JPO&INPIT
139 Device for generating a voltage for components of a gas heating type water heater JP2001538726 2000-10-12 JP2003515039A 2003-04-22 ニコラース デ ベア エヴァート; ヨハネス メイヤー ベマルドゥス
(57)【要約】 出口弁(18)を備えていてを案内する導管トレーンによって貫通された熱交換器(13)を有する湯沸かし器のコンポーネントのための電圧を発生するための装置が提案される。 導管トレーン(15)内に、出口弁(18)の開放時に湯沸かし器のコンポーネントのための電圧を発生するタービン発電機(30)のタービンが組み込まれている。 タービン発電機(30)のタービンが、導管トレーン(15)へ通じたバイパス内に配置されている。
140 Gas-operated generators thermal equipment JP2001528397 2000-09-14 JP2003511617A 2003-03-25 キルナー マティアス
A gas-operated generator heater having a thermoelectric energy converter in a heater housing, in which combustion air can be introduced from the surroundings and a gas-air mixture can be supplied to a burner via a blower having a downstream mixing device, with the blower taking in combustion air out of the heater housing and the gas being capable of being supplied to the mixing device, while the heat produced by the burner can be conducted to the thermoelectric energy converter for conversion into electrical energy and the part of the thermoelectric energy converter to be cooled is also cooled. Expensive water cooling of the thermoelectric energy converter, which is susceptible to breakdown, can thereby be dispensed with in that the part of the thermoelectric energy converter to be cooled is surrounded by a pot-shaped cooling tank to which the combustion air can be supplied in the bottom area from the surroundings and the combustion air heated by this part flows into the heater housing via the open top of the cooling tank.
QQ群二维码
意见反馈