序号 专利名 申请号 申请日 公开(公告)号 公开(公告)日 发明人
161 使用抗腐蚀/磨损性合金作为涂层金属表面的装置 CN200480028165.4 2004-03-26 CN1860244A 2006-11-08 杉山宪一; 川村聪; 中浜修平; 长坂浩志; 高山博和
适合于能在需要具有抗腐蚀性和抗磨损性的环境中使用的装置。该装置具有构件,至少所述构件的一部分由Ni-Cr-Mo-V-C基合金制成,该合金以重量计基本组成为:23~50%Cr;7-20%V;不小于1.6%且不大于(0.236V%+2)%的C;不大于40%且不小于(11-0.1×Cr%)%和(125-4×Cr%)%中任一个的Mo;和余量的Ni和不可避免的杂质。Cr、V、和Mo的总量不大于90%。
162 7FA+e1段可磨蚀涂层及其制备方法 CN200510087523.5 2005-07-22 CN1768969A 2006-05-10 J·D·惠勒; F·哈斯里普尔; C·B·吴; R·E·楚普; D·J·鲍德温; Y·-C·劳; T·E·麦戈文
一种将成型可磨蚀涂层(8,16)涂覆在基质(18)上的方法,其中使用一种或多种涂层涂覆技术将可磨蚀陶瓷涂层组合物涂覆在金属基质上,产生确定的陶瓷图案,而不需要将单个的网或栅格焊在基质上。特别地,本发明设计成能够经受在7FA+e气轮机1段部分遇到的较高操作温度,可以增加涂层寿命,而在结构或功能的整体性没有显著的退化。典型地,该栅格图案涂层从护罩前缘之后约0.43″开始,到后缘之前约1.60″结束。在菱形图案的情况下,栅格涂层(28)可以是约0.28″长,0.28″宽,总厚度约0.46″。因此,该涂层提供了所需平的可磨蚀性以及泄漏性能,并且可以以V形或菱形图案的形式使用,该图形的方向使得其对线分别与护罩的侧边垂直和平行。
163 盛放的容器及其制造方法 CN02830193.5 2002-12-06 CN1742120A 2006-03-01 清水孝一; F·卡约; 谷和美; 小林吉史
发明涉及盛放熔池的容器,其能有效防止对硅熔融体的污染,具有优异的可烧结性,机械强度和产率。这种容器的内部有一层喷涂涂层,该涂层是通过高温喷涂由金属硅(MSi),氮化硅(Si3N4)和化硅(SiO2)组成的硅复合物而形成的。
164 用于能量储存和能量转换装置的喷涂电极的制造方法 CN99801090.1 1999-06-09 CN1209482C 2005-07-06 叶辉; C·斯特罗克; 肖东三; P·R·施特鲁特; D·E·赖斯纳
一种制造电极的方法以及所得的制品,所述方法包括用添加物涂覆活性物质原料,该添加物可防止所述原料在喷涂时发生热分解,再将该经涂覆的原料热喷涂至电极基体上,在基体上形成涂层,从而制得电极。
165 用于喷涂的纳米结构的进料 CN96191409.2 1996-11-13 CN1195884C 2005-04-06 P·R·斯特拉特; B·H·基尔; R·F·保兰特
发明涉及将经过再加工的纳米颗粒粉末进料,纳米颗粒悬浮液,及有机金属液体应用在传统的喷涂沉积上,以制造高质量的纳米结构的涂层的方法。在本发明中例举了三种实施方案。在这些不同的方法中,都是用声波方法分解合成的颗粒附聚物,分散在液体介质中的纳米颗粒以及雾化液体前体。
166 等离子体构件 CN200410070358.8 2004-07-29 CN1576257A 2005-02-09 小林庆朗; 市岛雅彦; 横山优
一种耐等离子体构件,它具有一种基底材料和一层Y2O3制成的涂层,所述涂层在上述基底材料的一个表面上形成。该涂层具有一厚度为10μm或大于10μm,并且涂层的Y2O3含有在100ppm-1000ppm范围内的固溶体Si。
167 用于粉体等离子体堆焊熔接的粉末材料及堆焊熔接金属 CN99801813.9 1999-10-12 CN1112980C 2003-07-02 松井正数; 纳富启; 西尾敏昭; 前田隆之; 石原岩见; 山口哲治; 鬼束义美; 小岛雄一; 三木良治; 稻见孝
一种耐腐蚀性和弯曲特性都优良的粉体等离子体堆焊熔接用粉末材料是由含C:0.06~0.15(重%,以下同)、Si:0.2~1.0%、Mn:0.2~1.0%、Cr:17~30%、Nb:0.6~1.5%、Ni:0.5%以下,其余为Fe和不可避免的杂质所组成。
168 斜盘压缩机的旋转斜盘 CN99115988.8 1999-12-17 CN1263995A 2000-08-23 山田丰和; 洪秀明; 秋月政宪; 小久保孝; 粥川浩明; 水谷秀树
斜盘压缩机的旋转斜盘上形成的火焰喷涂层的抗咬合性比火焰喷涂层的高。本发明铝基火焰喷涂层含有:12~60%和分散在基体中的硅颗粒和石墨、无定型碳、结晶度介于石墨碳和无定形碳之间的碳及MoS2中的至少一种分散相。
169 过共晶合金汽缸衬筒及其制造方法 CN95117636.6 1995-10-24 CN1045317C 1999-09-29 弗兰兹·吕克特; 彼得·斯托克; 罗兰德·比德曼
一种汽缸衬筒,由强的过共晶合金构成,没有与熔融液无关的硬质材料微粒参与,合金在组成时细小的硅初生晶体和金属间相会自动从熔融液中析出成为硬质微粒。利用喷射压制法可使一个坯料从喷雾熔滴中成长并得到硬质微粒的均匀分布,用冷挤压使坯料成形为接近汽缸衬筒的形状。在表面经预加工和精加工后用至少在一个等级内进行搪磨的方法使位在表面下的硬质微粒暴露,形成突起在合金基体微结构其余表面之上的硬质微粒的凸台区域。
170 超共晶合金汽缸衬筒及其制造方法 CN95117636.6 1995-10-24 CN1129743A 1996-08-28 弗兰兹·吕克特; 彼得·斯托克; 罗兰德·比德曼
一种汽缸衬筒,由强的超共晶合金构成,没有与熔液无关的硬质材料微粒参与,合金在组成时细小的硅初晶和金属间相会自动从熔液中析出成为硬质微粒。利用喷雾压实法可使一个坯料从喷雾熔滴中成长并得到硬质微粒的均匀分布,用冷挤压使坯料成型为接近汽缸衬筒的形状。在表面经预加工和精加工后用至少在一个等级内进行搪磨的方法使位在表面下的硬质微粒暴露,形成突起在合金基体微结构其余表面之上的硬质微粒的高地小区。
171 带有保护涂层的石墨制品及其生产方法 CN85109647 1985-12-19 CN1006556B 1990-01-24 海茵里克·库恩; 奥拉夫·斯蒂茨; 卡尔·维默
带有粗糙开孔表面的石墨制品,由一层耐温度变化和主要含有的牢固附着的保护层1所全部连续地保护。用真空等离子喷涂法沉积此保护层1,以产生无化物并且靠内部压应起作用的延性层结构,在经受热应力期间这种结构无形成裂缝的倾向。涂敷过的石墨电极与未经保护的电极相比,在氧化性、侵蚀性和或磨蚀性气氛中剥蚀速率更低。
172 作可磨蚀涂层喷涂的多喷口等离子体喷涂设备和方法 CN87103228 1987-04-28 CN87103228A 1987-11-04 小哈罗德·威廉·佩蒂特; 查尔斯·盖伊·戴维斯; 弗雷德里克·克莱尔·沃尔登
叙述了一种同时将至少两种粉末向基质喷涂的设备和方法,两种粉末用单一的喷流载送以冲击基质。根据发明,将不同的粉末通过分别的供粉口注入喷流,方式为粉末在喷流中基本上没有混合。喷涂系统和基质相对移动产生均匀的喷粉沉积层。
173 带有保护涂层的石墨体及其生产方法 CN85109647 1985-12-19 CN85109647A 1986-08-27 海茵里克·库恩; 奥拉夫·斯蒂茨; 卡尔·维默
带有粗糙开孔表面的石墨体,由一层耐温 度变化和主要含有的牢固附着的保护层1所全部 连续地保护。用真空等离子喷涂法沉积此保护层 1,以产生无化物并且靠内部压应起作用的延性 层结构,在经受热应力期间这种结构无形成裂缝的 倾向。涂敷过的石墨电极与未经保护的电极相比,在 氧化性、侵蚀性和或磨蚀性气氛中剥蚀速率更低。
174 Internal combustion engine having a crankcase and method for producing a crankcase US13444220 2012-04-11 US10145331B2 2018-12-04 Klaus Daiker; Markus Wittmann; Martin Kunst
An internal-combustion engine has a crankcase, with at least one cylinder for accommodating a piston, the inner face of which cylinder is provided with a coating forming a running surface for the piston. The coating has a plurality of pores and the average size of the pores and/or the pore surface proportion varies over the length of the cylinder.
175 Thermal spray material, thermal spray coating and thermal spray coated article US15142204 2016-04-29 US10106466B2 2018-10-23 Nobuyuki Nagayama; Hiroyuki Ibe; Kazuyuki Tsuzuki
This invention provides a thermal spray material capable of forming a thermal spray coating excellent in plasma erosion resistance as well as in properties such as porosity and hardness. The thermal spray material comprises a rare earth element oxyhalide (RE-O—X) which comprises a rare earth element (RE), oxygen (O) and a halogen atom (X) as its elemental constituents. The thermal spray material has an X-ray diffraction pattern that shows a main peak intensity IA corresponding to the rare earth element oxyhalide, a main peak intensity IB corresponding to a rare earth element oxide and a main peak intensity IC corresponding to a rare earth element halide, satisfying a relationship [(IB+IC)/IA]<0.02.
176 CMAS-RESISTANT ENVIRONMENTAL BARRIER AND THERMAL BARRIER COATINGS US15943250 2018-04-02 US20180282851A1 2018-10-04 Ngunjoh Lawrence Ndamka; Ann Bolcavage
In some examples, an article for a high-temperature mechanical system including a substrate and a doped calcia-magnesia-alumina-silicate resistant (doped CMAS-resistant) layer on the substrate. The doped CMAS-resistant layer is a thermal barrier coating or an environmental barrier coating and includes a calcia dopant.
177 TURBINE ENGINES, ENGINE STRUCTURES, AND METHODS OF FORMING ENGINE STRUCTURES WITH IMPROVED INTERLAYER BONDING US15446867 2017-03-01 US20180252119A1 2018-09-06 Terence Whalen; Reza Oboodi; James Piascik; Don Martin Olson; Natalie Kruk
Engine structures and methods of forming the engine structures are provided herein. In an embodiment, an engine structure includes a silicon-based ceramic-containing substrate having an in-tolerance surface and one or more barrier layers disposed on the in-tolerance surface of the ceramic-containing substrate. The ceramic-containing substrate includes a bulk zone and a gradient zone. The bulk zone includes a first bulk material. The gradient zone includes the first bulk material and a second material that is different from the first bulk material. The gradient zone has a gradient of increasing concentration of the second material from the bulk zone to the in-tolerance surface of the ceramic-containing substrate.
178 Metal sheet to be heated by radiant heat transfer and method of manufacturing the same, and metal processed product having portion with different strength and method of manufacturing the same US13261170 2010-08-05 US10060017B2 2018-08-28 Yoshifumi Kobayashi; Kazuyuki Kawano; Yasunori Itoh; Shinichi Suzuki; Shintaro Yamanaka
On part of a surface of a metal sheet that is to be heated by radiant heat transfer with a near-infrared ray, a region where reflectance for a radiant ray is made lower than that of the original surface of the metal sheet is formed. As reflectance reducing treatment, painting or thermal spraying in a blackish color, plating in a blackish color, treatment for increasing roughness of the surface of the metal sheet, blasting, etching, blackening, surface layer quality changing treatment of the metal sheet, or the like can be adopted. The metal sheet is turned into a heated metal sheet partially having a different temperature by being heated by radiant heat transfer, and thereafter, the heated metal sheet is subjected to thermal processing accompanied by cooling, for example, by hot stamping.
179 INCREASING THE DENSITY OF A BOND COAT US15878970 2018-01-24 US20180222807A1 2018-08-09 Sungbo Shim; Robert Shinavski; Ann Bolcavage
An example method may include applying a bond coat comprising silicon or a silicon alloy on a surface of a ceramic or ceramic matrix composite substrate, where the bond coat comprises a plurality of pores; infiltrating a precursor into at least some pores of the plurality of pores; and heat-treating the bond coat and the precursor, where after heat-treating a porosity of the bond coat is less than about 5 vol. %, and where after heat-treating, the bond coat is substantially free of continuous porosity extending through a thickness of the bond coat.
180 Vacuum plasma sprayed coating including oxide dispersions US15084624 2016-03-30 US10006115B2 2018-06-26 Matthew R. Gold
A technique may include controlling a vacuum pump to evacuate a vacuum chamber to high vacuum; controlling a plasma spray device to deposit a coating on a substrate in the vacuum chamber using plasma spray physical vapor deposition; and controlling a source of a reactive gaseous species to introduce a controlled amount of the reactive gaseous species into the vacuum chamber during the plasma spray physical vapor deposition process. The reactive gaseous species may react with at least one constituent of the coating to form a dispersed phase in at least part of the coating.
QQ群二维码
意见反馈