序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
21 对气体机余热能进行梯级回收的多能量形式输出的能源 CN201510431672.2 2015-07-21 CN105003351A 2015-10-28 舒歌群; 王轩; 田华; 车家强; 刘鹏
一种对气体机余热能进行梯级回收利用的多能量形式输出的能源塔,包括内燃机,还设置有与内燃机排出的高温气体进行热交换,使汽轮机膨胀作功的蒸气朗肯循环系统,分别与内燃机排出的高温气体、缸套水,增压空气以及水蒸气朗肯循环系统中的冷凝热进行热交换,使膨胀机膨胀作功的有机朗肯循环系统,将内燃机排出的部分缸套水作为吸收式制冷系统热源进行热交换的溴冷机组,以及与内燃机排出的高温气体终端相连用于给生活用水进行加热的热水换热器。本发明是结合建筑用能对能量品质的不同需求,提出一种多余热回收方式相结合的冷,热,电三联供余热回收系统。使得气体机余热得到了非常充分的利用,同时大大提高了整个系统的综合能源利用率,达到了节能减排的效果。
22 加热烹调器 CN201180018565.7 2011-04-27 CN102834671B 2015-05-20 西岛正浩; 内海崇; 福永高弘
发明提供一种加热烹调器,不在蒸发室内设置障碍板等障碍物,就可以防止蒸发室内的突沸进一步向加热室吹出。利用热源(2a)进行加热的蒸汽产生容器(A)设置有:蒸发室(5),由供水装置供水;导出口(31),从蒸发室(5)导出蒸汽;以及吹出口(26),将导出口(31)导出的蒸汽向收容有食品的加热室(11)吹出。在蒸发室(5)和加热室(11)之间设置有连通导出口(31)和吹出口(26)的缓冲室(6)。即使突沸水从导出口(31)进入缓冲室(6),也可以使进入的突沸水在缓冲室(6)内流动,从而难以将突沸水从吹出口(26)向加热室(11)吹出。
23 旋转机驱动系统 CN201310640925.8 2013-12-04 CN103850734A 2014-06-11 松村昌义; 足立成人; 成川裕
发明提供一种旋转机驱动系统。旋转机驱动系统具备:第1热源热交换器,接纳第1加热介质,使液态的动作介质气化;第1膨胀机,连接在旋转轴上,通过由第1热源热交换器气化的动作介质膨胀,使旋转轴旋转;旋转机,具有设在旋转轴上的转子部;第2热源热交换器,接纳第2加热介质,使液态的动作介质气化;第2膨胀机,连接在旋转轴上,通过第2加热介质膨胀,使旋转轴旋转;冷凝器,使在第1膨胀机中使用过的动作介质及在第2膨胀机中使用过的动作介质冷凝。
24 发动机组件 CN201310275043.6 2013-07-02 CN103527292A 2014-01-22 伊恩·格雷厄姆·佩格; 罗伯特·赫勒-洛伦岑
发明提供一种发动机组件,包括:发动机控制单元;具有排气的内燃机;由所述排气驱动使用的涡轮机;用于存储由所述涡轮机从所述排气回收的能量的能量存储机构;其中,所述发动机控制单元是可操作的以改变所述能量存储机构中的储能率。还提供一种混合动车辆,其包括本发明的发动机组件。本发明在几乎所有发动机运行状况下更有效回收能量。
25 可通过蒸汽过程驱动的活塞 CN201180036679.4 2011-07-06 CN103026002A 2013-04-03 N·艾森门格尔; H-C·马格尔; A·温格特
发明涉及一种活塞机(1),它能够通过蒸汽过程被驱动,尤其是用于利用内燃机的废气,该活塞机包括一个缸孔(5)、一个布置在该缸孔(5)中的缸活塞(6)、一个与缸活塞(6)连接的杆(21)和一个支承部位(37),该缸活塞在缸孔(5)中限界一个工作室(8),杆(21)和与杆(21)连接缸活塞(6)支承在该支承部位上。在此在缸活塞(6)和缸孔(5)之间设有一个圆周间隙(28)。由此阻止缸活塞(6)和缸孔(5)之间的摩擦磨损。这尤其是在通过工作室(8)的基于工作流体时是有利的,因为水蒸气没有润滑能力。
26 加热烹调器 CN201180018565.7 2011-04-27 CN102834671A 2012-12-19 西岛正浩; 内海崇; 福永高弘
发明提供一种加热烹调器,不在蒸发室内设置障碍板等障碍物,就可以防止蒸发室内的突沸进一步向加热室吹出。利用热源(2a)进行加热的蒸汽产生容器(A)设置有:蒸发室(5),由供水装置供水;导出口(31),从蒸发室(5)导出蒸汽;以及吹出口(26),将导出口(31)导出的蒸汽向收容有食品的加热室(11)吹出。在蒸发室(5)和加热室(11)之间设置有连通导出口(31)和吹出口(26)的缓冲室(6)。即使突沸水从导出口(31)进入缓冲室(6),也可以使进入的突沸水在缓冲室(6)内流动,从而难以将突沸水从吹出口(26)向加热室(11)吹出。
27 機械部品の寿命消費の信頼できる予測 JP2015518365 2012-06-19 JP2015525354A 2015-09-03 アンデション,マグヌス; ラーション,アンデシュ
本発明は機械における部品の寿命消費を予測する方法に関する。前記方法は、前記機械の負荷セッションから負荷データを受け取ること、寿命消費が決定的であると考えられる前記部品の決定的な箇所に関連付けられた複数のパラメータ組にアクセスすること、及び、各決定的な箇所について、前記負荷データ及び前記パラメータ組を入として受け取る寿命消費計算モデルを使用して寿命消費を計算すること、を含む。複数の決定的な箇所を選択することによって、異なった部品の箇所が前記負荷セッションによってどのように影響されるかの全体像が示される。【選択図】図1
28 Rotating machine Drive system JP2012265061 2012-12-04 JP2014109252A 2014-06-12 MATSUMURA MASAYOSHI; ADACHI SHIGETO; NARUKAWA YUTAKA
PROBLEM TO BE SOLVED: To make a rotating machine drive system small in size and to cut cost of the rotating machine drive system.SOLUTION: A rotating machine drive system includes: a first heat-source heat exchanger 11 receiving a first heating medium, and evaporating an operating medium in a liquid state; a first expander 13 connected to a rotational shaft 23, and rotating the rotational shaft 23 by expansion of the operating medium evaporated by the first heat-source heat exchanger 11; a rotating machine 20 including a rotor unit 20a provided on the rotational shaft 23; a second heat-source heat exchanger 12 receiving a second heating medium, and evaporating an operating medium in the liquid state; a second expander connected to the rotational shaft 23, and rotating the rotational shaft 23 by expansion of the second heating medium; and a condenser 22 condensing the operating medium used in the first expander 13 and the operating medium used in the second expander 14.
29 Output generating unit as well as the vehicle heat engine and associated with an external heat source JP2012546486 2010-12-22 JP2013515912A 2013-05-09 フレデリク オリヴィエ テヴノ
本発明は、低温作動ガスを圧縮するための手段と、外部熱源を使用して圧縮された作動ガスを加熱するための手段と、加熱されて圧縮された作動ガスを膨張させるための手段と、低温源との熱交換器を使用して作動ガスを冷却するための手段と、その後、冷却された作動ガスを圧縮手段へ戻すための手段とを備えるヒートエンジンに関する。
30 機械部品の寿命消費の信頼できる予測 JP2015518365 2012-06-19 JP6023882B2 2016-11-09 アンデション,マグヌス; ラーション,アンデシュ
31 発電所機器の過熱をリアルタイムで複数の並行した検出および分析パラメータで検出するためのシステムおよび方法 JP2015510337 2013-04-26 JP2015518619A 2015-07-02 エドワード・ディー・トンプソン
過熱検出処理システムは、異なる種類の発電所過熱検出器からのデータサンプルをリアルタイムで監視して保存する。システムは、保存された検出器出サンプル読取が、単独または他の読取との組み合わせで、監視される発電所機器の過熱を指し示すかどうかの可能性を判定する。システムは、それぞれの種類の検出器サンプル読取レベルを機器の過熱と関連付ける、情報保存装置の以前に保存された情報を参照する。また、システムは、保存されたサンプル読取の組み合わせを比較し、過熱判定信頼レベルを制定もする。信頼レベル情報は、発電所機器が過熱されているかどうかの総合的な信頼レベルを導き出すために、組み合わされる。過熱状態が任意の信頼レベルで判定される場合、過熱警報応答が開始される。追加の応答が、計算された信頼レベルの組み合わせに基づいて行われる。
32 Device for recovering energy JP8920479 1979-07-13 JPS5519985A 1980-02-13 JIYAN TEIREKAN
33 Automated maximum sustained rate system and method US15294057 2016-10-14 US10033317B2 2018-07-24 Paul Clarence Schultz
In the context of electric power generation facilities, a system and method that enable control of maximum sustained rate of change in output to accommodate changing load conditions and to facilitate efficient use of system resources are disclosed. In accordance with aspects of the disclosed subject matter, a ramp rate for an electric generator source may be set, operating parameters may be monitored, rates of change or discrepancies of the operating parameters over time may be computed; and output signals may then be used selectively to control certain system components.
34 AUTOMATED MAXIMUM SUSTAINED RATE SYSTEM AND METHOD US15294057 2016-10-14 US20180109216A1 2018-04-19 Paul Clarence Schultz
In the context of electric power generation facilities, a system and method that enable control of maximum sustained rate of change in output to accommodate changing load conditions and to facilitate efficient use of system resources are disclosed. In accordance with aspects of the disclosed subject matter, a ramp rate for an electric generator source may be set, operating parameters may be monitored, rates of change or discrepancies of the operating parameters over time may be computed; and output signals may then be used selectively to control certain system components.
35 Heat energy distribution systems and methods for power recovery US14955064 2015-12-01 US09926813B2 2018-03-27 David C. Williams
Systems and methods are provided for the recovery of mechanical power from heat energy sources via multiple heat exchangers and expanders receiving at least a portion of heat energy from a source. The distribution of heat energy from the source may be portioned, distributed, and communicated to the input of each of the heat exchangers so as to permit utilization of up to all available heat energy. In some embodiments, the system receives heat energy from more than one source at one or more temperatures. Mechanical energy from expansion of working fluid in the expanders may be communicated to other devices to perform useful work or operatively coupled to one or more generators to convert the mechanical energy into electrical energy.
36 Multiple organic rankine cycle systems and methods US14816045 2015-08-02 US09840940B2 2017-12-12 Hank Leibowitz; Hans Wain; David Williams
Systems and methods are provided for the recovery mechanical power from heat energy sources using a common working fluid comprising, in some embodiments, an organic refrigerant flowing through multiple heat exchangers and expanders. The distribution of heat energy from the source may be portioned, distributed, and communicated to each of the heat exchangers so as to permit utilization of up to all available heat energy. In some embodiments, the system utilizes up to and including all of the available heat energy from the source. The expanders may be operatively coupled to one or more generators that convert the mechanical energy of the expansion process into electrical energy, or the mechanical energy may be communicated to other devices to perform work.
37 Scale inhibition method and geothermal power generating device US14009296 2012-03-05 US09840429B2 2017-12-12 Kuniyuki Takahashi; Yoshitaka Kawahara
A method for inhibiting scale including inorganic cations, and an economically operable geothermal power generating device which can inhibit deposition of scale. The geothermal power generating device includes: an inorganic cation concentration measuring device for measuring the concentration of bivalent or more inorganic cations in geothermal water collected from a production well; a flowmeter for measuring the flow rate of the geothermal water collected from the production well; a heat removal unit for lowering the temperature of the geothermal water; a thermometer for measuring the temperature of the geothermal water after removing heat; a pH measuring device for measuring the pH of the geothermal water after removing heat; a calculation processing unit for calculating the additive amount of a scale inhibitor; and a control unit for adding the scale inhibitor to the geothermal water by the amount calculated by the calculation processing unit.
38 Cascaded power plant using low and medium temperature source fluid US14549318 2014-11-20 US09671138B2 2017-06-06 Dany Batscha; Rachel Huberman
The present invention provides a method for operating a plurality of independent, closed cycle power plant modules each having a vaporizer comprising the steps of: serially supplying a medium or low temperature source fluid to each corresponding vaporizer of one or more first plant modules, respectively, to a secondary preheater of a first module, and to a vaporizer of a terminal module, whereby to produce heat depleted source fluid; providing a primary preheater for each vaporizer; and supplying said heat depleted source fluid to all of said primary preheaters in parallel.
39 SYSTEM FOR PRODUCING HEAT SOURCE FOR HEATING OR ELECTRICITY USING MEDIUM/LOW TEMPERATURE WASTE HEAT, AND METHOD FOR CONTROLLING THE SAME US14893287 2014-05-20 US20160109138A1 2016-04-21 Min Cheol KANG; Hyo Seok LEE; Jong Kook SEONG
A system for producing a heat source for heating or electricity, using medium/low-temperature waste heat includes: an absorption-type heat pump (100) supplied with a driving heat source and heat source water to heat a low-temperature heat medium; a regenerator heat exchange unit (210) for supplying a regenerator (110) with a driving heat source using waste heat; an evaporator heat exchange unit (220) for supplying an evaporator with heat source water; a heat medium circulation line (310) for circulating a heat medium; a generation unit (400) branching off from the heat medium circulation line (310) and producing electricity; a heat production unit (500) branching off from the heat medium circulation line (310) and supplying a heat-demanding place with a heat source for heating; and a switching valve unit (600) for controlling the flow of heat medium supplied the generation unit (400) or the heat production unit (500).
40 HEAT ENERGY DISTRIBUTION SYSTEMS AND METHODS FOR POWER RECOVERY US14955064 2015-12-01 US20160084115A1 2016-03-24 Dominik Ludewig; David C. Williams
Systems and methods are provided for the recovery of mechanical power from heat energy sources via multiple heat exchangers and expanders receiving at least a portion of heat energy from a source. The distribution of heat energy from the source may be portioned, distributed, and communicated to the input of each of the heat exchangers so as to permit utilization of up to all available heat energy. In some embodiments, the system receives heat energy from more than one source at one or more temperatures. Mechanical energy from expansion of working fluid in the expanders may be communicated to other devices to perform useful work or operatively coupled to one or more generators to convert the mechanical energy into electrical energy.
QQ群二维码
意见反馈