序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
41 저온 열 소스의 열 에너지를 기계 에너지로 변환하기 위한 방법 및 장치 KR1020107006997 2007-11-09 KR1020100074167A 2010-07-01 렝게르트,조에르그; 렝게르트,마르티나; 루흐슬란드,캐스린; 와인버그,노베르트
The invention relates a method and to a device (1) for converting thermal energy of a low temperature heat source (20) into mechanical energy in a closed circuit. The method consists of heating a liquid working agent by transmitting heat from the low temperature source (20) and partially evaporating it in an expansion device (3). According to the invention, erosion to the condenser (8) for condensing the partially evaporated working agent can be prevented by separating the liquid phase from the evaporator phase in the partially evaporated working agent that is directly in front of the condenser (8), and only the evaporator phase is transferred to the condenser (8) for condensing and subsequently, the condensed evaporator phase and the liquid phase are merged.
42 熱源からの廃熱を機械的エネルギーに変換する有機ランキンサイクルおよびかかる有機ランキンサイクルを利用する圧縮機設備 JP2018530943 2016-08-18 JP2018529889A 2018-10-11 エーマン ヘンリク
圧縮ガスを収容した熱源(11)からの廃熱を機械的エネルギーに変換する有機ランキンサイクル(ORC)であって、有機ランキンサイクル(8)は、2相作動流体を収容した閉回路(14)を有し、閉回路(14)は、作動流体を閉回路内で、熱源(11)と熱的接触状態にある蒸発器(10)に通し、作動流体の熱的エネルギーを機械的エネルギーに変換するタービンのような膨張機(12)に通し、そして冷却要素(17)と熱的接触状態にある凝縮器(16)に通して連続的に循環させる液体ポンプ(15)を有する、有機ランキンサイクルにおいて、有機ランキンサイクル(8)は、膨張機(12)によって生じた機械的エネルギーを求める手段(21)および膨張機(12)に入っている作動流体の蒸気分率を調整する制御装置(22)を備え、制御装置(22)は、膨張機(12)によって生じる機械的エネルギーが最大であるように求めた機械的エネルギーに基づいて蒸気分率を調整することを特徴とする有機ランキンサイクル。
【選択図】図1
43 エネルギ節約方法 JP2016524900 2014-07-01 JP6401262B2 2018-10-10 ファン ベベレン,ペトルス カロルス
44 熱を機械エネルギーに変換する装置用の作動流体、装置および方法 JP2017544700 2016-03-09 JP2018512531A 2018-05-17 バーグ、ブライアン; マイケル、ブルーノ; パレデス、ステファン
【課題】熱を機械エネルギーに変換する装置(4)のための作動流体(6)を開示する。【解決手段】作動流体(6)は、1バール(105N/m2)の圧で30から250℃の間の範囲の沸騰温度を有する流体(7)と、流体(7)の液相内に分散または懸濁させているナノ粒子(8)とを含む。前記ナノ粒子(8)は、凝縮核または沸騰核として、あるいはその両方として備えられており、前記ナノ粒子(8)の表面は、凝縮または沸騰、あるいはその両方を持続させるように適合されている。【選択図】図3
45 エネルギ節約方法 JP2016524900 2014-07-01 JP2016524120A 2016-08-12 ベベレン,ペトルス カロルス ファン
加熱を必要とする第一の工業プロセスを、冷却を必要とする第二の工業プロセスに結合する装置であって、第一の工業プロセスからエネルギ回収用の第一の回路(1)が、第二の工業プロセスの冷気を作る第二の回路(2)へ熱を伝達し、エネルギ回収用の第一の回路(1)においてエネルギキャリヤが二相でありしかもエネルギ回収用の第一の回路(1)のエネルギキャリヤの圧及び温度を増加しかつ二相流体を圧縮するのに特に適しているコンプレッサ(7)によって圧縮される。【選択図】図1
46 低圧蒸気を発生させる構成および方法 JP2012524681 2009-08-11 JP5738293B2 2015-06-24 シエルフイウス,ジエフリー
47 高温熱伝達用途において用いるための安定化HFO及びHCFO組成物 JP2014051339 2014-03-14 JP2014211157A 2014-11-13 GARY ZYHOWSKI; THOMAS RAYMOND H; ALAN P COHEN
【課題】高い温度において、有害な分解生成物を生成することなく、又は他の形態でシステム及び/又は環境に影響を与えることなく用いることができる有機ランキンサイクル作動流体組成物を提供する。【解決手段】HFO作動流体は、式:CxFyHz(式中、y+z=2xであり、xは少なくとも3であり、yは少なくとも1であり、zは0又は正の数である)によって表され;HCFO作動流体は、式:CxFyHzCln(式中、y+z+n=2xであり、xは少なくとも3であり、yは少なくとも1であり、zは0又は正の数であであり、nは1又は2である)によって表されるヒドロフルオロオレフィン(HFO)及び/又はヒドロクロロフロオロオレフィン(HCFO)作動流体であり、元素状酸素と反応してそれを循環している作動流体から永久的に除去することができる少なくとも1種類の酸素除去成分;を含む有機ランキンサイクルシステム。【選択図】なし
48 System and method for efficient two-phase heat transfer in the compressed air energy storage system JP2014511485 2012-05-16 JP2014522460A 2014-09-04 トロイ オー. マクブライド,; ベンジャミン ボーリンジャー,; ジョン ベセット,; アレクサンダー ベル,; ダックス ケプシャー,; アーニー レイブン,; アダム ラウワーディンク,
種々の実施形態では、発泡体が、エネルギーを貯蔵するために圧縮され、および/またはエネルギーを回収するために膨張させられる。 液体と気体との間の熱交換を採用し、液体と気体とを混ぜ合わせ、性発泡体を形成することによってシリンダ内の気体の等温(一定温度)膨張および圧縮に近似させ、液体の表面積を増加させ、気体との高速熱交換を促進し、したがって、電密度を改善する、エネルギー貯蔵および回収システムの性能を改善する。 熱エネルギーは、典型的には、液体および気体が発泡体として混ぜ合わせられるとき、気体がよりコンパクト形状(例えば、単一柱体)を有する液体と接触されるか、またはよりコンパクト形状(例えば、楕円体、これらが非常に小さい場合でも)を有するいくつかの塊に分割されるとき、より高速で交換される。
49 pump JP2008515295 2006-06-09 JP4857335B2 2012-01-18 コバチェビッチ、アハメド; ストシック、ニコラ、ルディ; スミス、イアン、ケネス
50 Steam power cycle system JP2007523259 2005-06-28 JP4669964B2 2011-04-13 清彦 会場; 真士 岡部; 康之 池上
51 JPH0457843B2 - JP19989684 1984-09-25 JPH0457843B2 1992-09-14 SUMITOMO HIROYUKI; HORIGUCHI AKIRA
52 Waste heat recovery equipment JP19989684 1984-09-25 JPS6176710A 1986-04-19 SUMITOMO HIROYUKI; HORIGUCHI AKIRA
PURPOSE:To increase the ratio of power recovery without the need for enlarging the scale of a waste heat recovery system by sending both steam and lubricating oil into a displacement type expander and directly exposing the steam and the oil to each other inside said expander. CONSTITUTION:A displacement type expander 12, an evaporator 10 which evaporates working fluid, and a fine temperature difference heat exchanger 11 which heats lubricating oil to a high temperature are mounted inside a waste heat recovery system. The recovery system also contains a condenser 20 which condenses steam discharged from the displacement type expander 12 and a primary to the third pump 21-23 which circulate working fluid and lubricating oil. Steam and lubricating oil which are sent into the displacement type expander 12 are directly exposed to each other inside said displacement type expander, whereby superheating steam of working fluid. The ratio of power recovery can thereby be increased without the need for enlarging the scale of the waste heat recovery system.
53 ORC FOR TRANSFORMING WASTE HEAT FROM A HEAT SOURCE INTO MECHANICAL ENERGY AND COOLING SYSTEM MAKING USE OF SUCH AN ORC US15757350 2016-08-18 US20180252120A1 2018-09-06 Henrik OHMAN
An Organic Rankine Cycle (ORC) device and method for transforming heat from a heat source into mechanical energy. The ORC includes a closed circuit containing a two phase working fluid. The circuit comprises a liquid pump for circulating the working fluid consecutively through an evaporator which is configured to be placed in thermal contact with the heat source; through an expander for transforming the thermal energy of the working fluid into mechanical energy; and through a condenser which is in thermal contact with a cooling element. The expander is situated above the evaporator. The fluid outlet of the evaporator is connected to the fluid inlet of the expander by a raiser column which is filled with a mixture of liquid working fluid and of gaseous bubbles of the working fluid, which mixture is supplied to the expander.
54 IMPROVEMENTS IN ENERGY STORAGE US15577434 2016-05-27 US20180163574A1 2018-06-14 Chris Bailey; Stephen Gareth Brett; Stuart Nelmes
A cryogenic energy storage system comprising a liquefaction apparatus for liquefying a gas to form a cryogen, wherein the liquefaction apparatus is controllable to draw power from an external power source to liquefy the gas, a cryogenic storage tank in fluid communication with the liquefaction apparatus for storing cryogen produced by the liquefaction apparatus, a power recovery apparatus in fluid communication with the cryogenic storage tank for recovering power from cryogen from the cryogenic storage tank by heating the cryogen to form a gas and expanding said gas, a hot thermal store for storing hot thermal energy, wherein the hot thermal store and the power recovery apparatus are arranged so that hot thermal energy from the hot thermal store can be transferred to the gas before and/or during expansion in the power recovery apparatus, and a charging apparatus which is controllable to draw power from the external power source when the power drawn by the liquefaction apparatus is below a threshold value, and supply the cryogenic energy storage system with thermal energy.
55 Waste heat recovery system US13902719 2013-05-24 US09845711B2 2017-12-19 Timothy C. Ernst; James A. Zigan
A waste heat recovery system includes a Rankine cycle (RC) circuit having a pump, a boiler, an energy converter, and a condenser fluidly coupled via conduits in that order, to provide additional work. The additional work is fed to an input of a gearbox assembly including a capacity for oil by mechanically coupling to the energy converter to a gear assembly. An interface is positioned between the RC circuit and the gearbox assembly to partially restrict movement of oil present in the gear assembly into the RC circuit and partially restrict movement of working fluid present in the RC circuit into the gear assembly. An oil return line is fluidly connected to at least one of the conduits fluidly coupling the RC components to one another and is operable to return to the gear assembly oil that has moved across the interface from the gear assembly to the RC circuit.
56 MULTI-FUNCTIONAL FECAL WASTE AND GARBAGE PROCESSOR AND ASSOCIATED METHODS US15629642 2017-06-21 US20170283275A1 2017-10-05 Peter Janicki
At least one aspect of the technology provides a self-contained processing facility configured to convert organic, high water-content waste, such as fecal sludge and garbage, into electricity while also generating and collecting potable water.
57 Cogeneration with nucleate boiling cooled internal combustion engine US14121148 2014-08-06 US09689279B2 2017-06-27 Robert Benz
A cogeneration system for generating electricity and process steam. The system includes an internal combustion engine having a shaft and a cooling system comprising a cooling fluid adapted to circulate through the engine and to cool the engine under conditions of nucleate boiling in which at least 10 percent of the coolant exits the engine in a vapor phase. It includes a vapor separator adapted to separate the coolant that exits the engine into a vapor phase coolant and a liquid phase coolant. The engine shaft drives an electric generator to provide electric power. A hot vapor line directs hot vapor exiting the vapor separator to a hot vapor process load. A coolant circulation pump is provided to force the cooling fluid through the engine, and a hot water line is provided to return hot water exiting the vapor separator to the coolant circulation pump. In preferred embodiments the system further includes an excess steam condenser for to collecting and condensing excess steam not needed by the hot vapor load, a condensate return tank adapted to store condensate from the hot vapor load and the excess steam condenser, and a condensate return line adapted to return condensate to the coolant recirculation pump.
58 HEAT RECOVERY AND UPGRADING METHOD AND COMPRESSOR FOR USING IN SAID METHOD US14903901 2014-07-01 US20160146517A1 2016-05-26 Petrus Carolus VAN BEVEREN
A heat recovery and upgrading method includes cycles of the subsequent steps of providing a working fluid including a liquid phase in a working fluid stream; transferring heat to the working fluid stream to partially evaporate working fluid in liquid phase to obtain a two-phase working fluid stream in liquid phase and gas phase; compressing the two-phase working fluid stream so as to increase a temperature and pressure of the working fluid and to evaporate working fluid in liquid phase; and transferring heat from the working fluid stream by element of condensation of working fluid. In the first step he working fluid is preferably in a predominantly single-phase working fluid stream in liquid phase when heat is transferred to the working fluid. In the third step working fluid in liquid phase is preferably evaporated so that a two-phase working fluid stream is maintained, especially a wet gas-phase working fluid.
59 Method for Energy Saving US14903309 2014-07-01 US20160146058A1 2016-05-26 Petrus Carolus Van Beveren
Method for coupling a first heat-requiring industrial process to a second cold-requiring industrial process, whereby a first circuit for energy recovery (1) from the first industrial process transfers heat to a second circuit for cold production (2) for the second industrial process, wherein the first circuit for energy recovery (1) the energy carrier is a binary mixture of water and ammonia that has two-phases and is compressed by a compressor (7) specifically suitable for compressing a two-phase fluid such as a compressor with a Lysholm rotor or equipped with vanes, whereby all or part of the liquid phase evaporates as a result of compression such that overheating does not occur and such that less working energy must be supplied.
60 Cogeneration with nucleate boiling cooled internal combustion engine US14121148 2014-08-06 US20160040559A1 2016-02-11 Robert Benz
A cogeneration system for generating electricity and process steam. The system includes an internal combustion engine having a shaft and a cooling system comprising a cooling fluid adapted to circulate through the engine and to cool the engine under conditions of nucleate boiling in which at least 10 percent of the coolant exits the engine in a vapor phase. It includes a vapor separator adapted to separate the coolant that exits the engine into a vapor phase coolant and a liquid phase coolant. The engine shaft drives an electric generator to provide electric power. A hot vapor line directs hot vapor exiting the vapor separator to a hot vapor process load. A coolant circulation pump is provided to force the cooling fluid through the engine, and a hot water line is provided to return hot water exiting the vapor separator to the coolant circulation pump. In preferred embodiments the system further includes an excess steam condenser for to collecting and condensing excess steam not needed by the hot vapor load, a condensate return tank adapted to store condensate from the hot vapor load and the excess steam condenser, and a condensate return line adapted to return condensate to the coolant recirculation pump.
QQ群二维码
意见反馈