首页 / 专利库 / 生物学 / 水疱性口炎病毒 / 用于检测分析物的方法和组合物

用于检测分析物的方法和组合物

阅读:229发布:2020-08-16

专利汇可以提供用于检测分析物的方法和组合物专利检索,专利查询,专利分析的服务。并且本 申请 大体上涉及系统、方法和设备,所述系统、方法和设备用于感测和/或识别病原体、基因组材料、 蛋白质 和/或其它小分子或 生物 标志物。在一些实施方式中,小型化的低成本的设备提供快速并且稳健的感测和识别。此种设备可利用微 流体 学、生物化学和 电子 学以在现场并且在床边或者靠近床边处一次检测一个或多个靶标。,下面是用于检测分析物的方法和组合物专利的具体信息内容。

1.一种用于检测靶试剂的系统,所述系统包括:
检验盒,所述检验盒包括测试孔,所述测试孔包括激励电极和敏感电极,其中,将所述测试孔配置为含有包含经历扩增程序的所述靶试剂的样品;以及
读取器设备,所述读取器设备包括:
区域,将所述区域配置为接收所述检验盒,
加热器,将所述加热器放置为在腔内对使用中的所述检验盒进行加热,
存储器,所述存储器至少储存计算机可读储存指令,以及
处理器,所述处理器由所述指令配置为至少:
使所述加热器将所述检验盒加热至预定温度,以在所述测试孔内进行所述扩增程序;
在所述扩增程序的至少部分持续时间内,向所述激励电极提供激励电流
从所述敏感电极接收信号,所述信号代表在至少由所述测试孔内的所述样品衰减后的激励电流,
将所述信号分解成电阻分量和电抗分量,
对所述电抗分量进行分析,以确定指示包含所述靶试剂的阳性样品的信号悬崖是否在所述扩增程序的至少部分持续时间内发生,以及
响应于确定所述信号悬崖发生,输出阳性测试结果,或响应于确定所述信号悬崖未发生,输出阴性测试结果。
2.如权利要求1所述的系统,其中,所述检验盒进一步包括:
样品引入区域,将所述样品引入区域配置为接收所述样品;以及
流体通道,所述流体通道将所述样品引入区域流体连接至所述测试孔。
3.如权利要求2所述的系统,其中,所述检验盒进一步包括:
密封腔室,所述密封腔室含有所述扩增程序的液体成分,所述密封腔室位于所述检验盒的具有通向所述流体通道的孔隙的区域中,其中,所述样品引入区域位于沿所述流体通道的所述孔隙和所述测试孔之间;以及
气动流体通道,所述气动流体通道将气动界面流体连接至所述检验盒的所述区域,其中,向所述测试孔提供所述扩增程序的干成分。
4.如权利要求3所述的系统,其中,所述读取器设备包括气动系统,将所述气动系统配置为通过所述气动界面施加压,所述处理器进一步由所述指令配置为至少:
将连接至致动器达致动,将所述致动器放置为使所述密封腔室破裂并且使所述液体成分流入所述检验盒的所述区域;
将所述气动系统激活,以使所述液体成分流入所述流体通道,并将在所述样品引入区域接收的所述样品运送到所述测试孔。
5.如权利要求4所述的系统,其中,所述检验盒进一步包括混合腔室,所述混合腔室位于沿所述流体通道的所述样品引入区域和所述测试孔之间,将所述混合腔室配置为将所述液体成分和所述样品混合成实质上均匀混合的测试流体。
6.如权利要求1-5中任一项所述的系统,其中,所述检验盒包括第一电极界面,所述第一电极界面包括通向所述激励电极的第一接触板和通向所述敏感电极的第二接触板。
7.如权利要求6所述的系统,其中,所述读取器设备包括第二电极界面,将所述第二电极界面配置为用在所述读取器设备的所述区域中接收的所述检验盒连接至所述第一电极界面。
8.如权利要求7所述的系统,其中,所述读取器设备进一步包括:电压源,将所述电压源配置为产生所述激励电流,并且其中,所述第二电极界面包括:
第三接触板,将所述第三接触板放置为连接至所述第一接触板,所述第三接触板连接至所述电压源;以及
第四接触板,将所述第四接触板放置为连接至所述第二接触板,所述第四接触板连接至所述存储器。
9.如权利要求1-8中任一项所述的系统,其中,为了将所述信号分解成电阻分量和电抗分量,所述处理器由所述指令进一步配置为至少:
比起其Nyquist频率更快地对信号进行采集,所述信号代表所述样品的阻抗;
将所述信号分解成同相分量和异相分量;以及
根据所述同相分量计算所述电阻分量,并且根据所述异相分量计算所述电抗分量。
10.如权利要求1-9中任一项所述的系统,其中,为了对所述电抗分量进行分析,所述处理器由所述指令进一步配置为至少从所述存储器获取所述信号悬崖的预定的预期特征。
11.如权利要求10所述的系统,其中,储存在所述存储器中的所述信号悬崖的所述预定的预期特征包括在预测所述信号悬崖发生的所述扩增程序的所述持续时间内的时间窗
12.如权利要求10-11中任一项所述的系统,其中,储存在所述存储器中的所述信号悬崖的所述预定的预期特征包括在所述电抗分量的值方面的阈值变化。
13.如权利要求10-12中任一项所述的系统,其中,储存在所述存储器中的所述信号悬崖的所述预定的预期特征包括所述电抗分量的曲线的阈值斜率,所述电抗分量的曲线代表在贯穿所述扩增程序的至少部分持续时间内采集的所述电抗分量的值。
14.如权利要求1-13中任一项所述的系统,其中,所述扩增程序包括使经处理的样品与捕获探针接触。
15.如权利要求14所述的系统,其中,所述捕获探针选自于由抗体或其抗原结合片段蛋白质受体以及核酸所组成的组。
16.如权利要求14或15所述的系统,其中,所述捕获探针包含可检测的核酸。
17.如权利要求16所述的系统,其中,将所述可检测的核酸进行扩增。
18.如权利要求1-17中任一项所述的系统,其中,所述扩增程序包括恒温扩增。
19.如权利要求17所述的系统,其中,所述扩增程序包括选自于由以下所组成的组中的恒温扩增反应:自身持续序列复制反应(3SR)、90-I、BAD Amp、交叉引物扩增(CPA)、恒温指数扩增反应(EXPAR)、恒温嵌合引物引发的核酸扩增(ICAN)、恒温多重置换扩增(IMDA)、连接介导的SDA、多重置换扩增、聚合酶螺旋反应(PSR)、限制性级联指数扩增(RCEA)、智能扩增程序(SMAP2)、单引物恒温扩增(SPIA)、基于转录的扩增系统(TAS)、转录介导的扩增(TMA)、连接酶链反应(LCR)以及多重交叉置换扩增(MCDA)。
20.如权利要求1-19中任一项所述的系统,其中,所述扩增程序包括环介导恒温扩增(LAMP)。
21.如权利要求1-20中任一项所述的系统,其中,用于在所述测试孔内进行所述扩增程序的所述预定温度高于30℃。
22.如权利要求1-21中任一项所述的系统,其中,用于在所述测试孔内进行所述扩增程序的所述预定温度高于37℃。
23.如权利要求1-22中任一项所述的系统,其中,用于在所述测试孔内进行所述扩增程序的所述预定温度高于60℃。
24.如权利要求1-23中任一项所述的系统,其中,用于在所述测试孔内进行所述扩增程序的所述预定温度处于60℃至70℃的范围内。
25.如权利要求3-24中任一项所述的系统,其中,所述扩增程序的所述液体成分包含选自于由以下所组成的组中的组分:抗体或其抗原结合片段,蛋白质受体,核酸、如引物,缓冲液,以及酶、如聚合酶。
26.如权利要求3-25中任一项所述的系统,其中,所述扩增程序的所述干成分包含选自于由以下所组成的组中的组分:抗体或其抗原结合片段,蛋白质受体,核酸、如引物,缓冲液,以及酶、如聚合酶。
27.一种用于为了靶试剂而测试样品的设备,所述设备包括:
样品引入区域,将所述样品引入区域配置为接收包含所述靶试剂的样品;
包含激励电极和敏感电极的测试孔,其中,将所述测试孔配置为:
在扩增程序期间含有所述样品,
使用所述激励电极在所述扩增程序期间向所述样品施加电流,以及
使用所述敏感电极感测信号,所述信号代表在至少由所述测试孔内的所述样品衰减后的所述电流;以及
流体通道,所述流体通道将所述样品引入区域流体连接至所述测试孔。
28.如权利要求27所述的设备,所述设备进一步包括:
密封腔室,所述密封腔室含有所述扩增程序的液体成分,所述密封腔室位于所述设备的具有通向所述流体通道的孔隙的区域中,其中,所述样品引入区域位于沿所述流体通道的所述孔隙和所述测试孔之间;以及
在所述测试孔内提供的所述扩增程序的干成分。
29.如权利要求28所述的设备,所述设备进一步包括:
尖头,将所述尖头配置为使所述密封腔室破裂并使所述液体成分流入所述区域;以及气动流体通道,所述气动流体通道将气动界面流体连接到所述设备的所述区域,将所述气动流体通道配置为向所述区域施加压力,以使所述液体成分流入所述流体通道,并将在所述样品引入区域接收到的所述样品运送到所述测试孔。
30.如权利要求29所述的设备,所述设备进一步包括混合腔室,所述混合腔室位于沿所述流体通道的所述样品引入区域和所述测试孔之间,将所述混合腔室配置为将所述液体成分和所述样品混合成实质上均匀混合的测试流体。
31.如权利要求27-30中任一项所述的设备,其中,所述检验盒包括第一电极界面,所述第一电极界面包括通向所述激励电极的第一接触板和通向所述敏感电极的第二接触板。
32.如权利要求27-31中任一项所述的设备,所述设备进一步包括电路板,所述电路板包括所述激励电极和所述敏感电极,其中,所述样品引入区域和至少部分所述流体通道以整片的液体不可渗透材料形成,并且其中,将所述电路板粘附至所述液体不可渗透材料的部分。
33.如权利要求32所述的设备,所述设备进一步包括盖,所述盖位于所述液体不可渗透材料和所述电路板上方,所述盖包括位于所述样品引入区域上方的孔隙和被配置为可松脱地封闭所述孔隙的帽。
34.如权利要求33所述的设备,其中,所述测试孔的侧面形成为穿过所述液体不可渗透材料的圆形孔隙,并且其中,所述测试孔的底部由所述电路板形成。
35.如权利要求34所述的设备,其中,所述激励电极和所述敏感电极位于所述测试孔的底部并远离所述测试孔的侧面。
36.如权利要求32-35中任一项所述的设备,其中,将所述激励电极和所述敏感电极配置为实质上与所述电路板的下层齐平。
37.如权利要求27-36中任一项所述的设备,所述设备进一步包括排气口,将所述排气口配置为从所述测试孔释放气体,其中,所述排气口由液体不可渗透、气体可渗透的过滤器覆盖
38.如权利要求27-37中任一项所述的设备,其中,所述激励电极包括设置在所述孔的中心内的圆形电极,并且其中,所述敏感电极包括同心地位于所述激励电极周围的环形电极。
39.如权利要求38所述的设备,其中,所述环形电极与所述圆形电极以约等于所述环形电极的半径的间隙分开。
40.如权利要求38所述的设备,其中,所述环形电极与所述圆形电极以所述环形电极的半径的至少两倍大的间隙分开。
41.如权利要求27-37中任一项所述的设备,其中,所述激励电极包括第一半圆形电极,并且其中,所述敏感电极包括以间隙与所述第一半圆形电极隔开的第二半圆形电极,其中,所述第一半圆形电极和第二半圆形电极的直的部分跨越所述间隙彼此相对。
42.如权利要求27-37中任一项所述的设备,其中,所述激励电极包括第一线性电极,并且其中,所述敏感电极包括与所述第一线性电极以间隙隔开的第二线性电极。
43.如权利要求27-37中任一项所述的设备,其中,所述激励电极包括第一方形电极,并且其中,所述敏感电极包括与所述第一方形电极以间隙隔开的第二方形电极。
44.如权利要求27-43中任一项所述的设备,其中,所述扩增程序包括使所述经处理的样品与捕获探针接触。
45.如权利要求44所述的设备,其中,所述捕获探针选自于由抗体或其抗原结合片段、蛋白质受体以及核酸所组成的组。
46.如权利要求44或45所述的设备,其中,所述捕获探针包括可检测的核酸。
47.如权利要求46所述的设备,其中,将所述可检测的核酸进行扩增。
48.如权利要求27-47中任一项所述的设备,其中,所述扩增程序包括恒温扩增。
49.如权利要求27-48中任一项所述的设备,其中,所述扩增程序包括选自于由以下所组成的组中的恒温扩增反应:自身持续序列复制反应(3SR)、90-I、BAD Amp、交叉引物扩增(CPA)、恒温指数扩增反应(EXPAR)、恒温嵌合引物引发的核酸扩增(ICAN)、恒温多重置换扩增(IMDA)、连接介导的SDA、多重置换扩增、聚合酶螺旋反应(PSR)、限制性级联指数扩增(RCEA)、智能扩增程序(SMAP2)、单引物恒温扩增(SPIA)、基于转录的扩增系统(TAS)、转录介导的扩增(TMA)、连接酶链反应(LCR)以及多重交叉置换扩增(MCDA)。
50.如权利要求27-49中任一项所述的设备,其中,所述扩增程序包括环介导恒温扩增(LAMP)。
51.如权利要求27-50中任一项所述的设备,其中,将所述测试孔配置为将所述样品加热至高于30℃的温度。
52.如权利要求27-51中任一项所述的设备,其中,将所述测试孔配置为将所述样品加热至高于37℃的温度。
53.如权利要求27-52中任一项所述的设备,其中,将所述测试孔配置为将所述样品加热至高于60℃的温度。
54.如权利要求27-53中任一项所述的设备,其中,将所述测试孔配置为将所述样品加热至处于60℃至70℃的范围内的温度。
55.如权利要求28-54中任一项所述的设备,其中,所述扩增程序的所述液体成分包含选自于由以下所组成的组中的组分:抗体或其抗原结合片段,蛋白质受体,核酸、如引物,缓冲液,以及酶、如聚合酶。
56.如权利要求28-55中任一项所述的设备,其中,所述扩增程序的所述干成分包含选自于由以下所组成的组中的组分:抗体或其抗原结合片段,蛋白质受体,核酸、如引物,缓冲液,以及酶、如聚合酶。
57.一种储存指令的非暂时性计算机可读介质,当通过配置为接收测试孔和包含含有靶试剂的样品的检验盒的读取器设备执行时,使所述读取器设备实施包括如下的操作:
在所述测试孔内发生的扩增程序的至少部分持续时间内,向位于所述测试孔内的所述激励电极提供激励电流;
从位于所述测试孔内的所述敏感电极接收信号,所述信号代表在至少由所述测试孔内的经历扩增的所述样品衰减后的所述激励电流;
将所述信号分解成电阻分量和电抗分量;
对所述电抗分量进行分析,以确定指示包括所述靶试剂的阳性样品的信号悬崖是否在所述扩增程序的所述至少部分持续时间内发生;以及
响应于确定所述信号悬崖发生,输出阳性测试结果,或响应于确定所述信号悬崖未发生,输出阴性测试结果。
58.如权利要求57所述的非暂时性计算机可读介质,所述操作进一步包括使加热器将所述检验盒加热到用于实施所述扩增程序的预定温度。
59.如权利要求57-58中任一项所述的非暂时性计算机可读介质,所述操作进一步包括通过网络传送所述阳性测试结果或所述阴性测试结果。
60.如权利要求57-59中任一项所述的非暂时性计算机可读介质,用于所述分解的操作进一步包括:
比起其Nyquist频率更快地对信号进行采集,所述信号代表所述样品的阻抗;
将所述信号分解成同相分量和异相分量;以及
根据所述同相分量计算所述电阻分量,并且根据所述异相分量计算所述电抗分量。
61.如权利要求57-60中任一项所述的非暂时性计算机可读介质,用于分析所述电抗分量的操作进一步包括从所述存储器获取所述信号悬崖的预定的预期特征。
62.如权利要求61所述的非暂时性计算机可读介质,其中,储存在所述存储器中的所述信号悬崖的所述预定的预期特征包括在预测所述信号悬崖发生的所述扩增程序的持续时间内的时间窗。
63.如权利要求61-62中任一项所述的非暂时性计算机可读介质,其中,储存在所述存储器中的所述信号悬崖的所述预定的预期特征包括在所述电抗分量的值方面的阈值变化。
64.如权利要求61-63中任一项所述的非暂时性计算机可读介质,其中,储存在所述存储器中的所述信号悬崖的所述预定的预期特征包括所述电抗分量的曲线的阈值斜率,所述电抗分量的曲线代表在贯穿所述扩增程序的至少部分持续时间内采集的所述电抗分量的值。
65.如权利要求57-64中任一项所述的非暂时性计算机可读介质,所述操作进一步包括将气动系统激活,以将压力施加至所述检验盒的流体通道,从而引起所述样品与在所述检验盒中提供的所述扩增程序的成分混合,并流入所述测试孔。
66.如权利要求65所述的非暂时性计算机可读介质,所述操作进一步包括启动马达以将致动器推入所述检验盒的泡罩包装中,从而使得将所述扩增程序的液体成分释放到所述流体通道中。
67.如权利要求57-66中任一项所述的非暂时性计算机可读介质,其中,所述扩增程序包括使所述经处理的样品与捕获探针接触。
68.如权利要求67所述的非暂时性计算机可读介质,其中,所述捕获探针选自于由抗体或其抗原结合片段、蛋白质受体和核酸所组成的组。
69.如权利要求67或68所述的非暂时性计算机可读介质,其中,所述捕获探针包含可检测的核酸。
70.如权利要求69所述的非暂时性计算机可读介质,其中,将所述可检测的核酸进行扩增。
71.如权利要求57-70中任一项所述的非暂时性计算机可读介质,其中,所述扩增程序包括恒温扩增。
72.如权利要求57-71中任一项所述的非暂时性计算机可读介质,其中,所述扩增程序包括选自于由以下所组成的组中的恒温扩增反应:自身持续序列复制反应(3SR)、90-I、BAD Amp、交叉引物扩增(CPA)、恒温指数扩增反应(EXPAR)、恒温嵌合引物引发的核酸扩增(ICAN)、恒温多重置换扩增(IMDA)、连接介导的SDA、多重置换扩增、聚合酶螺旋反应(PSR)、限制性级联指数扩增(RCEA)、智能扩增程序(SMAP2)、单引物恒温扩增(SPIA)、基于转录的扩增系统(TAS)、转录介导的扩增(TMA)、连接酶链反应(LCR)以及多重交叉置换扩增(MCDA)。
73.如权利要求57-72中任一项所述的非暂时性计算机可读介质,其中,所述扩增程序包括环介导恒温扩增(LAMP)。
74.如权利要求57-73中任一项所述的非暂时性计算机可读介质,其中,用于进行所述扩增程序的所述预定温度高于30℃。
75.如权利要求57-74中任一项所述的系统,其中,用于进行所述扩增程序的所述预定温度高于37℃。
76.如权利要求57-75中任一项所述的系统,其中,用于进行所述扩增程序的所述预定温度高于60℃。
77.如权利要求57-76中任一项所述的系统,其中,用于进行所述扩增程序的所述预定温度处于60℃至70℃的范围内。
78.如权利要求66-77中任一项所述的非暂时性计算机可读介质,其中,所述扩增程序的所述液体成分包含选自于由以下所组成的组中的组分:抗体或其抗原结合片段,蛋白质受体,核酸、如引物,缓冲液,以及酶、如聚合酶。
79.如权利要求78所述的非暂时性计算机可读介质,其中,所述扩增程序进一步包括干成分,所述干成分选自于由以下所组成的组:抗体或其抗原结合片段,蛋白质受体,核酸、如引物,缓冲液,以及酶、如聚合酶。
80.一种检测靶试剂的方法,所述方法包括:
提供包括测试孔的盒,所述测试孔包括激励电极和敏感电极;
将包含所述靶试剂的样品引入所述盒中;
将所述盒插入读取器设备;
在所述测试孔内将所述样品中包含的所述靶试剂进行扩增;
将来自所述读取器设备的激励信号施加至所述激励电极;
使用所述激励电极感测来自所述测试孔的信号,所述信号代表经历所述扩增的所述样品的阻抗;
将所述信号传送到所述读取器设备;以及
基于读取器设备分析所述阻抗的电抗部分,检测所述靶试剂。
81.如权利要求80所述的方法,所述方法进一步包括:
在所述盒的样品引入区域处施加所述样品;
使所述盒内的密封腔室破裂,以将所述扩增程序的液体成分释放到所述盒的流体通道中;以及
使所述液体成分和所述样品沿所述流体通道流至所述测试孔,从而将所述液体成分和所述样品混合成测试流体。
82.如权利要求81的方法,所述方法进一步包括用测试流体将在所述测试孔内提供的所述扩增程序的干组分化。
83.如权利要求80-82中任一项所述的方法,所述方法进一步包括通过与所述测试孔流体连通的排气口将截留在所述测试流体中的气体排出。
84.如权利要求80-81中任一项所述的方法,所述方法进一步包括对所述信号的电抗部分进行分析,以识别指示阳性测试结果的信号悬崖。
85.如权利要求84所述的方法,所述方法进一步包括基于在电抗部分的基础上生成的曲线的部分来识别所述信号悬崖,所述电抗部分具有以下中的一种或两种:在值方面大于阈值变化和处于所述扩增程序的预定时间窗内的时间定位
86.如权利要求80-85中任一项所述的方法,其中,所述扩增程序包括使所述经处理的样品与捕获探针接触。
87.如权利要求86所述的方法,其中,所述捕获探针选自于由抗体或其抗原结合片段、蛋白质受体和核酸所组成的组。
88.如权利要求86或87所述的方法,其中,所述捕获探针包含可检测的核酸。
89.如权利要求88所述的方法,其中,将所述可检测的核酸进行扩增。
90.如权利要求80-89中任一项所述的方法,其中,所述扩增包括恒温扩增。
91.如权利要求80-90中任一项所述的方法,其中,所述扩增程序包括选自于由以下所组成的组中的恒温扩增反应:自身持续序列复制反应(3SR)、90-I、BAD Amp、交叉引物扩增(CPA)、恒温指数扩增反应(EXPAR)、恒温嵌合引物引发的核酸扩增(ICAN)、恒温多重置换扩增(IMDA)、连接介导的SDA、多重置换扩增、聚合酶螺旋反应(PSR)、限制性级联指数扩增(RCEA)、智能扩增程序(SMAP2)、单引物恒温扩增(SPIA)、基于转录的扩增系统(TAS)、转录介导的扩增(TMA)、连接酶链反应(LCR)以及多重交叉置换扩增(MCDA)。
92.如权利要求80-91中任一项所述的方法,其中,所述扩增包括环介导恒温扩增(LAMP)。
93.如权利要求80-92中任一项所述的方法,其中,进行所述靶试剂的扩增包括将所述样品加热至高于30℃的温度。
94.如权利要求80-93中任一项所述的方法,其中,进行所述靶试剂的扩增包括将所述样品加热至高于37℃的温度。
95.如权利要求80-94中任一项所述的方法,其中,进行所述靶试剂的扩增包括将所述样品加热至高于60℃的温度。
96.如权利要求80-95中任一项所述的方法,其中,进行所述靶试剂的扩增包括将所述样品加热至处于60℃至70℃范围内的温度。
97.如权利要求81-96中任一项所述的方法,其中,所述扩增程序的所述液体成分包含选自于由以下所组成的组中的组分:抗体或其抗原结合片段,蛋白质受体,核酸、如引物,缓冲液,以及酶、如聚合酶。
98.如权利要求82-97中任一项所述的方法,其中,所述扩增程序的干成分包含选自于由以下所组成的组中的组分:抗体或其抗原结合片段,蛋白质受体,核酸、如引物,缓冲液,以及酶、如聚合酶。
99.一种检测靶试剂的方法,所述方法包括:
提供一种包括激励电极和敏感电极的设备;
将包含所述靶试剂的样品引入所述设备中;
在所述设备内对所述样品进行处理;以及
通过测量经处理的样品的电学性质来检测所述靶标。
100.如权利要求99所述的方法,其中,所述电学性质选自于由复导纳、阻抗、电导率、电阻率、电阻和介电常数所组成的组。
101.如权利要求99所述的方法,其中,所述电学性质是复导纳。
102.如权利要求99-101中任一项所述的方法,其中,检测包括将激励信号施加至所述激励电极。
103.如权利要求102所述的方法,其中,所述激励信号包括交流电流。
104.如权利要求102所述的方法,其中,所述激励信号包括直流电流。
105.如权利要求102所述的方法,其中,所述激励信号包括扫描电压和频率。
106.如权利要求99-105中任一项所述的方法,其中,检测包括测量所述敏感电极处的感应电流。
107.所述权利要求99-105中任一项所述的方法,其中,在一段时间内测量所述电学性质。
108.如权利要求99-107中任一项所述的方法,其中,将至少一个电极钝化
109.如权利要求108所述的方法,其中,将所述电极用介电材料钝化。
110.如权利要求108所述的方法,其中,将所述电极用化物钝化。
111.如权利要求99-110中任一项所述的方法,其中,检测包括使所述经处理的样品与捕获探针接触。
112.如权利要求111所述的方法,其中,所述捕获探针包括磁珠
113.如权利要求111或112中任一项所述的方法,其中,所述捕获探针选自于由抗体或其抗原结合片段、蛋白质受体和核酸所组成的组。
114.如权利要求111-113中任一项所述的方法,其中,所述捕获探针包含可检测的核酸。
115.如权利要求114的方法,其中,检测包括将所述可检测的核酸进行扩增。
116.如权利要求115所述的方法,其中,所述扩增包括恒温扩增。
117.如权利要求116所述的方法,其中,所述扩增包括环介导恒温扩增(LAMP)。
118.如权利要求99-117中任一项所述的方法,其中,所述经处理的样品包含低离子溶液。
119.如权利要求99-118中任一项所述的方法,其中,所述经处理的样品不含硫酸铵。
120.如权利要求99-119中任一项所述的方法,其中,检测包括使所述样品与试剂接触以增强包含所述样品的溶液的电导率的变化。
121.如权利要求120所述的方法,其中,所述试剂结合至无机焦磷酸盐。
122.如权利要求120所述的方法,其中,所述试剂选自于由以下所组成的组:Cd2+-cyclen-香豆素、具有双(2-吡啶基甲基)胺(DPA)单元的Zn2+络合物、DPA-2Zn2+-酚盐、吖啶-DPA-Zn2+、DPA-Zn2+-芘和氮杂冠-Cu2+络合物。
123.如权利要求120所述的方法,其中,所述试剂包括2-基-6-巯基-7-甲基嘌呤核糖核苷。
124.一种使用频率依赖性电容耦合的非接触式电导率检测设备检测靶试剂的方法,所述方法包括:
将包含所述靶试剂的样品引入所述设备;
在所述设备内对所述样品进行处理;以及
通过分析所述样品的频率依赖性电容耦合的非接触式电导率来检测靶标。
125.如权利要求124所述的方法,其中,处理包括选自于由以下所组成的组中的步骤:
富集所述靶试剂的样品;从所述样品中除去非靶试剂物质;裂解细胞;沉淀蛋白质;以及添加防腐剂
126.如权利要求124-125中任一项所述的方法,其中,检测包括使所述经处理的样品与捕获探针接触。
127.如权利要求126所述的方法,其中,所述捕获探针选自于由抗体或其抗原结合片段、蛋白质受体和核酸所组成的组。
128.如权利要求126或127所述的方法,其中,所述捕获探针包含可检测的核酸。
129.如权利要求128所述的方法,其中,检测包括对所述可检测的核酸进行扩增。
130.如权利要求129所述的方法,其中,所述扩增包括恒温扩增。
131.如权利要求130所述的方法,其中,所述扩增包括选自于由以下所组成的组中的恒温扩增反应:自身持续序列复制反应(3SR)、90-I、BAD Amp、交叉引物扩增(CPA)、恒温指数扩增反应(EXPAR)、恒温嵌合引物引发的核酸扩增(ICAN)、恒温多重置换扩增(IMDA)、连接介导的SDA、多重置换扩增、聚合酶螺旋反应(PSR)、限制性级联指数扩增(RCEA)、智能扩增程序(SMAP2)、单引物恒温扩增(SPIA)、基于转录的扩增系统(TAS)、转录介导的扩增(TMA)、连接酶链反应(LCR)和多重交叉置换扩增(MCDA)。
132.如权利要求130所述的方法,其中,所述扩增包括环介导恒温扩增(LAMP)。
133.如权利要求124-132中任一项所述的方法,其中,检测包括使所述样品与试剂接触以增强包含所述样品的溶液的电导率的变化。
134.如权利要求133所述的方法,其中,所述试剂结合至无机焦磷酸盐。
135.如权利要求133所述的方法,其中,所述试剂选自于由以下所组成的组:Cd2+-
2+ 2+
cyclen-香豆素、具有双(2-吡啶基甲基)胺(DPA)单元的Zn 络合物、DPA-2Zn -酚盐、吖啶-DPA-Zn2+、DPA-Zn2+-芘和氮杂冠-Cu2+络合物。
136.如权利要求133所述的方法,其中,所述试剂包括2-氨基-6-巯基-7-甲基嘌呤核糖核苷。
137.如权利要求124-136中任一项所述的方法,其中,所述检测利用交流电流。
138.如权利要求124-137中任一项所述的方法,其中,所述检测利用高频交流电流。
139.如权利要求124-136中任一项所述的方法,其中,所述检测利用直流电流。
140.一种用于检测样品中的靶试剂的设备,所述设备包括:
腔室,所述腔室能够含有液体样品;
通道,所述通道具有至少一个侧壁,所述通道与所述腔室流体连通,并且包含一种或多种用于核酸扩增的试剂;
加热器,所述加热器能够加热所述通道;
第一电极,所述第一电极与所述侧壁接触;
第二电极,所述第二电极与所述侧壁接触,并且沿所述通道与所述第一电极间隔开;以及
电路,所述电路电学上连接至所述第一电极和所述第二电极,所述电路能够向所述第一电极施加电流并检测由所述第二电极接收的指示所述靶试剂的电流信号。
141.如权利要求140所述的设备,其中,所述电流为直流电流。
142.如权利要求140所述的设备,其中,所述电流为交流电流。
143.如权利要求140-142中任一项所述的设备,其中,所述加热器能够将液体样品加热至至少30℃。
144.如权利要求143所述的设备,其中,所述加热器能够将液体样品加热至至少37℃。
145.如权利要求143所述的设备,其中,所述加热器能够将液体样品加热至至少60℃。
146.如权利要求143所述的设备,其中,所述加热器能够将液体样品加热至处于60℃至
70℃的范围内的温度。
147.如权利要求140-146中任一项所述的设备,其中,所述通道在介电基板中形成,并且将所述加热器设置为邻近所述通道。
148.如权利要求140-147中任一项所述的设备,其中,将所述设备配置为电学上和机械学上连接至配套设备。
149.如权利要求148所述的设备,其中,所述配套设备是消费产品,包括处理器、存储器、图像用户显示器。
150.如权利要求148所述的设备,其中,所述配套设备选自于由智能手机、平板电脑笔记本电脑和智能手表所组成的组。
151.如权利要求140-150中任一项所述的设备,其中,用于核酸扩增的一种或多种试剂包括引物和聚合酶。
152.如权利要求140-151中任一项所述的设备,其中,用于核酸扩增的一种或多种试剂包括增强包含所述样品的溶液的电导率变化的试剂。
153.如权利要求152所述的设备,其中,所述试剂结合至无机焦磷酸盐。
154.如权利要求152所述的设备,其中,所述试剂选自于由以下所组成的组:Cd2+-
2+ 2+
cyclen-香豆素、具有双(2-吡啶基甲基)胺(DPA)单元的Zn 络合物、DPA-2Zn -酚盐、吖啶-DPA-Zn2+、DPA-Zn2+-芘和氮杂冠-Cu2+络合物。
155.如权利要求152所述的设备,其中,所述试剂包括2-氨基-6-巯基-7-甲基嘌呤核糖核苷。
156.如权利要求1-26中任一项所述的系统、如权利要求27-56和140-155中任一项所述的设备、如权利要求57-79中任一项所述的非暂时性计算机可读介质或如权利要求80-139中任一项所述的方法,其中,所述靶试剂选自以下所组成的组:病毒核酸、病毒衣壳蛋白、病毒结构蛋白、病毒糖蛋白、病毒膜融合蛋白、病毒蛋白酶和病毒聚合酶。
157.如权利要求156所述的系统、设备、非暂时性计算机可读介质或方法,其中,病毒包含所述靶试剂。
158.如权利要求157所述的系统、设备、非暂时性计算机可读介质或方法,其中,所述病毒选自于由以下所组成的组:双链DNA病毒、单链DNA病毒、双链RNA病毒、单链(+)RNA病毒、单链(-)RNA病毒、单链逆转录RNA病毒和双链逆转录DNA病毒。
159.如权利要求157所述的系统、设备、非暂时性计算机可读介质或方法,其中,所述病毒选自于由以下所组成的组:腺相关病毒、爱知病毒、澳大利亚蝙蝠狂犬病毒、BK多瘤病毒、版纳病毒、巴马森林病毒、布尼亚韦拉病毒、拉克罗斯布尼亚病毒、野兔布尼亚病毒、猴疱疹病毒、金迪普拉病毒、基孔肯雅病毒、Cosavirus A、痘病毒、柯萨奇病毒、克里米亚-刚果出血热病毒、登革热病毒、多里病毒、道格比病毒、杜文黑基病毒、东部马脑炎病毒、埃博拉病毒、埃可病毒、脑心肌炎病毒、EB病毒、欧洲蝙蝠狂犬病毒、C型GB病毒/庚型肝炎病毒、汉坦病毒、亨德拉病毒、甲型肝炎病毒、乙型肝炎病毒、丙型肝炎病毒、戊型肝炎病毒、丁型肝炎病毒、马痘病毒、人腺病毒、人星状病毒、人冠状病毒、人巨细胞病毒、人肠道病毒68型、人肠道病毒70型、人疱疹病毒1型、人疱疹病毒2型、人疱疹病毒6型、人疱疹病毒7型、人疱疹病毒8型、人免疫缺陷病毒、人乳头瘤病毒1型、人乳头瘤病毒2型、人乳头瘤病毒16型、人乳头瘤病毒18型、人副流感病毒、人细小病毒B19、人呼吸道合胞病毒、人鼻病毒、人SARS冠状病毒、人泡沫反转录病毒、人T淋巴细胞病毒、人环曲病毒、甲型流感病毒、乙型流感病毒、丙型流感病毒、伊斯法罕病毒、JC多瘤病毒、日本脑炎病毒、胡宁沙粒病毒、KI多瘤病毒、昆津病毒、拉各斯蝙蝠病毒、维多利亚湖马尔堡病毒、兰加特病毒、拉沙病毒、洛兹达雷病毒、跳跃病病毒、淋巴细胞脉络丛脑膜炎病毒、马丘波病毒、马亚罗病毒、MERS冠状病毒、麻疹病毒、戈脑心肌炎病毒、默克尔细胞多瘤病毒、Mokola病毒、传染性软疣病毒、猴痘病毒、腮腺炎病毒、墨累山谷脑炎病毒、纽约病毒、尼帕病毒、诺沃克病毒、阿尼昂-尼昂病毒、羊口疮病毒、奥罗普切病毒、皮钦德病毒、脊髓灰质炎病毒、庞塔托鲁静脉病毒、普马拉病毒、狂犬病病毒、裂谷热病毒、Rosavirus A、罗斯河病毒、A型轮状病毒、B型轮状病毒、C型轮状病毒、疹病毒、鹭山病毒、Salivirus A、白蛉热西西里病毒、札幌病毒、塞姆利基森林病毒、汉城病毒、猴泡沫病毒、猴病毒5型、辛德毕斯病毒、南安普顿病毒、圣路易斯脑炎病毒、蜱传波瓦森病毒、细环病毒、托斯卡纳病毒、Uukuniemi病毒、痘苗病毒、水痘-带状疱疹病毒、天花病毒、委内瑞拉马脑炎病毒、水疱性口炎病毒、西部马脑炎病毒、WU多瘤病毒、西尼罗河病毒、亚巴猴肿瘤病毒、亚巴样病病毒、黄热病病毒和寨卡病毒。
160.如权利要求1-26中任一项所述的系统、如权利要求27-56和140-155中任一项所述的设备、如权利要求57-79中任一项所述的非暂时性计算机可读介质或如权利要求80-139中任一项所述的方法,其中,所述靶试剂选自于由细菌核酸、细菌蛋白和细菌毒素所组成的组。
161.如权利要求160所述的系统、设备、非暂时性计算机可读介质或方法,其中,细菌包含所述靶试剂。
162.如权利要求161所述的系统、设备、非暂时性计算机可读介质或方法,其中,所述细菌选自于由革兰氏阳性细菌或革兰氏阴性细菌所组成的组。
163.如权利要求161所述的系统、设备、非暂时性计算机可读介质或方法,其中,所述细菌选自于由以下所组成的组:绿假单胞菌、荧光假单胞菌、食酸假单胞菌、产假单胞菌、恶臭假单胞菌、嗜麦芽寡养单胞菌、洋葱伯克霍尔德氏菌、嗜水气单胞菌、大肠杆菌、弗氏柠檬酸杆菌、鼠伤寒沙门氏菌、伤寒沙门氏菌、副伤寒沙门氏菌、肠炎沙门氏菌、痢疾志贺氏菌、弗氏志贺氏菌、宋内志贺氏菌、阴沟肠杆菌、产气肠杆菌、炎克雷伯菌、产酸克雷伯菌、粘质沙雷氏菌、土拉热弗朗西斯菌、摩氏摩根氏菌、奇异变形杆菌、普通变形杆菌、产碱普罗威登斯菌、雷氏普罗威登斯菌、斯氏普罗威登斯菌、鲍氏不动杆菌、醋酸不动杆菌、溶血不动杆菌、小肠结肠炎耶尔森氏菌、鼠疫耶尔森氏菌、假结核耶尔森氏菌、中间型耶尔森氏菌、百日咳博德特氏菌、副百日咳博德特氏菌、支气管炎博德特氏菌、流感嗜血杆菌、副流感嗜血杆菌、溶血性嗜血杆菌、副溶血性嗜血杆菌、杜克雷嗜血杆菌、多杀性巴斯德氏菌、溶血性巴斯德氏菌、卡他莫拉氏菌、幽门螺杆菌、胎儿弯曲杆菌、空肠弯曲杆菌、大肠弯曲杆菌、伯氏疏螺旋体、霍乱弧菌、副溶血性弧菌、嗜肺性军团杆菌、单核细胞增多性李斯特菌、淋病奈瑟氏球菌、脑膜炎奈瑟氏球菌、金氏菌属、莫拉氏菌属、阴道加德纳菌、脆弱拟杆菌、吉氏拟杆菌、拟杆菌3452A同源群、普通拟杆菌、卵形拟杆菌、多形拟杆菌、单形拟杆菌、埃氏拟杆菌、内脏拟杆菌、艰难梭菌、结核分枝杆菌、分枝杆菌、胞内分枝杆菌、麻风分枝杆菌、白喉棒状杆菌、溃疡棒状杆菌、肺炎链球菌、无乳链球菌、酿脓链球菌、粪肠球菌、屎肠球菌、金黄色葡萄球菌、表皮葡萄球菌、腐生葡萄球菌、中间葡萄球菌、猪葡萄球菌hyicus亚种、溶血葡萄球菌、人葡萄球菌和解糖葡萄球菌。
164.如权利要求1-26中任一项所述的系统、如权利要求27-56和140-155中任一项所述的设备、如权利要求57-79中任一项所述的非暂时性计算机可读介质或如权利要求80-139中任一项所述的方法,其中,所述靶试剂选自于由蛋白质、多肽、核酸、小分子和药物化合物所组成的组。
165.如权利要求1-26中任一项所述的系统、如权利要求27-56和140-155中任一项所述的设备、如权利要求57-79中任一项所述的非暂时性计算机可读介质或如权利要求80-139中任一项所述的方法,其中,寄生虫包含所述靶试剂。
166.如权利要求165所述的系统、设备、非暂时性计算机可读介质或方法,其中,所述寄生虫选自于由体内寄生虫和体外寄生虫所组成的组。
167.如权利要求165所述的系统、设备、非暂时性计算机可读介质或方法,其中,所述寄生虫选自于由原生动物、蠕虫、吸虫和蛔虫所组成的组。
168.如权利要求166所述的系统、设备、非暂时性计算机可读介质或方法,其中,所述体内寄生虫选自于由以下所组成的组:棘阿米巴属、巴贝虫属、分歧巴贝虫、牛双芽巴贝虫、马巴贝虫、微小巴贝虫、邓肯巴贝虫、巴拉姆希阿米巴、结肠小袋绦虫、芽囊原虫属、隐孢子虫属、圆孢子虫、脆弱双核阿米巴、痢疾阿米巴、蓝氏贾第鞭毛虫、贝氏等孢子球虫、利什曼原虫属、福氏耐格里阿米巴原虫、恶性疟原虫、间日疟原虫、卵形疟原虫经典亚种、卵形疟原虫变异亚种、三日疟原虫、诺氏疟原虫、鼻孢子虫、牛-人肉孢子虫、猪-人肉孢子虫、刚地弓形虫、阴道毛滴虫、布氏锥虫、克氏锥虫、短尖伯特绦虫、司氏伯特绦虫、绦虫、多头带绦虫、阔节裂头绦虫、细粒棘球绦虫、多房棘球绦虫、伏氏棘球绦虫、少节棘球绦虫、微小膜壳绦虫、缩小膜壳绦虫、欧猥迭宫绦虫、牛肉绦虫、猪带绦虫、华支睾吸虫、麝猫后支睾吸虫、矛形双腔吸虫、多刺棘口吸虫、肝片吸虫、大片吸虫、布氏姜片吸虫、棘颚口线虫、刚棘颚口线虫、横穿后殖吸虫、结合次睾吸虫、麝猫后睾吸虫、猫后睾吸虫、华支睾吸虫、卫氏并殖吸虫、非洲并殖吸虫、卡利并殖吸虫、猫肺并殖吸虫、斯氏并殖吸虫、双侧宫并殖吸虫、埃及血吸虫、日本血吸虫、曼氏血吸虫和间插血吸虫、湄公血吸虫、血吸虫属、毛毕吸虫、裂体科、十二指肠钩口线虫、美洲板口线虫、哥斯达黎加管圆线虫、异尖线虫、蛔虫属、似蚓蛔线虫、浣熊拜林蛔线虫、马来丝虫、帝汶丝虫、肾膨结线虫、麦地那龙线虫、蠕形住肠蛲虫、格氏蛲线虫、破坏微线虫、罗阿罗阿丝虫、链尾曼森线虫、盘尾丝虫、粪类圆线虫、加利福尼亚吸吮线虫、结膜吸吮线虫、犬弓首蛔虫、猫弓首蛔虫、旋毛形线虫、布氏旋毛虫、纳氏旋毛虫、本地毛形线虫、毛首鞭形线虫、狐鞭虫、班氏吴策线虫、原棘头虫、念珠棘虫、锯齿状舌形虫、狂蝇总科、丽蝇科、麻蝇科、螺旋锥蝇(丽蝇科)、穿皮潜蚤、臭虫科:温带臭虫、以及人皮蝇。
169.如权利要求166所述的系统、设备、非暂时性计算机可读介质或方法,其中,所述寄生虫是选自于由以下所组成的组中的体外寄生虫:人虱、体虱、耻阴虱、毛囊蠕形螨、皮脂蠕形螨、犬蠕形螨、疥螨、恙螨科、人蚤、硬蜱科和隐喙蜱科。
170.如权利要求1-26中任一项所述的系统、如权利要求27-56和140-155中任一项所述的设备、如权利要求57-79中任一项所述的非暂时性计算机可读介质或如权利要求80-139中任一项所述的方法,其中,microRNA包含所述靶试剂。
171.如权利要求170所述的系统、设备、非暂时性计算机可读介质或方法,其中,所述microRNA为哺乳动物的microRNA。
172.如权利要求171所述的系统、设备、非暂时性计算机可读介质或方法,其中,所述microRNA为人microRNA。
173.如权利要求170所述的系统、设备、非暂时性计算机可读介质或方法,其中,所述microRNA选自于由以下所组成的组:
hsa-miR-1,hsa-miR-1-2,hsa-miR-100,hsa-miR-100-1,hsa-miR-100-2,hsa-miR-
101,hsa-miR-101-1,hsa-miR-101a,hsa-miR-101b-2,hsa-miR-102,hsa-miR-103,hsa-miR-103-1,hsa-miR-103-2,hsa-miR-104,hsa-miR-105,hsa-miR-106a,hsa-miR-106a-1,hsa-miR-106b,hsa-miR-106b-1,hsa-miR-107,hsa-miR-10a,hsa-miR-10b,hsa-miR-122,hsa-miR-122a,hsa-miR-123,hsa-miR-124a,hsa-miR-124a-1,hsa-miR-124a-2,hsa-miR-
124a-3,hsa-miR-125a,hsa-miR-125a-5p,hsa-miR-125b,hsa-miR-125b-1,hsa-miR-125b-
2,hsa-miR-126,hsa-miR-126-5p,hsa-miR-127,hsa-miR-128a,hsa-miR-128b,hsa-miR-
129,hsa-miR-129-1,hsa-miR-129-2,hsa-miR-130,hsa-miR-130a,hsa-miR-130a-1,hsa-miR-130b,hsa-miR-130b-1,hsa-miR-132,hsa-miR-133a,hsa-miR-133b,hsa-miR-134,hsa-miR-135a,hsa-miR-135b,hsa-miR-136,hsa-miR-137,hsa-miR-138,hsa-miR-138-1,hsa-miR-138-2,hsa-miR-139,hsa-miR-139-5p,hsa-miR-140,hsa-miR-140-3p,hsa-miR-
141,hsa-miR-142-3p,hsa-miR-142-5p,hsa-miR-143,hsa-miR-144,hsa-miR-145,hsa-miR-146a,hsa-miR-146b,hsa-miR-147,hsa-miR-148a,hsa-miR-148b,hsa-miR-149,hsa-miR-15,hsa-miR-150,hsa-miR-151,hsa-miR-151-5p,hsa-miR-152,hsa-miR-153,hsa-miR-154,hsa-miR-155,hsa-miR-15a,hsa-miR-15a-2,hsa-miR-15b,hsa-miR-16,hsa-miR-
16-1,hsa-miR-16-2,hsa-miR-16a,hsa-miR-164,hsa-miR-170,hsa-miR-172a-2,hsa-miR-
17,hsa-miR-17-3p,hsa-miR-17-5p,hsa-miR-17-92,hsa-miR-18,hsa-miR-18a,hsa-miR-
18b,hsa-miR-181a,hsa-miR-181a-1,hsa-miR-181a-2,hsa-miR-181b,hsa-miR-181b-1,hsa-miR-181b-2,hsa-miR-181c,hsa-miR-181d,hsa-miR-182,hsa-miR-183,hsa-miR-184,hsa-miR-185,hsa-miR-186,hsa-miR-187,hsa-miR-188,hsa-miR-189,hsa-miR-190,hsa-miR-191,hsa-miR-192,hsa-miR-192-1,hsa-miR-192-2,hsa-miR-192-3,hsa-miR-193a,hsa-miR-193b,hsa-miR-194,hsa-miR-195,hsa-miR-196a,hsa-miR-196a-2,hsa-miR-
196b,hsa-miR-197,hsa-miR-198,hsa-miR-199a,hsa-miR-199a-1,hsa-miR-199a-1-5p,hsa-miR-199a-2,hsa-miR-199a-2-5p,hsa-miR-199a-3p,hsa-miR-199b,hsa-miR-199b-
5p,hsa-miR-19a,hsa-miR-19b,hsa-miR-19b-1,hsa-miR-19b-2,hsa-miR-200a,hsa-miR-
200b,hsa-miR-200c,hsa-miR-202,hsa-miR-203,hsa-miR-204,hsa-miR-205,hsa-miR-
206,hsa-miR-207,hsa-miR-208,hsa-miR-208a,hsa-miR-20a,hsa-miR-20b,hsa-miR-21,hsa-miR-22,hsa-miR-210,hsa-miR-211,hsa-miR-212,hsa-miR-213,hsa-miR-214,hsa-miR-215,hsa-miR-216,hsa-miR-217,hsa-miR-218,hsa-miR-218-2,hsa-miR-219,hsa-miR-219-1,hsa-miR-22,hsa-miR-220,hsa-miR-221,hsa-miR-222,hsa-miR-223,hsa-miR-
224,hsa-miR-23a,hsa-miR-23b,hsa-miR-24,hsa-miR-24-1,hsa-miR-24-2,hsa-miR-25,hsa-miR-26a,hsa-miR-26a-1,hsa-miR-26a-2,hsa-miR-26b,hsa-miR-27a,hsa-miR-27b,hsa-miR-28,hsa-miR-296,hsa-miR-298,hsa-miR-299-3p,hsa-miR-299-5p,hsa-miR-29a,hsa-miR-29a-2,hsa-miR-29b,hsa-miR-29b-1,hsa-miR-29b-2,hsa-miR-29c,hsa-miR-
301,hsa-miR-302,hsa-miR-302a,hsa-miR-302b,hsa-miR-302c,hsa-miR-302c,hsa-miR-
302d,hsa-miR-30a,hsa-miR-30a-3p,hsa-miR-30a-5p,hsa-miR-30b,hsa-miR-30c,hsa-miR-30c-1,hsa-miR-30d,hsa-miR-30e,hsa-miR-30e,hsa-miR-30e-5p,hsa-miR-31,hsa-miR-31a,hsa-miR-32,hsa-miR-32,hsa-miR-320,hsa-miR-320-2,hsa-miR-320a,hsa-miR-
322,hsa-miR-323,hsa-miR-324-3p,hsa-miR-324-5p,hsa-miR-325,hsa-miR-326,hsa-miR-328,hsa-miR-328-1,hsa-miR-33,hsa-miR-330,hsa-miR-331,hsa-miR-335,hsa-miR-
337,hsa-miR-337-3p,hsa-miR-338,hsa-miR-338-5p,hsa-miR-339,hsa-miR-339-5p,hsa-miR-34a,hsa-miR-340,hsa-miR-340,hsa-miR-341,hsa-miR-342,hsa-miR-342-3p,hsa-miR-345,hsa-miR-346,hsa-miR-347,hsa-miR-34a,hsa-miR-34b,hsa-miR-34c,hsa-miR-
351,hsa-miR-352,hsa-miR-361,hsa-miR-362,hsa-miR-363,hsa-miR-355,hsa-miR-365,hsa-miR-367,hsa-miR-368,hsa-miR-369-5p,hsa-miR-370,hsa-miR-371,hsa-miR-372,hsa-miR-373,hsa-miR-374,hsa-miR-375,hsa-miR-376a,hsa-miR-376b,hsa-miR-377,hsa-miR-378,hsa-miR-378,hsa-miR-379,hsa-miR-381,hsa-miR-382,hsa-miR-383,hsa-miR-409-3p,hsa-miR-419,hsa-miR-422a,hsa-miR-422b,hsa-miR-423,hsa-miR-424,hsa-miR-429,hsa-miR-431,hsa-miR-432,hsa-miR-433,hsa-miR-449a,hsa-miR-451,hsa-miR-
452,hsa-miR-451,hsa-miR-452,hsa-miR-452,hsa-miR-483,hsa-miR-483-3p,hsa-miR-
484,hsa-miR-485-5p,hsa-miR-485-3p,hsa-miR-486,hsa-miR-487b,hsa-miR-489,hsa-miR-491,hsa-miR-491-5p,hsa-miR-492,hsa-miR-493-3p,hsa-miR-493-5p,hsa-miR-494,hsa-miR-495,hsa-miR-497,hsa-miR-498,hsa-miR-499,hsa-miR-5,hsa-miR-500,hsa-miR-501,hsa-miR-503,hsa-miR-508,hsa-miR-509,hsa-miR-510,hsa-miR-511,hsa-miR-
512-5p,hsa-miR-513,hsa-miR-513-1,hsa-miR-513-2,hsa-miR-515-3p,hsa-miR-516-5p,hsa-miR-516-3p,hsa-miR-518b,hsa-miR-519a,hsa-miR-519d,hsa-miR-520a,hsa-miR-
520c,hsa-miR-521,hsa-miR-532-5p,hsa-miR-539,hsa-miR-542-3p,hsa-miR-542-5p,hsa-miR-550,hsa-miR-551a,hsa-miR-561,hsa-miR-563,hsa-miR-565,hsa-miR-572,hsa-miR-582,hsa-miR-584,hsa-miR-594,hsa-miR-595,hsa-miR-598,hsa-miR-599,hsa-miR-
600,hsa-miR-601,hsa-miR-602,hsa-miR-605,hsa-miR-608,hsa-miR-611,hsa-miR-612,hsa-miR-614,hsa-miR-615,hsa-miR-615-3p,hsa-miR-622,hsa-miR-627,hsa-miR-628,hsa-miR-635,hsa-miR-637,hsa-miR-638,hsa-miR-642,hsa-miR-648,hsa-miR-652,hsa-miR-654,hsa-miR-657,hsa-miR-658,hsa-miR-659,hsa-miR-661,hsa-miR-662,hsa-miR-
663,hsa-miR-664,hsa-miR-7,hsa-miR-7-1,hsa-miR-7-2,hsa-miR-7-3,hsa-miR-708,hsa-miR-765,hsa-miR-769-3p,hsa-miR-802,hsa-miR-885-3p,hsa-miR-9,hsa-miR-9-1,hsa-miR-9-3,hsa-miR-9-3p,hsa-miR-92,hsa-miR-92-1,hsa-miR-92-2,hsa-miR-9-2,hsa-miR-92,hsa-miR-92a,hsa-miR-93,hsa-miR-95,hsa-miR-96,hsa-miR-98,hsa-miR-
99a和/或hsa-miR-99b。
174.如权利要求1-26中任一项所述的系统、如权利要求27-56和140-155中任一项所述的设备、如权利要求57-79中任一项所述的非暂时性计算机可读介质或如权利要求80-139中任一项所述的方法,其中,农业分析物包含所述靶试剂。
175.如权利要求174所述的系统、设备、非暂时性计算机可读介质或方法,其中,所述农业分析物指示食品产品的来源。
176.如权利要求174所述的系统、设备、非暂时性计算机可读介质或方法,其中,所述农业分析物指示食品产品的动物来源。
177.如权利要求174所述的系统、设备、非暂时性计算机可读介质或方法,其中,所述农业分析物指示所述动物来源的属。
178.如权利要求174所述的系统、设备、非暂时性计算机可读介质或方法,其中,所述农业分析物指示食品产品的植物来源。
179.如权利要求174所述的系统、设备、非暂时性计算机可读介质或方法,其中,所述农业分析物指示所述植物来源的属。
180.如权利要求174所述的系统、设备、非暂时性计算机可读介质或方法,其中,所述农业分析物是农药
181.如权利要求174所述的系统、设备、非暂时性计算机可读介质或方法,其中,所述农业分析物是选自于由除草剂杀虫剂和杀真菌剂所组成的组中的农药。
182.如权利要求174所述的系统、设备、非暂时性计算机可读介质或方法,其中,所述农业分析物是选自于由以下所组成的组中的除草剂:2,4-二氯苯氧基乙酸(2,4-D)、莠去津、草甘膦、2甲4氯丙酸、麦草畏、百草枯、草铵膦、威百亩、隆、氟硫草定、二甲戊灵、EPTC、氟乐灵、啶嘧磺隆、甲磺隆、敌草隆、除草醚、三氟甲草醚、三氟羧草醚、甲基磺草、磺草酮和尼替西农。
183.如权利要求174所述的系统、设备、非暂时性计算机可读介质或方法,其中,所述农业分析物是选自于由以下所组成的组中的杀虫剂:有机氯化物、有机磷酸酯/盐、氨基甲酸酯、拟除虫菊酯、新烟碱和ryanoid。
184.如权利要求174所述的系统、设备、非暂时性计算机可读介质或方法,其中,所述农业分析物是选自于由以下所组成的组中的杀真菌剂:多菌灵、乙霉威、嘧菌酯、甲霜灵、精甲霜灵、链霉素、氧四环素、百菌清、戊唑醇、代森锌、代森锰锌、戊唑醇、腈菌唑、三唑酮、腈苯唑、脱氧雪腐镰刀菌烯醇和代森锰锌。
185.如权利要求1-26中任一项所述的系统、如权利要求27-56和140-155中任一项所述的设备、如权利要求57-79中任一项所述的非暂时性计算机可读介质或如权利要求80-139中任一项所述的方法,紊乱的生物标志物包括所述靶试剂。
186.如权利要求185所述的系统、设备、非暂时性计算机可读介质或方法,其中,所述紊乱是癌症。
187.如权利要求185所述的系统、设备、非暂时性计算机可读介质或方法,其中,所述紊乱是癌症,所述癌症选自乳腺癌结直肠癌、胃癌、胃肠道间质肿瘤、白血病和淋巴瘤、肺癌、黑色素瘤、脑癌和胰腺癌。
188.如权利要求185所述的系统、设备、非暂时性计算机可读介质或方法,其中,所述生物标志物选自包括雌激素受体、孕酮受体、HER-2/neu、EGFR、KRAS、UGT1A1、c-KIT、CD20、CD30、FIP1L1-PDGFRα、PDGFR、费城染色体(BCR/ABL)、PML/RAR-α、TPMT、UGT1A1、EML4/ALK、BRAF,以及某些氨基酸例如亮氨酸、异亮氨酸和缬氨酸的升高的水平。
189.如权利要求1-26中任一项所述的系统、如权利要求27-56和140-155中任一项所述的设备、如权利要求57-79中任一项所述的非暂时性计算机可读介质或如权利要求80-139中任一项所述的方法,其中,所述样品是禽类样品。
190.如权利要求1-26中任一项所述的系统、如权利要求27-56和140-155中任一项所述的设备、如权利要求57-79中任一项所述的非暂时性计算机可读介质或如权利要求80-139中任一项所述的方法,其中,所述样品是哺乳动物样品。
191.如权利要求1-26中任一项所述的系统、如权利要求27-56和140-155中任一项所述的设备、如权利要求57-79中任一项所述的非暂时性计算机可读介质或如权利要求80-139中任一项所述的方法,其中,所述样品是人样品。
192.如权利要求1-26中任一项所述的系统、如权利要求27-56和140-155中任一项所述的设备、如权利要求57-79中任一项所述的非暂时性计算机可读介质或如权利要求80-139中任一项所述的方法,其中,所述样品选自于由以下所组成的组:血液、血清、血浆、尿液、口水、腹水、脊髓液、精液、肺灌洗液、唾液、痰液、粘液、包含细胞或核酸的液体培养基、包含细胞或核酸的固体培养基、以及组织。
193.如权利要求1-26中任一项所述的系统、如权利要求27-56和140-155中任一项所述的设备、如权利要求57-79中任一项所述的非暂时性计算机可读介质或如权利要求80-139中任一项所述的方法,其中,通过实施选自以下的步骤获得所述样品:手指针刺、足跟针刺、静脉穿刺、成人鼻抽吸、儿童鼻抽吸、鼻咽清洗、鼻咽抽吸、拭子擦拭、杯中大量收集、组织活检和灌洗。
194.如权利要求1-26中任一项所述的系统、如权利要求27-56和140-155中任一项所述的设备、如权利要求57-79中任一项所述的非暂时性计算机可读介质或如权利要求80-139中任一项所述的方法,其中,所述样品是蔬菜。
195.如权利要求1-26中任一项所述的系统、如权利要求27-56和140-155中任一项所述的设备、如权利要求57-79中任一项所述的非暂时性计算机可读介质或如权利要求80-139中任一项所述的方法,其中,所述样品是环境样品。
196.如权利要求1-26中任一项所述的系统、如权利要求27-56和140-155中任一项所述的设备、如权利要求57-79中任一项所述的非暂时性计算机可读介质或如权利要求80-139中任一项所述的方法,其中,所述样品是土壤样品或水样品。

说明书全文

用于检测分析物的方法和组合物

[0001] 相关申请
[0002] 本申请要求以下的权益,将其各自以引用的方式整体并入本文:2016年9月23日提交的名称为“用于检测病毒靶标的方法和组合物”的U.S.Prov.App.No.62/398,959、2016年
9月23日提交的名称为“用于检测细菌靶标的方法和组合物”的U.S.Prov.App.No.62/399,
047、2016年9月23日提交的名称为“用于检测抗原的方法和组合物”的
U.S.Prov.App.No.62/398,925、2016年9月23日提交的名称为“用于检测寄生虫的方法和组
合物”的U.S.Prov.App.No.62/398,913、2016年9月23日提交的名称为“用于检测MICRORNA
靶标的方法和组合物”的U.S.Prov.App.No.62/398,955、2016年9月23日提交的名称为“用
于检测农业分析物的方法和组合物”的U.S.Prov.App.No.62/398,965。
[0003] 序列表
[0004] 本申请与电子格式的序列表一起提交。以2017年9月13日创建的名称为ALVEO010WOSEQ的文件提供序列表,其大小约为4Kb。电子格式的序列表中的信息以引用的
方式整体并入本文。

技术领域

[0005] 本申请大体上涉及系统、方法和设备,所述系统、方法和设备用于感测和/或识别病原体、基因组材料、蛋白质和/或其它小分子或生物标志物。在一些实施方式中,小型化的
低成本的设备提供快速并且稳健的感测和识别。此种设备可利用流体技术、生物化学和
电子学在现场并且在床边或靠近床边处一次检测一个或多个靶标。

背景技术

[0006] 样品中的病原体可通过检测特定的基因组物质(DNA或RNA)来识别。除病原体检测外,许多其它生物标志物可用于测试,包括提供癌症早期检测、重要的产前信息或对患者微
生物群更好的了解的分子。在常规的核酸测试(“NAT”)中,样品中的基因组物质可首先使用
被称为聚合酶链式反应(“PCR”)的分子扩增程序以指数方式复制,直到存在的DNA的量足够
多至可测量。在RNA(许多病毒的基因组物质)的情况下,可以包括另外的步骤以在通过PCR
扩增之前首先将RNA转录成DNA。
发明内容
[0007] 一些实施方式包括用于检测靶试剂的系统,所述系统包括:检验盒,所述检验盒包括测试孔,所述测试孔包括激励电极和敏感电极(sensing electrode),其中,将所述测试
孔配置为含有包含经历扩增程序的所述靶试剂的样品;以及读取器设备,所述读取器设备
包括:区域,将所述区域配置为接收所述检验盒,加热器,将所述加热器放置为在腔内对使
用中的所述检验盒进行加热,存储器,所述存储器至少储存计算机可读储存指令,以及处理
器,所述处理器由所述指令配置为至少:使所述加热器将所述检验盒加热至预定温度,以在
所述测试孔内进行所述扩增程序;在所述扩增程序的至少部分持续时间内,向所述激励电
极提供激励电流,从所述敏感电极接收信号,所述信号代表在至少由所述测试孔内的所述
样品衰减后的激励电流,将所述信号分解成电阻分量和电抗分量,对所述电抗分量进行分
析,以确定指示包含所述靶试剂的阳性样品的信号悬崖(signal cliff)是否在所述扩增程
序的至少部分持续时间内发生,以及响应于确定所述信号悬崖发生,输出阳性测试结果,或
响应于确定所述信号悬崖未发生,输出阴性测试结果。
[0008] 在一些实施方式中,检验盒进一步包括:样品引入区域,将所述样品引入区域配置为接收所述样品;以及流体通道,所述流体通道将所述样品引入区域流体连接至所述测试
孔。
[0009] 在一些实施方式中,所述检验盒还包括:密封腔室,所述密封腔室含有所述扩增程序的液体成分,所述密封腔室位于所述检验盒的区域中,所述区域具有通向所述流体通道
的孔隙,其中,所述样品引入区域位于沿所述流体通道的所述孔隙和所述测试孔之间;以及
气动流体通道,所述气动流体通道将气动界面流体连接至所述检验盒的所述区域,其中,向
所述测试孔提供所述扩增程序的干成分。
[0010] 在一些实施方式中,所述读取器设备包括气动系统,将所述气动系统配置为通过所述气动界面施加压,所述处理器进一步由所述指令配置为至少:将连接至致动器
达致动,将所述致动器放置为使所述密封腔室破裂并且使所述液体成分流入所述检验盒的
所述区域;将所述气动系统激活,以使所述液体成分流入所述流体通道,并将在所述样品引
入区域接收的所述样品运送到所述测试孔。
[0011] 在一些实施方式中,所述检验盒进一步包括混合腔室,所述混合腔室位于沿所述流体通道的所述样品引入区域和所述测试孔之间,将所述混合腔室配置为将所述液体成分
和所述样品混合成实质上均匀混合的测试流体。
[0012] 在一些实施方式中,所述检验盒包括第一电极界面,所述第一电极界面包括通向所述激励电极的第一接触板和通向所述敏感电极的第二接触板。
[0013] 在一些实施方式中,所述读取器设备包括第二电极界面,将所述第二电极界面配置为用在所述读取器设备的所述区域中接收的所述检验盒连接至所述第一电极界面。
[0014] 在一些实施方式中,所述读取器设备进一步包括:电压源,将所述电压源配置为产生所述激励电流,并且其中,所述第二电极界面包括:第三接触板,将所述第三接触板放置
为连接至所述第一接触板,所述第三接触板连接至所述电压源;以及第四接触板,将所述第
四接触板放置为连接至所述第二接触板,所述第四接触板连接至所述存储器。
[0015] 在一些实施方式中,为了将所述信号分解成所述电阻分量和所述电抗分量中,所述处理器由所述指令进一步配置为至少:比起其Nyquist频率更快地对信号进行采集,所述
信号代表所述样品的阻抗;将所述信号分解成同相分量和异相分量;以及根据所述同相分
量计算所述电阻分量,并且根据所述异相分量计算所述电抗分量。
[0016] 在一些实施方式中,为了对所述电抗分量进行分析,所述处理器由所述指令进一步配置为至少从所述存储器获取所述信号悬崖的预定的预期特征。
[0017] 在一些实施方式中,储存在所述存储器中的所述信号悬崖的所述预定的预期特征包括在预测所述信号悬崖发生的所述扩增程序的所述持续时间内的时间窗
[0018] 在一些实施方式中,储存在所述存储器中的所述信号悬崖的所述预定的预期特征包括在所述电抗分量的值方面的阈值变化。
[0019] 在一些实施方式中,储存在所述存储器中的所述信号悬崖的所述预定的预期特征包括所述电抗分量的曲线的阈值斜率,所述电抗分量的曲线代表在贯穿所述扩增程序的至
少部分持续时间内采集的所述电抗分量的值。
[0020] 在一些实施方式中,所述扩增程序包括使经处理的样品与捕获探针接触。在一些实施方式中,所述捕获探针选自于由抗体或其抗原结合片段、蛋白质受体以及核酸所组成
的组。在一些实施方式中,所述捕获探针包含可检测的核酸。在一些实施方式中,将所述可
检测的核酸进行扩增。
[0021] 在一些实施方式中,扩增程序包括恒温扩增。在一些实施方式中,所述扩增程序包括选自于由以下所组成的组中的恒温扩增反应:自身持续序列复制反应(3SR)、90-I、BAD 
Amp、交叉引物扩增(CPA)、恒温指数扩增反应(EXPAR)、恒温嵌合引物引发的核酸扩增
(ICAN)、恒温多重置换扩增(IMDA)、连接介导的SDA、多重置换扩增、聚合酶螺旋反应(PSR)、
限制性级联指数扩增(RCEA)、智能扩增程序(SMAP2)、单引物恒温扩增(SPIA)、基于转录的
扩增系统(TAS)、转录介导的扩增(TMA)、连接酶链反应(LCR)以及多重交叉置换扩增
(MCDA)。在一些实施方式中,所述扩增程序包括环介导恒温扩增(LAMP)。
[0022] 在一些实施方式中,用于在所述测试孔内进行所述扩增程序的所述预定温度高于30℃。在一些实施方式中,用于在所述测试孔内进行所述扩增程序的所述预定温度高于37
℃。在一些实施方式中,用于在所述测试孔内进行所述扩增程序的所述预定温度高于60℃。
在一些实施方式中,用于在所述测试孔内进行所述扩增程序的所述预定温度处于60℃至70
℃的范围内。
[0023] 在一些实施方式中,所述扩增程序的所述液体成分包含选自于由以下所组成的组中的组分:抗体或其抗原结合片段、蛋白质受体、核酸(如引物)、缓冲液和酶(如聚合酶)。
[0024] 在一些实施方式中,所述扩增程序的所述干成分包含选自于由以下所组成的组中的组分:抗体或其抗原结合片段、蛋白质受体、核酸(如引物)、缓冲液和酶(如聚合酶)。
[0025] 一些实施方式包括用于为了靶试剂而测试样品的设备,所述设备包括:样品引入区域,将所述样品引入区域配置为接收包含所述靶试剂的样品;包含激励电极和敏感电极
的测试孔,其中,将所述测试孔配置为:在扩增程序期间含有所述样品,使用所述激励电极
在所述扩增程序期间向所述样品施加电流,以及使用所述敏感电极感测信号,所述信号表
示在至少由所述测试孔内的所述样品衰减后的所述电流;以及流体通道,所述流体通道将
所述样品引入区域流体连接至所述测试孔。
[0026] 一些实施方式还包括密封腔室,所述密封腔室含有所述扩增程序的液体成分,所述密封腔室位于所述设备的具有通向所述流体通道的孔隙的区域中,其中,所述样品引入
区域位于沿所述流体通道的所述孔隙和所述测试孔之间;以及在所述测试孔内提供的所述
扩增程序的干成分。
[0027] 一些实施方式还包括尖头(sharp),将所述尖头配置为使所述密封腔室破裂并使所述液体成分流入所述区域;以及气动流体通道,所述气动流体通道将气动界面流体连接
到所述设备的所述区域,将所述气动流体通道配置为向该区域施加压力,以使所述液体成
分流入所述流体通道,并将在所述样品引入区域接收到的所述样品运送到所述测试孔。
[0028] 一些实施方式还包括混合腔室,所述混合腔室位于沿所述流体通道的所述样品引入区域和所述测试孔之间,将所述混合腔室配置为将所述液体成分和所述样品混合成实质
上均匀混合的测试流体。
[0029] 在一些实施方式中,所述检验盒包括第一电极界面,所述第一电极界面包括通向所述激励电极的第一接触板和通向所述敏感电极的第二接触板。
[0030] 一些实施方式还包括电路板,所述电路板包括所述激励电极和所述敏感电极,其中,所述样品引入区域和至少部分所述流体通道以整片的液体不可渗透材料形成,并且其
中,将所述电路板粘附至所述液体不可渗透材料的部分。
[0031] 一些实施方式还包括盖,所述盖位于所述液体不可渗透材料和所述电路板上方,所述盖包括位于所述样品引入区域上方的孔隙和被配置为可松脱地封闭所述孔隙的帽。
[0032] 在一些实施方式中,所述测试孔的侧面形成为穿过所述液体不可渗透材料的圆形孔隙,并且其中,所述测试孔的底部由所述电路板形成。
[0033] 在一些实施方式中,所述激励电极和所述敏感电极位于所述测试孔的底部并远离所述测试孔的侧面。
[0034] 在一些实施方式中,将所述激励电极和所述敏感电极配置为实质上与所述电路板的下层齐平。
[0035] 一些实施方式还包括排气口,将所述排气口配置为从所述测试孔释放气体,其中,所述排气口由液体不可渗透、气体可渗透的过滤器覆盖
[0036] 在一些实施方式中,所述激励电极包括设置在所述孔的中心内的圆形电极,并且其中,所述敏感电极包括同心地位于所述激励电极周围的环形电极。
[0037] 在一些实施方式中,所述环形电极与所述圆形电极以约等于所述环形电极的半径的间隙分开。
[0038] 在一些实施方式中,所述环形电极与所述圆形电极以所述环形电极的半径的至少两倍大的间隙分开。
[0039] 在一些实施方式中,所述激励电极包括第一半圆形电极,并且其中,所述敏感电极包括以间隙与所述第一半圆形电极隔开的第二半圆形电极,其中,所述第一半圆形电极和
第二半圆形电极的直的部分跨越所述间隙彼此相对。
[0040] 在一些实施方式中,所述激励电极包括第一线性电极,并且其中,所述敏感电极包括与所述第一线性电极以间隙隔开的第二线性电极。
[0041] 在一些实施方式中,所述激励电极包括第一方形电极,并且其中,所述敏感电极包括与所述第一方形电极以间隙隔开的第二方形电极。
[0042] 在一些实施方式中,所述扩增程序包括使所述经处理的样品与捕获探针接触。在一些实施方式中,所述捕获探针选自于由抗体或其抗原结合片段、蛋白质受体以及核酸所
组成的组。在一些实施方式中,所述捕获探针包括可检测的核酸。在一些实施方式中,将所
述可检测的核酸进行扩增。
[0043] 在一些实施方式中,所述扩增程序包括恒温扩增。在一些实施方式中,所述扩增程序包括选自于由以下所组成的组中的恒温扩增反应:自身持续序列复制反应(3SR)、90-I、
BAD Amp、交叉引物扩增(CPA)、恒温指数扩增反应(EXPAR)、恒温嵌合引物引发的核酸扩增
(ICAN)、恒温多重置换扩增(IMDA)、连接介导的SDA、多重置换扩增、聚合酶螺旋反应(PSR)、
限制性级联指数扩增(RCEA)、智能扩增程序(SMAP2)、单引物恒温扩增(SPIA)、基于转录的
扩增系统(TAS)、转录介导的扩增(TMA)、连接酶链反应(LCR)以及多重交叉置换扩增
(MCDA)。在一些实施方式中,所述扩增程序包括环介导恒温扩增(LAMP)。
[0044] 在一些实施方式中,将所述测试孔配置为将所述样品加热至高于30℃的温度。在一些实施方式中,将所述测试孔配置为将所述样品加热至高于37℃的温度。在一些实施方
式中,将所述测试孔配置为将所述样品加热至高于60℃的温度。在一些实施方式中,将所述
测试孔配置为将所述样品加热至处于60℃至70℃的范围内的温度。
[0045] 在一些实施方式中,所述扩增程序的所述液体成分包含选自于由以下所组成的组中的组分:抗体或其抗原结合片段、蛋白质受体、核酸(如引物)、缓冲液以及酶(如聚合酶)。
[0046] 在一些实施方式中,所述扩增程序的所述干成分包含选自于由以下所组成的组中的组分:抗体或其抗原结合片段、蛋白质受体、核酸(如引物)、缓冲液以及酶(如聚合酶)。
[0047] 一些实施方式包括储存指令的非暂时性计算机可读介质,当通过配置为接收测试孔和包含含有靶试剂的样品的检验盒的读取器设备执行时,使所述读取器设备实施包括如
下的操作:在所述测试孔内发生的所述扩增程序的至少部分持续时间内,向位于所述测试
孔内的所述激励电极提供激励电流;从位于所述测试孔内的所述敏感电极接收信号,所述
信号代表在至少由所述测试孔内的经历扩增的所述样品衰减后的所述激励电流;将所述信
号分解成电阻分量和电抗分量;对所述电抗分量进行分析,以确定指示包括所述靶试剂的
阳性样品的信号悬崖是否在所述扩增程序的所述至少部分持续时间内发生,以及响应于确
定所述信号悬崖发生,输出阳性测试结果,或响应于确定所述信号悬崖未发生,输出阴性测
试结果。
[0048] 在一些实施方式中,所述操作进一步包括使加热器将所述检验盒加热到用于实施所述扩增程序的预定温度。
[0049] 在一些实施方式中,所述操作进一步包括通过网络传送所述阳性测试结果或所述阴性测试结果。
[0050] 在一些实施方式中,用于分解的操作进一步包括:比起其Nyquist频率更快地对信号进行采集,所述信号代表所述样品的阻抗;将所述信号分解成同相分量和异相分量;以及
根据所述同相分量计算所述电阻分量,并且根据所述异相分量计算所述电抗分量。
[0051] 在一些实施方式中,用于分析所述电抗分量的操作进一步包括从所述存储器获取所述信号悬崖的预定的预期特征。
[0052] 在一些实施方式中,储存在所述存储器中的所述信号悬崖的所述预定的预期特征包括在预测所述信号悬崖发生的所述扩增程序的持续时间内的时间窗。
[0053] 在一些实施方式中,储存在所述存储器中的所述信号悬崖的所述预定的预期特征包括在所述电抗分量的值方面的阈值变化。
[0054] 在一些实施方式中,储存在所述存储器中的所述信号悬崖的所述预定的预期特征包括所述电抗分量的曲线的阈值斜率,所述电抗分量的曲线代表在贯穿所述扩增程序的至
少部分持续时间内采集的所述电抗分量的值。
[0055] 在一些实施方式中,所述操作进一步包括将气动系统激活,以将压力施加至所述检验盒的流体通道,从而引起所述样品与在所述检验盒中提供的所述扩增程序的成分混
合,并流入所述测试孔。
[0056] 在一些实施方式中,所述操作进一步包括启动马达以将致动器推入所述检验盒的泡罩包装中,从而使得将所述扩增程序的液体成分释放到所述流体通道中。
[0057] 在一些实施方式中,所述扩增程序包括使所述经处理的样品与捕获探针接触。在一些实施方式中,所述捕获探针选自于由抗体或其抗原结合片段、蛋白质受体和核酸所组
成的组。在一些实施方式中,所述捕获探针包含可检测的核酸。在一些实施方式中,将所述
可检测的核酸进行扩增。
[0058] 在一些实施方式中,所述扩增程序包括恒温扩增。在一些实施方式中,所述扩增程序包括选自于由以下所组成的组中的恒温扩增反应:自身持续序列复制反应(3SR)、90-I、
BAD Amp、交叉引物扩增(CPA)、恒温指数扩增反应(EXPAR)、恒温嵌合引物引发的核酸扩增
(ICAN)、恒温多重置换扩增(IMDA)、连接介导的SDA、多重置换扩增、聚合酶螺旋反应(PSR)、
限制性级联指数扩增(RCEA)、智能扩增程序(SMAP2)、单引物恒温扩增(SPIA)、基于转录的
扩增系统(TAS)、转录介导的扩增(TMA)、连接酶链反应(LCR)以及多重交叉置换扩增
(MCDA)。在一些实施方式中,所述扩增程序包括环介导恒温扩增(LAMP)。
[0059] 在一些实施方式中,用于进行所述扩增程序的所述预定温度高于30℃。在一些实施方式中,用于进行所述扩增程序的所述预定温度高于37℃。在一些实施方式中,用于进行
所述扩增程序的所述预定温度高于60℃。在一些实施方式中,用于进行所述扩增程序的所
述预定温度处于60℃至70℃的范围内。
[0060] 在一些实施方式中,所述扩增程序的所述液体成分包含选自于由以下所组成的组中的组分:抗体或其抗原结合片段、蛋白质受体、核酸(如引物)、缓冲液和酶(如聚合酶)。
[0061] 在一些实施方式中,所述扩增程序进一步包括干成分,所述干成分选自于由以下所组成的组:抗体或其抗原结合片段、蛋白质受体、核酸(如引物)、缓冲液和酶(如聚合酶)。
[0062] 一些实施方式包括检测靶试剂的方法,所述方法包括:提供包括测试孔的盒,所述测试孔包括激励电极和敏感电极;将包含所述靶试剂的样品引入所述盒中;将所述盒插入
读取器设备;在所述测试孔内将所述样品中包含的所述靶试剂进行扩增;将来自所述读取
器设备的激励信号施加至所述激励电极;使用所述激励电极感测来自所述测试孔的信号,
所述信号代表经历所述扩增的所述样品的阻抗;将所述信号传送到所述读取器设备;以及
基于读取器设备分析所述阻抗的电抗部分,检测所述靶试剂。
[0063] 一些实施方式还包括在所述盒的样品引入区域处施加所述样品;使所述盒内的密封腔室破裂,以将所述扩增程序的液体成分释放到所述盒的流体通道中;以及使所述液体
成分和所述样品沿所述流体通道流至所述测试孔,从而将所述液体成分和所述样品混合成
测试流体。
[0064] 一些实施方式还包括用测试流体将在所述测试孔内提供的所述扩增程序的干组分化。
[0065] 一些实施方式还包括通过与所述测试孔流体连通的排气口将截留在所述测试流体中的气体排出。
[0066] 一些实施方式还包括对信号的电抗部分进行分析,以识别指示阳性测试结果的信号悬崖。
[0067] 一些实施方式还包括基于在电抗部分的基础上生成的曲线的部分来识别所述信号悬崖,所述电抗部分具有以下中的一种或两种:在值方面大于阈值变化和处于所述扩增
程序的预定时间窗内的时间定位
[0068] 在一些实施方式中,所述扩增程序包括使所述经处理的样品与捕获探针接触。在一些实施方式中,所述捕获探针选自于由抗体或其抗原结合片段、蛋白质受体和核酸所组
成的组。在一些实施方式中,所述捕获探针包含可检测的核酸。在一些实施方式中,将所述
可检测的核酸进行扩增。
[0069] 在一些实施方式中,所述扩增包括恒温扩增。在一些实施方式中,所述扩增包括选自于由以下所组成的组中的恒温扩增反应:自身持续序列复制反应(3SR)、90-I、BAD Amp、
交叉引物扩增(CPA)、恒温指数扩增反应(EXPAR)、恒温嵌合引物引发的核酸扩增(ICAN)、恒
温多重置换扩增(IMDA)、连接介导的SDA、多重置换扩增、聚合酶螺旋反应(PSR)、限制性级
联指数扩增(RCEA)、智能扩增程序(SMAP2)、单引物恒温扩增(SPIA)、基于转录的扩增系统
(TAS)、转录介导的扩增(TMA)、连接酶链反应(LCR)以及多重交叉置换扩增(MCDA)。在一些
实施方式中,所述扩增包括环介导恒温扩增(LAMP)。
[0070] 在一些实施方式中,进行所述靶试剂的扩增包括将所述样品加热至高于30℃的温度。在一些实施方式中,进行所述靶试剂的扩增包括将所述样品加热至高于37℃的温度。在
一些实施方式中,进行所述靶试剂的扩增包括将所述样品加热至高于60℃的温度。在一些
实施方式中,进行所述靶试剂的扩增包括将所述样品加热至处于60℃至70℃范围内的温
度。
[0071] 在一些实施方式中,所述扩增程序的液体成分包含选自于由以下所组成的组中的组分:抗体或其抗原结合片段、蛋白质受体、核酸(如引物)、缓冲液和酶(如聚合酶)。
[0072] 在一些实施方式中,所述扩增程序的所述干成分包含选自于由以下所组成的组中的组分:抗体或其抗原结合片段、蛋白质受体、核酸(如引物)、缓冲液和酶(如聚合酶)。
[0073] 一些实施方式包括检测靶试剂的方法,所述方法包括:提供包括激励电极和敏感电极的设备;将包含所述靶试剂的样品引入所述设备中;在所述设备内对所述样品进行处
理;以及通过测量经处理的样品的电学性质来检测所述靶标。
[0074] 在一些实施方式中,所述电学性质选自于由复导纳、阻抗、电导率、电阻率、电阻和介电常数所组成的组。
[0075] 在一些实施方式中,所述电学性质是复导纳。
[0076] 在一些实施方式中,检测包括将激励信号施加至激励电极。
[0077] 在一些实施方式中,所述激励信号包括交流电流。
[0078] 在一些实施方式中,所述激励信号包括直流电流。
[0079] 在一些实施方式中,所述激励信号包括扫描电压和频率。
[0080] 在一些实施方式中,检测包括测量所述敏感电极处的感应电流。
[0081] 在一些实施方式中,在一段时间内测量所述电学性质。
[0082] 在一些实施方式中,将至少一个电极钝化
[0083] 在一些实施方式中,将所述电极用介电材料钝化。
[0084] 在一些实施方式中,所述电极用化物钝化。
[0085] 在一些实施方式中,检测包括使所述经处理的样品与捕获探针接触。在一些实施方式中,所述捕获探针包括磁珠
[0086] 在一些实施方式中,所述捕获探针选自于由抗体或其抗原结合片段、蛋白质受体和核酸所组成的组。在一些实施方式中,所述捕获探针包含可检测的核酸。在一些实施方式
中,检测包括将所述可检测的核酸进行扩增。
[0087] 在一些实施方式中,所述扩增包括恒温扩增。在一些实施方式中,所述扩增包括环介导恒温扩增(LAMP)。在一些实施方式中,所述经处理的样品包含低离子溶液。
[0088] 在一些实施方式中,所述经处理的样品不含硫酸铵。
[0089] 在一些实施方式中,检测包括使所述样品与试剂接触以增强包含所述样品的溶液的电导率的变化。在一些实施方式中,所述试剂结合至无机焦磷酸盐。在一些实施方式中,
所述试剂选自于由以下所组成的组:Cd2+-cyclen-香豆素、具有双(2-吡啶基甲基)胺(DPA)
单元的Zn2+络合物、DPA-2Zn2+-酚盐、吖啶-DPA-Zn2+、DPA-Zn2+-芘和氮杂冠-Cu2+络合物。在
一些实施方式中,所述试剂包括2-基-6-巯基-7-甲基嘌呤核糖核苷。
[0090] 一些实施方式包括使用频率依赖性电容耦合的非接触式电导率检测设备检测靶试剂的方法,所述方法包括:将包含所述靶试剂的样品引入所述设备;在所述设备内对所述
样品进行处理;以及通过分析所述样品的频率依赖性电容耦合的非接触式电导率来检测靶
标。
[0091] 在一些实施方式中,处理包括选自于由以下所组成的组中的步骤:富集靶试剂的样品;从所述样品中除去非靶试剂物质;裂解细胞;沉淀蛋白质;以及添加防腐剂
[0092] 在一些实施方式中,检测包括使经处理的样品与捕获探针接触。在一些实施方式中,所述捕获探针选自于由抗体或其抗原结合片段、蛋白质受体以及核酸所组成的组。在一
些实施方式中,所述捕获探针包含可检测的核酸。在一些实施方式中,检测包括对可检测的
核酸进行扩增。
[0093] 在一些实施方式中,所述扩增包括恒温扩增。在一些实施方式中,所述扩增包括选自于由以下所组成的组中的恒温扩增反应:自身持续序列复制反应(3SR)、90-I、BAD Amp、
交叉引物扩增(CPA)、恒温指数扩增反应(EXPAR)、恒温嵌合引物引发的核酸扩增(ICAN)、恒
温多重置换扩增(IMDA)、连接介导的SDA、多重置换扩增、聚合酶螺旋反应(PSR)、限制性级
联指数扩增(RCEA)、智能扩增程序(SMAP2)、单引物恒温扩增(SPIA)、基于转录的扩增系统
(TAS)、转录介导的扩增(TMA)、连接酶链反应(LCR)和多重交叉置换扩增(MCDA)。在一些实
施方式中,所述扩增包括环介导恒温扩增(LAMP)。
[0094] 在一些实施方式中,检测包括使所述样品与试剂接触以增强包含所述样品的溶液的电导率的变化。在一些实施方式中,所述试剂结合至无机焦磷酸盐。在一些实施方式中,
所述试剂选自于由以下所组成的组:Cd2+-cyclen-香豆素、具有双(2-吡啶基甲基)胺(DPA)
单元的Zn2+络合物、DPA-2Zn2+-酚盐、吖啶-DPA-Zn2+、DPA-Zn2+-芘和氮杂冠-Cu2+络合物。在
一些实施方式中,所述试剂包括2-氨基-6-巯基-7-甲基嘌呤核糖核苷。
[0095] 在一些实施方式中,所述检测利用交流电流。
[0096] 在一些实施方式中,所述检测利用高频交流电流。
[0097] 在一些实施方式中,所述检测利用直流电流。
[0098] 一些实施方式包括用于检测样品中的靶试剂的设备,所述设备包括:腔室,所述腔室能够含有液体样品;通道,所述通道具有至少一个侧壁,所述通道与所述腔室流体连通并
包含一种或多种用于核酸扩增的试剂;加热器,所述加热器能够加热所述通道;第一电极,
所述第一电极与侧壁接触;第二电极,所述第二电极与侧壁接触,并且沿所述通道与所述第
一电极间隔开;以及电路,所述电路电学上连接至所述第一电极和所述第二电极,所述电路
能够向所述第一电极施加电流并检测由所述第二电极接收的指示所述靶试剂的电流信号。
[0099] 在一些实施方式中,所述电流为直流电流。
[0100] 在一些实施方式中,所述电流为交流电流。
[0101] 在一些实施方式中,所述加热器能够将液体样品加热至至少30℃。在一些实施方式中,所述加热器能够将液体样品加热至至少37℃。在一些实施方式中,所述加热器能够将
液体样品加热至至少60℃。在一些实施方式中,所述加热器能够在60℃至70℃的范围内加
热液体样品。
[0102] 在一些实施方式中,所述通道在介电基板中形成,并且将所述加热器设置为邻近所述通道。
[0103] 在一些实施方式中,将所述设备配置为电学上和机械学上连接至配套设备。
[0104] 在一些实施方式中,所述配套设备是消费产品,包括处理器、存储器、图像用户显示器。
[0105] 在一些实施方式中,所述配套设备选自于由智能手机、平板电脑笔记本电脑和智能手表所组成的组。
[0106] 在一些实施方式中,用于核酸扩增的一种或多种试剂包括引物和聚合酶。
[0107] 在一些实施方式中,用于核酸扩增的一种或多种试剂包括增强包含所述样品的溶液的电导率变化的试剂。在一些实施方式中,所述试剂结合至无机焦磷酸盐。在一些实施方
式中,所述试剂选自于由以下所组成的组:Cd2+-cyclen-香豆素、具有双(2-吡啶基甲基)胺
(DPA)单元的Zn2+络合物、DPA-2Zn2+-酚盐、吖啶-DPA-Zn2+、DPA-Zn2+-芘和氮杂冠-Cu2+络合
物。在一些实施方式中,所述试剂包括2-氨基-6-巯基-7-甲基嘌呤核糖核苷。
[0108] 一些前述实施方式包括设备、非暂时性计算机可读介质或方法,其中,所述靶试剂选自于由以下所组成的组:病毒核酸、病毒衣壳蛋白、病毒结构蛋白、病毒糖蛋白、病毒膜融
合蛋白、病毒蛋白酶和病毒聚合酶。
[0109] 在一些实施方式中,病毒包含所述靶试剂。
[0110] 在一些实施方式中,所述病毒选自于由以下所组成的组:双链DNA病毒、单链DNA病毒、双链RNA病毒、单链(+)RNA病毒、单链(-)RNA病毒、单链逆转录RNA病毒和双链逆转录DNA
病毒。
[0111] 在一些实施方式中,所述病毒选自于由以下所组成的组:腺相关病毒、爱知病毒(Aichi virus)、澳大利亚蝙蝠狂犬病毒、BK多瘤病毒、版纳病毒、巴马森林病毒、布尼亚韦
拉病毒(Bunyamwera virus)、拉克罗斯布尼亚病毒(Bunyavirus la crosse)、野兔布
尼亚病毒(bunyavirus snowshoe hare)、猴疱疹病毒、金迪普拉病毒、基孔肯雅病毒、
Cosavirus A、痘病毒、柯萨奇病毒、克里米亚-刚果出血热病毒、登革热病毒、多里病毒
(Dhori virus)、道格比病毒、杜文黑基病毒(Duvenhage virus)、东部马脑炎病毒、埃博拉
病毒、埃可病毒、脑心肌炎病毒、EB病毒、欧洲蝙蝠狂犬病毒、C型GB病毒/庚型肝炎病毒、汉
坦病毒、亨德拉病毒、甲型肝炎病毒、乙型肝炎病毒、丙型肝炎病毒、戊型肝炎病毒、丁型肝
炎病毒、马痘病毒、人腺病毒、人星状病毒、人冠状病毒、人巨细胞病毒、人肠道病毒68型、人
肠道病毒70型、人疱疹病毒1型、人疱疹病毒2型、人疱疹病毒6型、人疱疹病毒7型、人疱疹病
毒8型、人免疫缺陷病毒、人乳头瘤病毒1型、人乳头瘤病毒2型、人乳头瘤病毒16型、人乳头
瘤病毒18型、人副流感病毒、人细小病毒B19、人呼吸道合胞病毒、人鼻病毒、人SARS冠状病
毒、人泡沫反转录病毒、人T淋巴细胞病毒、人环曲病毒、甲型流感病毒、乙型流感病毒、丙型
流感病毒、伊斯法罕病毒、JC多瘤病毒、日本脑炎病毒、胡宁沙粒病毒(Junin arenavirus)、
KI多瘤病毒、昆津病毒、拉各斯蝙蝠病毒、维多利亚湖马尔堡病毒、兰加特病毒(Langat 
virus)、拉沙病毒、洛兹达雷病毒、跳跃病病毒、淋巴细胞脉络丛脑膜炎病毒、马丘波病毒、
马亚罗病毒、MERS冠状病毒、麻疹病毒、戈脑心肌炎病毒、默克尔细胞多瘤病毒、Mokola病
毒、传染性软疣病毒、猴痘病毒、腮腺炎病毒、墨累山谷脑炎病毒、纽约病毒、尼帕病毒、诺沃
克病毒、阿尼昂-尼昂病毒、羊口疮病毒、奥罗普切病毒、皮钦德病毒、脊髓灰质炎病毒、庞塔
托鲁静脉病毒、普马拉病毒、狂犬病病毒、裂谷热病毒、Rosavirus A、罗斯河病毒、A型轮状
病毒、B型轮状病毒、C型轮状病毒、疹病毒、鹭山病毒、Salivirus A、白蛉热西西里病毒、
札幌病毒、塞姆利基森林病毒、汉城病毒、猴泡沫病毒、猴病毒5型、辛德毕斯病毒、南安普顿
病毒、圣路易斯脑炎病毒、蜱传波瓦森病毒、细环病毒、托斯卡纳病毒、Uukuniemi病毒、痘苗
病毒、水痘-带状疱疹病毒、天花病毒、委内瑞拉马脑炎病毒、水疱性口炎病毒、西部马脑炎
病毒、WU多瘤病毒、西尼罗河病毒、亚巴猴肿瘤病毒、亚巴样病病毒、黄热病病毒和寨卡病
毒。
[0112] 一些前述实施方式包括设备、非暂时性计算机可读介质或方法,其中,所述靶试剂选自于由细菌核酸、细菌蛋白和细菌毒素所组成的组。
[0113] 在一些实施方式中,细菌包含所述靶试剂。
[0114] 在一些实施方式中,所述细菌选自于由革兰氏阳性细菌或革兰氏阴性细菌所组成的组。
[0115] 在一些实施方式中,所述细菌选自于由以下所组成的组:绿假单胞菌(Pseudomonas aeruginosa)、荧光假单胞菌(Pseudomonas fluorescens)、食酸假单胞菌
(Pseudomonas acidovorans)、产假单胞菌(Pseudomonas alcaligenes)、恶臭假单胞菌
(Pseudomonas putida)、嗜麦芽寡养单胞菌(Stenotrophomonas maltophilia)、洋葱伯克
霍尔德氏菌(Burkholderia cepacia)、嗜水气单胞菌(Aeromonas hydrophilia)、大肠杆菌
(Escherichia coli)、弗氏柠檬酸杆菌(Citrobacter freundii)、鼠伤寒沙门氏菌
(Salmonella typhimurium)、伤寒沙门氏菌(Salmonella typhi)、副伤寒沙门氏菌
(Salmonella paratyphi)、肠炎沙门氏菌(Salmonella enteriditis)、痢疾志贺氏菌
(Shigella dysenteriae)、弗氏志贺氏菌(Shigella flexneri)、宋内志贺氏菌(Shigella 
sonnei)、阴沟肠杆菌(Enterobacter cloacae)、产气肠杆菌(Enterobacter aerogenes)、
炎克雷伯菌(Klebsiella pneumoniae)、产酸克雷伯菌(Klebsiella oxytoca)、粘质沙雷
氏菌(Serratia marcescens)、土拉热弗朗西斯菌(Francisella tularensis)、摩氏摩根氏
菌(Morganella morganii)、奇异变形杆菌(Proteus mirabilis)、普通变形杆菌(Proteus 
vulgaris)、产碱普罗威登斯菌(Providencia alcalifaciens)、雷氏普罗威登斯菌
(Providencia rettgeri)、斯氏普罗威登斯菌(Providencia stuartii)、鲍氏不动杆菌
(Acinetobacter baumannii)、醋酸不动杆菌(Acinetobacter calcoaceticus)、溶血不
动杆菌(Acinetobacter  haemolyticus)、小肠结肠炎耶尔森氏菌(Yersinia 
enterocolitica)、鼠疫耶尔森氏菌(Yersinia pestis)、假结核耶尔森氏菌(Yersinia 
pseudotuberculosis)、中间型耶尔森氏菌(Yersinia intermedia)、百日咳博德特氏菌
(Bordetella pertussis)、副百日咳博德特氏菌(Bordetella parapertussis)、支气管炎
博德特氏菌(Bordetella bronchiseptica)、流感嗜血杆菌(Haemophilus influenzae)、副
流感嗜血杆菌(Haemophilus parainfluenzae)、溶血性嗜血杆菌(Haemophilus 
haemolyticus)、副溶血性嗜血杆菌(Haemophilus parahaemolyticus)、杜克雷嗜血杆菌
(Haemophilus ducreyi)、多杀性巴斯德氏菌(Pasteurella multocida)、溶血性巴斯德氏
菌(Pasteurella haemolytica)、卡他莫拉氏菌(Branhamella catarrhalis)、幽门螺杆菌
(Helicobacter pylori)、胎儿弯曲杆菌(Campylobacter fetus)、空肠弯曲杆菌
(Campylobacter jejuni)、大肠弯曲杆菌(Campylobacter coli)、伯氏疏螺旋体(Borrelia 
burgdorferi)、霍乱弧菌(Vibrio cholerae)、副溶血性弧菌(Vibrio parahemolyticus)、
嗜肺性军团杆菌(Legionella pneumophila)、单核细胞增多性李斯特菌(Listeria 
monocytogenes)、淋病奈瑟氏球菌(Neisseria gonorrhoeae)、脑膜炎奈瑟氏球菌
(Neisseria meningitidis)、金氏菌属(Kingella)、莫拉氏菌属(Moraxella)、阴道加德纳
菌(Gardnerella vaginalis)、脆弱拟杆菌(Bacteroides fragilis)、吉氏拟杆菌
(Bacteroides distasonis)、拟杆菌(Bacteroides)3452A同源群、普通拟杆菌
(Bacteroides vulgatus)、卵形拟杆菌(Bacteroides ovalus)、多形拟杆菌(Bacteroides 
thetaiotaomicron)、单形拟杆菌(Bacteroides uniformis)、埃氏拟杆菌(Bacteroides 
eggerthii)、内脏拟杆菌(Bacteroides splanchnicus)、艰难梭菌(Clostridium 
difficile)、结核分枝杆菌(Mycobacterium tuberculosis)、分枝杆菌(Mycobacterium 
avium)、胞内分枝杆菌(Mycobacterium intracellulare)、麻风分枝杆菌(Mycobacterium 
leprae)、白喉棒状杆菌(Corynebacterium diphtheriae)、溃疡棒状杆菌
(Corynebacterium ulcerans)、肺炎链球菌(Streptococcus pneumoniae)、无乳链球菌
(Streptococcus agalactiae)、酿脓链球菌(Streptococcus pyogenes)、粪肠球菌
(Enterococcus faecalis)、屎肠球菌(Enterococcus faecium)、金黄色葡萄球菌
(Staphylococcus aureus)、表皮葡萄球菌(Staphylococcus epidermidis)、腐生葡萄球菌
(Staphylococcus saprophyticus)、中间葡萄球菌(Staphylococcus intermedius)、猪葡
萄球菌hyicus亚种(Staphylococcus  hyicus  subsp.hyicus)、溶血葡萄球菌
(Staphylococcus haemolyticus)、人葡萄球菌(Staphylococcus hominis)和解糖葡萄球
菌(Staphylococcus saccharolyticus)。
[0116] 一些前述实施方式包括设备、非暂时性计算机可读介质或方法,其中,所述靶试剂选自于由蛋白质、多肽、核酸、小分子和药物化合物所组成的组。
[0117] 一些前述实施方式包括设备、非暂时性计算机可读介质或方法,其中,寄生虫包含所述靶试剂。
[0118] 在一些实施方式中,所述寄生虫选自于由体内寄生虫和体外寄生虫所组成的组。
[0119] 在一些实施方式中,所述寄生虫选自于由原生动物、蠕虫、吸虫(fluke)和蛔虫所组成的组。
[0120] 在一些实施方式中,所述体内寄生虫选自于由以下所组成的组:棘阿米巴属(Acanthamoeba spp.)、巴贝虫属(Babesia spp.)、分歧巴贝虫(B.divergens)、牛双芽巴贝
虫(B.bigemina)、马巴贝虫(B.equi)、微小巴贝虫(B.microfti)、邓肯巴贝虫(B.duncani)、
巴拉姆希阿米巴(Balamuthia mandrillaris)、结肠小袋绦虫(Balantidium coli)、芽囊原
虫属(Blastocystis spp.)、隐孢子虫属(Cryptosporidium spp.)、圆孢子虫(Cyclospora 
cayetanensis)、脆弱双核阿米巴(Dientamoeba fragilis)、痢疾阿米巴(Entamoeba 
histolytica)、蓝氏贾第鞭毛虫(Giardia lamblia)、贝氏等孢子球虫(Isospora belli)、
利什曼原虫属(Leishmania spp.)、福氏耐格里阿米巴原虫(Naegleria fowleri)、恶性疟
原虫(Plasmodium falciparum)、间日疟原虫(Plasmodium vivax)、卵形疟原虫经典亚种
(Plasmodium ovale curtisi)、卵形疟原虫变异亚种(Plasmodium ovale wallikeri)、三
日疟原虫(Plasmodium malariae)、诺氏疟原虫(Plasmodium knowlesi)、鼻孢子虫
(Rhinosporidium seeberi)、牛-人肉孢子虫(Sarcocystis bovihominis)、猪-人肉孢子虫
(Sarcocystis suihominis)、刚地弓形虫(Toxoplasma gondii)、阴道毛滴虫(Trichomonas 
vaginalis)、布氏锥虫(Trypanosoma brucei)、克氏锥虫(Trypanosoma cruzi)、短尖伯特
绦虫(Bertiella mucronata)、司氏伯特绦虫(Bertiella studeri)、绦虫(Cestoda)、多头
带绦虫(Taenia multiceps)、阔节裂头绦虫(Diphyllobothrium latum)、细粒棘球绦虫
(Echinococcus granulosus)、多房棘球绦虫(Echinococcus multilocularis)、伏氏棘球
绦虫(E.vogeli)、少节棘球绦虫(E.oligarthrus)、微小膜壳绦虫(Hymenolepis nana)、缩
小膜壳绦虫(Hymenolepis diminuta)、欧猥迭宫绦虫(Spirometra erinaceieuropaei)、牛
肉绦虫(Taenia saginata)、猪带绦虫(Taenia solium)、华支睾吸虫(Clonorchis 
sinensis);麝猫后支睾吸虫(Clonorchis viverrini)、矛形双腔吸虫(Dicrocoelium 
dendriticum)、多刺棘口吸虫(Echinostoma echinatum)、肝片吸虫(Fasciola hepatica)、
大片吸虫(Fasciola gigantica)、布氏姜片吸虫(Fasciolopsis buski)、棘颚口线虫
(Gnathostoma spinigerum)、刚棘颚口线虫(Gnathostoma hispidum)、横穿后殖吸虫
(Metagonimus yokogawai)、结合次睾吸虫(Metorchis conjunctus)、麝猫后睾吸虫
(Opisthorchis viverrin)、猫后睾吸虫(Opisthorchis felineus)、华支睾吸虫
(Clonorchis sinensis)、卫氏并殖吸虫(Paragonimus westermani)、非洲并殖吸虫
(Paragonimus africanus)、卡利并殖吸虫(Paragonimus caliensis)、猫肺并殖吸虫
(Paragonimus kellicotti)、斯氏并殖吸虫(Paragonimus skrjabini)、双侧宫并殖吸虫
(Paragonimus uterobilateralis)、埃及血吸虫(Schistosoma haematobium)、日本血吸虫
(Schistosoma  japonicum)、曼氏血吸虫(Schistosoma mansoni)和间插血吸虫
(Schistosoma intercalatum)、湄公血吸虫(Schistosoma mekongi)、血吸虫属
(Schistosoma sp.)、毛毕吸虫(Trichobilharzia regenti)、裂体科(Schistosomatidae)、
十二指肠钩口线虫(Ancylostoma duodenale)、美洲板口线虫(Necator americanus)、哥斯
达黎加管圆线虫(Angiostrongylus costaricensis)、异尖线虫(Anisakis)、蛔虫属
(Ascaris sp.)、似蚓蛔线虫(Ascaris lumbricoides)、浣熊拜林蛔线虫(Baylisascaris 
procyonis)、马来丝虫(Brugia malayi)、帝汶丝虫(Brugia timori)、肾膨结线虫
(Dioctophyme renale)、麦地那龙线虫(Dracunculus medinensis)、蠕形住肠蛲虫
(Enterobius  vermicularis)、格氏蛲虫(Enterobius gregorii)、破坏微线虫
(Halicephalobus gingivalis)、罗阿罗阿丝虫(Loa loa filaria)、链尾曼森线虫
(Mansonella streptocerca)、盘尾丝虫(Onchocerca volvulus)、粪类圆线虫
(Strongyloides stercoralis)、加利福尼亚吸吮线虫(Thelazia californiensis)、结膜
吸吮线虫(Thelazia callipaeda)、犬弓首蛔虫(Toxocara canis)、猫弓首蛔虫(Toxocara 
cati)、旋毛形线虫(Trichinella spiralis)、布氏旋毛虫(Trichinella britovi)、纳氏旋
毛虫(Trichinella nelsoni)、本地毛形线虫(Trichinella nativa)、毛首鞭形线虫
(Trichuris trichiura)、狐鞭虫(Trichuris vulpis)、班氏吴策线虫(Wuchereria 
bancrofti)、原棘头虫(Archiacanthocephala)、念珠棘虫(Moniliformis moniliformis)、
锯齿状舌形虫(Linguatula serrata)、狂蝇总科(Oestroidea)、丽蝇科(Calliphoridae)、
麻蝇科(Sarcophagidae)、螺旋锥蝇(Cochliomyia hominivorax;丽蝇科)、穿皮潜蚤(Tunga 
penetrans)、臭虫科(Cimicidae)、温带臭虫(Cimex lectularius)和人皮蝇(Dermatobia 
hominis)。
[0121] 在一些实施方式中、所述寄生虫是选自于由以下所组成的组中的体外寄生虫:人虱(Pediculus humanus)、体虱(Pediculus humanus corporis)、耻阴虱(Pthirus pubis)、
毛囊蠕形螨(Demodex folliculorum)、皮脂蠕形螨(Demodex brevis)、犬蠕形螨(Demodex 
canis)、疥螨(Sarcoptes scabiei)、恙螨科(Trombiculidae)、人蚤(Pulex irritans)、硬
蜱科(Ixodidae)和隐喙蜱科(Argasidae)。
[0122] 一些前述实施方式包括设备、非暂时性计算机可读介质或方法,其中,microRNA包含所述靶试剂。
[0123] 在一些实施方式中,所述microRNA为哺乳动物的microRNA。在一些实施方式中,所述microRNA为人microRNA。
[0124] 在一些实施方式中,所述microRNA选自于由以下所组成的组:
[0125] hsa-miR-1,hsa-miR-1-2,hsa-miR-100,hsa-miR-100-1,hsa-miR-100-2,hsa-miR-101,hsa-miR-101-1,hsa-miR-101a,hsa-miR-101b-2,hsa-miR-102,hsa-miR-103,
hsa-miR-103-1,hsa-miR-103-2,hsa-miR-104,hsa-miR-105,hsa-miR-106a,hsa-miR-
106a-1,hsa-miR-106b,hsa-miR-106b-1,hsa-miR-107,hsa-miR-10a,hsa-miR-10b,hsa-
miR-122,hsa-miR-122a,hsa-miR-123,hsa-miR-124a,hsa-miR-124a-1,hsa-miR-124a-2,
hsa-miR-124a-3,hsa-miR-125a,hsa-miR-125a-5p,hsa-miR-125b,hsa-miR-125b-1,hsa-
miR-125b-2,hsa-miR-126,hsa-miR-126-5p,hsa-miR-127,hsa-miR-128a,hsa-miR-128b,
hsa-miR-129,hsa-miR-129-1,hsa-miR-129-2,hsa-miR-130,hsa-miR-130a,hsa-miR-
130a-1,hsa-miR-130b,bsa-miR-130b-1,hsa-miR-132,hsa-miR-133a,hsa-miR-133b,hsa-
miR-134,hsa-miR-135a,hsa-miR-135b,hsa-miR-136,hsa-miR-137,hsa-miR-138,hsa-
miR-138-1,hsa-miR-138-2,hsa-miR-139,hsa-miR-139-5p,hsa-miR-140,hsa-miR-140-
3p,hsa-miR-141,hsa-miR-142-3p,hsa-miR-142-5p,hsa-miR-143,hsa-miR-144,hsa-miR-
145,hsa-miR-146a,hsa-miR-146b,hsa-miR-147,hsa-miR-148a,hsa-miR-148b,hsa-miR-
149,hsa-miR-15,hsa-miR-150,hsa-miR-151,hsa-miR-151-5p,hsa-miR-152,hsa-miR-
153,hsa-miR-154,hsa-miR-155,hsa-miR-15a,hsa-miR-15a-2,hsa-miR-15b,hsa-miR-16,
hsa-miR-16-1,hsa-miR-16-2,hsa-miR-16a,hsa-miR-164,hsa-miR-170,hsa-miR-172a-2,
hsa-miR-17,hsa-miR-17-3p,hsa-miR-17-5p,hsa-miR-17-92,hsa-miR-18,hsa-miR-18a,
hsa-miR-18b,hsa-miR-181a,hsa-miR-181a-1,hsa-miR-181a-2,hsa-miR-181b,hsa-miR-
181b-1,hsa-miR-181b-2,hsa-miR-181c,hsa-miR-181d,hsa-miR-182,hsa-miR-183,hsa-
miR-184,hsa-miR-185,hsa-miR-186,hsa-miR-187,hsa-miR-188,hsa-miR-189,hsa-miR-
190,hsa-miR-191,hsa-miR-192,hsa-miR-192-1,hsa-miR-192-2,hsa-miR-192-3,hsa-
miR-193a,hsa-miR-193b,hsa-miR-194,hsa-miR-195,hsa-miR-196a,hsa-miR-196a-2,
hsa-miR-196b,hsa-miR-197,hsa-miR-198,hsa-miR-199a,hsa-miR-199a-1,hsa-miR-
199a-1-5p,hsa-miR-199a-2,hsa-miR-199a-2-5p,hsa-miR-199a-3p,hsa-miR-199b,hsa-
miR-199b-5p,hsa-miR-19a,hsa-miR-19b,hsa-miR-19b-1,hsa-miR-19b-2,hsa-miR-200a,
hsa-miR-200b,hsa-miR-200c,hsa-miR-202,hsa-miR-203,hsa-miR-204,hsa-miR-205,
hsa-miR-206,hsa-miR-207,hsa-miR-208,hsa-miR-208a,hsa-miR-20a,hsa-miR-20b,hsa-
miR-21,hsa-miR-22,hsa-miR-210,hsa-miR-211,hsa-miR-212,hsa-miR-213,hsa-miR-
214,hsa-miR-215,hsa-miR-216,hsa-miR-217,hsa-miR-218,hsa-miR-218-2,hsa-miR-
219,hsa-miR-219-1,hsa-miR-22,hsa-miR-220,hsa-miR-221,hsa-miR-222,hsa-miR-223,
hsa-miR-224,hsa-miR-23a,hsa-miR-23b,hsa-miR-24,hsa-miR-24-1,hsa-miR-24-2,hsa-
miR-25.hsa-miR-26a,hsa-miR-26a-1,hsa-miR-26a-2,hsa-miR-26b,hsa-miR-27a,hsa-
miR-27b,hsa-miR-28,hsa-miR-296,hsa-miR-298,hsa-miR-299-3p,hsa-miR-299-5p,hsa-
miR-29a,hsa-miR-29a-2,hsa-miR-29b,hsa-miR-29b-1,hsa-miR-29b-2,hsa-miR-29c,
hsa-miR-301,hsa-miR-302,hsa-miR-302a,hsa-miR-302b,hsa-miR-302c,hsa-miR-302c,
hsa-miR-302d,hsa-miR-30a,hsa-miR-30a-3p,hsa-miR-30a-5p,hsa-miR-30b,hsa-miR-
30c,hsa-miR-30c-1,hsa-miR-30d,hsa-miR-30e,hsa-miR-30e,hsa-miR-30e-5p,hsa-miR-
31,hsa-miR-31a,hsa-miR-32,hsa-miR-32,hsa-miR-320,hsa-miR-320-2,hsa-miR-320a,
hsa-miR-322,hsa-miR-323,hsa-miR-324-3p,hsa-miR-324-5p,hsa-miR-325,hsa-miR-
326,hsa-miR-328,hsa-miR-328-1,hsa-miR-33,hsa-miR-330,hsa-miR-331,hsa-miR-335,
hsa-miR-337,hsa-miR-337-3p,hsa-miR-338,hsa-miR-338-5p,hsa-miR-339,hsa-miR-
339-5p,hsa-miR-34a,hsa-miR-340,hsa-miR-340,hsa-miR-341,hsa-miR-342,hsa-miR-
342-3p,hsa-miR-345,hsa-miR-346,hsa-miR-347,hsa-miR-34a,hsa-miR-34b,hsa-miR-
34c,hsa-miR-351,hsa-miR-352,hsa-miR-361,hsa-miR-362,hsa-miR-363,hsa-miR-355,
hsa-miR-365,hsa-miR-367,hsa-miR-368,hsa-miR-369-5p,hsa-miR-370,hsa-miR-371,
hsa-miR-372,hsa-miR-373,hsa-miR-374,hsa-miR-375,hsa-miR-376a,hsa-miR-376b,
hsa-miR-377,hsa-miR-378,hsa-miR-378,hsa-miR-379,hsa-miR-381,hsa-miR-382,hsa-
miR-383,hsa-miR-409-3p,hsa-miR-419,hsa-miR-422a,hsa-miR-422b,hsa-miR-423,hsa-
miR-424,hsa-miR-429,hsa-miR-431,hsa-miR-432,hsa-miR-433,hsa-miR-449a,hsa-miR-
451,hsa-miR-452,hsa-miR-451,hsa-miR-452,hsa-miR-452,hsa-miR-483,hsa-miR-483-
3p,hsa-miR-484,hsa-miR-485-5p,hsa-miR-485-3p,hsa-miR-486,hsa-miR-487b,hsa-
miR-489,hsa-miR-491,hsa-miR-491-5p,hsa-miR-492,hsa-miR-493-3p,hsa-miR-493-5p,
hsa-miR-494,hsa-miR-495,hsa-miR-497,hsa-miR-498,hsa-miR-499,hsa-miR-5,hsa-
miR-500,hsa-miR-501,hsa-miR-503,hsa-miR-508,hsa-miR-509,hsa-miR-510,hsa-miR-
511,hsa-miR-512-5p,hsa-miR-513,hsa-miR-513-1,hsa-miR-5132,hsa-miR-515-3p,hsa-
miR-516-5p,hsa-miR-516-3p,hsa-miR-518b,hsa-miR-519a,hsa-miR-519d,hsa-miR-
520a,hsa-miR-520c,hsa-miR-521,hsa-miR-532-5p,hsa-miR-539,hsa-miR-542-3p,hsa-
miR-542-5p,hsa-miR-550,hsa-miR-551a,hsa-miR-561,hsa-miR-563,hsa-miR-565,hsa-
miR-572,hsa-miR-582,hsa-miR-584,hsa-miR-594,hsa-miR-595,hsa-miR-598,hsa-miR-
599,hsa-miR-600,hsa-miR-601,hsa-miR-602,hsa-miR-605,hsa-miR-608,hsa-miR-611,
hsa-miR-612,hsa-miR-614,hsa-miR-615,hsa-miR-615-3p,hsa-miR-622,hsa-miR-627,
hsa-miR-628,hsa-miR-635,hsa-miR-637,hsa-miR-638,hsa-miR-642,hsa-miR-648,hsa-
miR-652,hsa-miR-654,hsa-miR-657,hsa-miR-658,hsa-miR-659,hsa-miR-661,hsa-miR-
662,hsa-miR-663,hsa-miR-664,hsa-miR-7,hsa-miR-7-1,hsa-miR-7-2,hsa-miR-7-3,
hsa-miR-708,hsa-miR-765,hsa-miR-769-3p,hsa-miR-802,hsa-miR-885-3p,hsa-miR-9,
hsa-miR-9-1,hsa-miR-9-3,hsa-miR-9-3p,hsa-miR-92,hsa-miR-92-1,hsa-miR-92-2,
hsa-miR-9-2,hsa-miR-92,hsa-miR-92a,hsa-miR-93,hsa-miR-95,hsa-miR-96,hsa-miR-
98,hsa-miR-99a和/或hsa-miR-99b。
[0126] 一些前述实施方式包括设备、非暂时性计算机可读介质或方法,其中,农业分析物包含所述靶试剂。
[0127] 在一些实施方式中,所述农业分析物指示食品产品的来源。在一些实施方式中,所述农业分析物指示食品产品的动物来源。在一些实施方式中,所述农业分析物指示所述动
物来源的属。在一些实施方式中,所述农业分析物指示食品产品的植物来源。在一些实施方
式中,所述农业分析物指示所述植物来源的属。
[0128] 在一些实施方式中,所述农业分析物是农药。在一些实施方式中,所述农业分析物是选自于由除草剂杀虫剂和杀真菌剂所组成的组中的农药。在一些实施方式中,所述农业
分析物是选自于由以下所组成的组中的除草剂:2,4-二氯苯氧基乙酸(2,4-D)、莠去津、草
甘膦、2甲4氯丙酸、麦草畏、百草枯、草铵膦、威百亩、隆、氟硫草定(dithopyr)、二甲戊灵、
EPTC、氟乐灵、啶嘧磺隆、甲磺隆、敌草隆、除草醚、三氟甲草醚、三氟羧草醚、甲基磺草、磺
草酮和尼替西农。在一些实施方式中,所述农业分析物是选自于由以下所组成的组中的杀
虫剂:有机氯化物、有机磷酸酯/盐、氨基甲酸酯、拟除虫菊酯、新烟碱和ryanoid。在一些实
施方式中,所述农业分析物是选自于由以下所组成的组中的杀真菌剂:多菌灵、乙霉威、嘧
菌酯、甲霜灵、精甲霜灵、链霉素、氧四环素、百菌清、戊唑醇、代森锌、代森锰锌、戊唑醇、腈
菌唑、三唑酮、腈苯唑、脱氧雪腐镰刀菌烯醇和代森锰锌。
[0129] 一些前述实施方式包括设备、非暂时性计算机可读介质或方法,其中,紊乱的生物标志物包括所述靶试剂。在一些实施方式中,所述紊乱是癌症。在一些实施方式中,癌症选
乳腺癌结直肠癌、胃癌、胃肠道间质肿瘤、白血病和淋巴瘤、肺癌、黑色素瘤、脑癌和胰腺
癌。在一些实施方式中,所述生物标志物选自包括雌激素受体、孕酮受体、HER-2/neu、EGFR、
KRAS、UGT1A1、c-KIT、CD20、CD30、FIP1L1-PDGFRα、PDGFR、费城染色体(BCR/ABL)、PML/RAR-
α、TPMT、UGT1A1、EML4/ALK、BRAF以及某些氨基酸(例如亮氨酸、异亮氨酸和缬氨酸)的升高
的水平。
[0130] 一些前述实施方式包括设备、非暂时性计算机可读介质或方法,其中,所述样品是禽类样品。
[0131] 一些前述实施方式包括设备、非暂时性计算机可读介质或方法,其中,所述样品是哺乳动物样品。
[0132] 一些前述实施方式包括设备、非暂时性计算机可读介质或方法,其中,所述样品是人样品。
[0133] 一些前述实施方式包括设备、非暂时性计算机可读介质或方法,其中,所述样品选自于由以下所组成的组:血液、血清、血浆、尿液、口水、腹水、脊髓液、精液、肺灌洗液、唾液、痰液、粘液、包含细胞或核酸的液体培养基、包含细胞或核酸的固体培养基、以及组织。
[0134] 一些前述实施方式包括设备、非暂时性计算机可读介质或方法,其中,通过实施选自以下的步骤获得所述样品:手指针刺(finger stick)、足跟针刺(heel stick)、静脉穿
刺、成人鼻抽吸、儿童鼻抽吸、鼻咽清洗、鼻咽抽吸、拭子擦拭、杯中大量收集(bulk 
collection in cup)、组织活检和灌洗。
[0135] 一些前述实施方式包括设备、非暂时性计算机可读介质或方法,其中,所述样品是蔬菜。
[0136] 一些前述实施方式包括设备、非暂时性计算机可读介质或方法,其中,所述样品是环境样品。
[0137] 一些前述实施方式包括设备、非暂时性计算机可读介质或方法,其中,所述样品是土壤样品或水样品。
附图说明
[0138] 图1A-图1D描述了用于靶标的检测的示例的盒。
[0139] 图2描述了用于靶标的检测的另一示例的盒。
[0140] 图3A和图3B描述了用于靶标的检测的另一示例的盒。
[0141] 图4A-图4G描述了电极的各种实例,该电极可用于图1A-图3B的盒的测试孔中、或用于本文所述的另一合适的靶标检测盒的测试孔或通道中。
[0142] 图5A描述了第一电极或激励电极以及第二电极或信号电极,其可在图1A-图3B的盒的测试孔内彼此间隔开、或在本文所述的另一合适的靶标检测盒的测试孔或通道中彼此
间隔开。
[0143] 图5B描述了可从图5A的信号电极提取的示例的信号。
[0144] 图5C描述了从基于示例的阳性测试而生成的、如图5B所示的信号中提取的电阻分量和电抗分量。
[0145] 图5D描述了从来自阳性对照的示例的测试和阴性对照的示例的测试的、如图5B所示的信号中提取的电阻分量和电抗分量。
[0146] 图5E描述了从基于另一示例的阳性测试而生成的、如图5B所示的信号中提取的电阻分量和电抗分量。
[0147] 图6描述了可与本文所述的盒一起使用的示例的读取器设备的示意性的方框图
[0148] 图7A描述了如本文所述的用于在测试期间对读取器设备进行操作的示例的过程的流程图
[0149] 图7B描述了如本文所述的用于对测试数据进行分析以检测靶标的示例的过程的流程图。
[0150] 图8描述了放大的免疫测定(amplification immunoassay)方案。
[0151] 图9描述了基于珠的放大的免疫测定方案。
[0152] 图10描述了基于磁珠的放大的免疫测定方案。
[0153] 图11描述了可以沿通道彼此间隔开的第一电极(或激励电极)和第二电极(或信号电极)。
[0154] 图12是示出了信号的阻抗取决于激励频率且在通道中发生LAMP反应之后的变化的图(其中左侧的不均等可以限定频率区域)。
[0155] 图13是示出了在两个极值区域中阻抗是电容器状的且与激励电压异相(接近90°)的图。
[0156] 图14是描述了所测量的样品芯片的阻抗相对于激励频率的图。
[0157] 图15是描述了相对于无量纲电导率绘制的同步的检测器的响应的图。
[0158] 图16是描述模型的结果的图,该模型表明了与宽范围的电导率的检测器输出和频率的给定步骤的检测器输出的一致性。
[0159] 图17A和图17B描述了可用于检测样品中的特定核酸和/或特定核苷酸的存在或不存在的检测系统的实施方式。图17A是该系统的俯视图,而图17B是该系统的横截面侧视图。
[0160] 图18是说明用于检测靶标的设备的实施方式的程序流程图。
[0161] 图19是说明用于检测靶标的设备的实施方式的程序流程图。
[0162] 图20描述了示例的流体盒。
[0163] 图21是图20的示例的流体盒的平面图。
[0164] 图22描述了电极的示例配置。
[0165] 图23描述了示例的通道。
[0166] 图24是描述了扩增前(-对照)和扩增后(+对照)的传感器电压随时间变化的图。
[0167] 图25是描述了0%全血的扩增前(-对照)和扩增后(+对照)的传感器电压随时间变化的图。
[0168] 图26是描述了1%全血的扩增前(-对照)和扩增后(+对照)的传感器电压随时间变化的图。
[0169] 图27是描述了5%全血的扩增前(-对照)和扩增后(+对照)的传感器电压随时间变化的图。
[0170] 图28是描述了对于未过滤样品而言的0%全血的扩增前(-对照)和扩增后(+对照)的传感器电压随时间变化的图。
[0171] 图29是描述了对于未过滤样品而言的0%全血的扩增前(-对照)和扩增后(+对照)的传感器电压随时间变化的图。
[0172] 图30描述了时间随靶标加载变化的图,其中误差棒示出标准偏差。
[0173] 图31描述了来自扩增前小瓶(-对照)和扩增后小瓶(+对照)的各种样品的电导率图。
[0174] 图32描述了用于HBsAg的检测的基于磁珠的放大的免疫测定方案。
[0175] 图33描述了说明HBsAg的检测的图。
[0176] 图34描述了说明用低离子缓冲液(T10)检测HBsAg的图。
[0177] 图35描述了说明流体盒的阻抗特性的图。
[0178] 图36A描述了在65℃下在盒上进行的LAMP的异相信号的图。
[0179] 图36B描述了在65℃下在盒上进行的LAMP的同相信号的图。
[0180] 图36C描述了在67℃下在盒上进行的LAMP的异相信号的图。
[0181] 图36D描述了在67℃下在盒上进行的LAMP的同相信号的图。
[0182] 图36E描述了在67℃下在盒上进行的LAMP的异相信号的图。
[0183] 图36F描述了在67℃下在盒上进行的LAMP的同相信号的图。

具体实施方式

[0184] 本文公开的方面关注扩增和非接触式电学感测的用于检测样品中的靶标的存在的用途。此种诊断平台可用普通电子元件代替用于光学检测的复杂的光学系统和昂贵的荧
光标记以及现有的电化学技术和FET技术中使用的电极和电活性剂。在一些方面,扩增可为
恒温的。本文描述的平台便宜、坚固、便携、并且比传统的诊断系统消耗更低的功率。在一些
方面,诊断平台足够小,以适合消费者的手掌,并且能够在现场进行,例如在医生办公室、家
中、远离医疗设施的地点进行诊断。
[0185] 许多商业上可获得的核酸检测平台利用传统PCR,从而需要温度循环、荧光标记和光学检测仪器。这些因素造成昂贵的基于实验室的仪器,该仪器利用易损的振动敏感的检
测器、昂贵的荧光标志物且具有大的占地面积。装置需要由训练有素的人员进行操作和频
繁的校准。
[0186] 这些大型的笨重的平台使传统NAT的常规用途难以在临床中使用,更不用说在家中。NAT仍然是与集中化实验室设施密切相关的昂贵且缓慢的策略。相比之下,本公开的技
术避免了这些挑战。
[0187] 对于床边(“POC”)测试而言的障碍是在粗制的、未加工的临床样品(例如全血或粘液)中经常遇到的干扰物对扩增的潜在抑制。扩增抑制剂的缓解可能挑战来自临床上相关
的生物样品的靶核酸的直接检测。
[0188] 传统的检测策略通常依赖于荧光检测技术。此种技术可能是复杂的、更昂贵的、并且需要精密的光学系统。然而,本公开大体上依赖于电子检测系统。此种电子检测系统可利
用消耗相对低功率的微电子学,并且由于大批量制造而能够以降低的成本制造。因此,基因
组物质的电子检测可将计算机工业的发展转移到生物检验感测。
[0189] 用于监测扩增的现有的电子方法可能需要对表面的电化学活性标记的结合或所扩增的物质的选择性结合。然而,当在真实世界临床应用中使用时,这些技术经常遭受慢的
响应时间、导致差的信噪比的结合表面或电极的生物淤积、以及对设备的寿命和可靠性的
限制。虽然潜在地使高灵敏度成为可能,但电化学或场效应晶体管“FET”检测的使用对检测
增加了一定层次的复杂性。与POC和其它消费者应用通常要求的相比,这可能导致更昂贵且
较不稳健的策略。因此,显然需要额外的诊断设备。
[0190] 本文公开的平台依赖于在核酸扩增期间发生的电导率变化的测量。总之,在来自核苷三磷酸的DNA的生物化学合成期间,带电分子的数量和迁移率被改变。这转而引起溶液
电导率随着扩增进展而变化。可使用频率依赖的电容耦合的无接触电导率检测(“fC4D”)来
感测溶液电导率的此种变化。
[0191] 在一些实施方式中,fC4D使用与位于扩增腔室中的流体紧紧接近但不接触的成对电极来测量溶液的电学性质。以此种方式测量溶液性质而不直接接触的能力避免了对其它
电学测量方法而言常见的表面污染的挑战。
[0192] 在一些实施方式中,利用fC4D将高频交流电流(“AC”)信号施加至激励电极。该信号通过溶液(在信号电极处检测到该信号)电容耦合。通过将激励信号与信号电极处的信号
进行比较,可确定溶液的电导率。
[0193] 通过高分辨率有限元模型和实证研究可知,基于fC4D的技术的特定公差可实现平台的特定实施方式的最佳检测灵敏度和动态感测范围。此种经计算和实证地确定的微流体
维度、电容耦合特性和所施加的频率的参数能够使得用于检测溶液电导率变化的有效参数
的确定成为可能。在一些实施方式中,对应于最佳检测的参数可为相互依赖的变量。根据以
下等式,所测量的阻抗是溶液电阻、电容和所施加的频率的函数:
[0194] Z=R-(1/pi*f*C)*j
[0195] 随着电极钝化层厚度的增加,归因于此层的寄生电容随之增加。因此,相对于钝化层的电容,可选择用于通过fC4D测量溶液电导率的最佳AC频率。
[0196] 示例的盒、读取器和信号处理的概述
[0197] 在一些方面,一种用于检测样品中的靶标的系统包括可拆装的流体盒,该流体盒可连接至配套的读取器设备。用户可向该盒施加样品,然后将其插入读取器设备。将读取器
设备配置为使用盒进行测试程序,并分析测试数据以确定样品中的靶标的存在、不存在或
其量。例如,可向盒提供用于扩增程序(通过该程序扩增最初存在于样品中的靶标)的期望
的试剂、蛋白质或其它化学物质。具体而言,可向一些盒提供用于核酸测试的期望的化学物
质,如本文所述,其中,使用分子扩增程序以指数方式拷贝样品中的基因组物质。盒也可包
括用于包含扩增程序的测试孔,其中,测试孔是指被配置为用于包含(或实质上包含)扩增
程序的组分和测试流体的孔、腔室、通道或其它几何结构。读取器设备可维持盒的期望的温
度或其它测试环境参数以有利于扩增程序,并且可贯穿一些扩增程序或所有扩增程序在电
子学上监测盒的测试孔。因此,读取器设备可在扩增程序期间收集代表随时间变化的测试
孔的阻抗的信号数据,并且可如本文所述对阻抗进行分析以确定样品中靶标的存在、不存
在或其量。作为实例,扩增程序可在5分钟到60分钟的范围内,一些实例可在10分钟到30分
钟的范围内。优选地,在一些实施方式中,当悬浮于孔内的流体中时,扩增产物被检测到,从
而使扩增产物不附着至孔或与孔隔离或者固定或结合至探针(探针结合至孔)。在其它实施
方式中,当它们附着至孔或与孔隔离(例如固定或结合至探针,该探针结合至孔)时,检测到
扩增产物。
[0198] 此种系统可有利地提供在临床环境或甚至用户家中可进行的靶标检测,而不是要求将样品送到实验室进行扩增和分析。在临床环境中,这可避免常规的核酸测试的延迟,从
而使临床医生能够在患者的诊所就诊典型时间表内对诊断进行确定。就其而言,所公开的
系统使临床医生能够在患者的初次诊所就诊期间内为其制定治疗计划,而不是要求临床医
生等待数小时甚至数天以从实验室收回测试结果。例如,当患者去诊所就诊时,护士或其它
医疗保健从业者可从患者收集样品,并使用所描述的系统开始测试。该系统可在患者咨询
他们的医生或临床医生时提供测试结果,以确定治疗计划。特别是当用于诊断快速进展的
病变时,所公开的系统可避免与实验室测试相关的、可能对患者的治疗和结果产生负面影
响的延迟。
[0199] 作为另一益处,所公开的系统可在临床环境之外(例如在现场、在不易于接近已建立的医疗诊所的农村环境中)使用,以检测例如传染病(例如埃博拉病毒)的健康状况,从而
使合适的人员能够立即采取行动,以预防或减轻传染病的传播。类似地,所公开的系统可在
现场或在具有可疑有害污染物(例如炭疽)的地点使用,以快速确定样品是否含有有害污染
物,从而使合适的人员能够立即采取行动,以预防或减轻人暴露于污染物。另外,所公开的
系统可用于检测血液或血浆供应品中的污染物或食品工业中的污染物。将理解的是,所公
开的系统可在其它情景下提供类似的益处,其中,靶标的实时检测使得比起经由将样品送
到非现场实验室的延迟的检测更有效的动作成为可能。
[0200] 此种系统的另一益处是它们对低成本的一次性单次使用的盒以及可重复使用的读取器设备的使用,该读取器设备可与不同的盒多次使用和/或用于不同靶标的测试。
[0201] 图1A-图1D描述了被配置用于靶标的检测的示例的盒100。如本文所述,靶标可为病毒靶标、细菌靶标、抗原靶标、寄生虫靶标、microRNA靶标或农业分析物。可将盒100的一
些实施方式配置为用于测试单个靶标,同时可将盒100的一些实施方式配置为用于测试多
个靶标。
[0202] 图1A描述了具有盖105的盒100,盖105被设置在其基部125上。在使用中,盖105可运行以封闭盒100内的提供的样品,从而防止测试操作者暴露于样品并防止任何液体逸出
到相连的读取器设备的电子器件中。可将盖105永久固定至基部125,或在某些实施方式中,
盖105可为可拆装的。盖105可由合适的材料(例如塑料)形成,并且如所描述的可为不透明
的,或者在其它实例中可为半透明或透明的。
[0203] 盖105包括位于基部125的样品引入区域120上方的孔隙115。如本文使用的,“上方”指的是当从自上而下的视,与包括孔隙115的盖105的平面表面正交地观察盒100时,
孔隙115位于样品引入区域120的上部。盖105还包括帽110,将帽110配置为在通过孔隙115
提供样品之前和之后流体封闭孔隙115。帽110包括圆柱形突起111、松脱片(release tab)
113和铰链112;当帽110被孔隙115封闭时,圆柱形突起111封堵孔隙115;将松脱片113配置
为当帽110被孔隙115封闭时帮助用户将帽110拔出孔隙115;以及将铰链112配置为使得能
够在保持帽110固定至盖105的同时能够将帽110从孔隙115移开,并位于样品供应通道之
外。将理解的是,可类似地使用帽110的形状的其它变型来实现孔隙115的封闭,并且在一些
实施方案中,可以修改或省略铰链112和/或松脱片113。在说明性的实施方式中,盖105和帽
110作为单片材料而一体形成,然而在其它实施方式中,帽110可为与盖105分开的结构。
[0204] 在使用中,用户打开帽110,并通过盖中的孔隙115将潜在地包含靶标的样品施加至基部125的样品引入区域120。例如,用户可以刺破手指并将全血样品施加至样品引入区
域120(例如通过毛细管)。可将盒100配置为接受一种或多种液体、半固体和固体样品。在施
加样品之后,用户可关闭帽110以封闭孔隙115。有利地,将基部125的流体通道入口封闭允
许样品(和其它液体)通过基部125的流体通道移动至测试孔。例如如本文所述,用户可将含
有样品的封闭的盒100插入读取器设备,并且读取器设备可将用于将样品移动至测试孔的
可选的气动界面激活。关于图1B和图1C,更详细地描述了流体通道和测试孔,并且关于图6,
描述了示例的读取器设备。
[0205] 盖105还包括用于暴露基部125的电极界面135的凹部130,在下面更详细地进行描述。在一些实施方式中,盖105可包括可移动的翼片或可拆装的护套,用于在使用之前对电
极界面135进行保护。
[0206] 图1B描述了图1A的盒100,其中盖被移除以暴露基部125的特征。基部125可由流体不可渗透的材料(例如注塑或研磨丙烯酸材料或塑料材料)形成。基部125包括样品引入
区域120、泡罩包装140、气动界面160、包括测试孔175的测试区域170A、以及流体通道150
(将其配置为用于将所施加的样品与泡罩包装140中包含的液体混合,并用于将经混合的液
体运送到测试孔175)。将理解的是,这些特征的特定的几何构型或相对布置可在其它实施
方式中变化。
[0207] 泡罩包装140包括膜(例如热成型塑料),形成包含用于与所施加的样品混合的液体的密封腔室。这些液体可包括扩增试剂、缓冲溶液、水或用于测试程序的其它的期望的液
体成分。这些液体的特定选择和化学性质可调整适应于特定一种或多种靶标(对于这些靶
标,设计盒100以用于测试)。泡罩包装140的一些实施方式可另外包括溶解或悬浮在所包含
的液体中的非液体化合物。可将泡罩包装140固定至基部125,例如固定在具有通向腔室中
的气动流体通道161和从腔室引出至流体通道150中的孔隙141的流体密封的腔室内。例如
可将沿泡罩包装140的一个或两个表面的外边缘布置的环形的压敏粘合剂用于将泡罩包装
140固定在适当位置
[0208] 在使用中,用户或读取器设备可将尖头(例如针或具有尖点的其它物体)在机械学上驱动,以将泡罩包装140刺穿,并通过孔隙141将其液体内容物释放并进入流体通道150的
第一区段151中。可将尖头并入盒100中,例如位于包含泡罩包装140的腔室,所述泡罩包装
140具有与流体通道的第一区段151流体连通的腔室。如本文所使用的,流体连通是指转移
流体(例如液体、气体、气体)的能力。在另一实施方式中,用户或读取器设备可按压泡罩包
装140的下表面(尽管未说明,该下表面与图1B中可见的表面相对)以将其向上推入尖头,并
将泡罩包装140刺穿。在其它实施方式中,可省略尖头,并且泡罩包装140可被用户或读取器
设备压缩,直到其液体内容物的压力导致泡罩包装140破裂。尽管被描述为可破裂的泡罩包
装140包装,但其它实施方式可实施可在机械学上打开的腔室,将该腔室配置为类似地将所
包含的液体释放到流体通道150的第一区段151中。
[0209] 如上所述,在施加样品之后,用户将盖的孔隙115密封,从而密封盒100内的流体通道150。将气动界面160配置为将流体(例如空气)通过泡罩包装腔室提供至密封的流体通道
150中,以促进流体沿流体通道150以期望的方向流动至测试孔175。气动界面160可为通向
气动流体通道161中并与其流体连通的孔隙,转而通向泡罩包装140或包含泡罩包装140的
腔室并与其流体连通。在一些实施方式中,气动界面160可为可压缩的单向,其在压缩时
将周围的空气推动至气动流体通道161中,并在减压时从其环境中吸收周围的空气。在此种
实施方式中,气动界面160的重复压缩可沿流体通道推动盒中的流体。
[0210] 流体通道150包括区段151、152、153、154、155和156以及样品引入区域120、测试孔175、测试孔入口通道176和测试孔出口通道177。流体通道150的第一区段151从泡罩包装
140通向样品引入区域120。流体通道150的第二区段152从样品引入区域120通向混合腔室
153。混合腔室153是流体通道150的第三区段,并且相对于第二区段152和第四区段154加
宽。流体通道150的第四区段154从混合腔室153通向流体通道的第五区段155。流体通道150
的第五区段155在测试区域170A中形成。流体通道150的第五区段155通向第一测试孔入口
通道176和流体通道150的第六区段156。流体通道150的第六区段156各自在相邻测试孔入
口之间形成直到最后的测试孔入口176的流体通道150的延续部分。测试孔入口通道176将
测试孔175流体连接至流体通道150,并且可通过阀174关闭(例如用以防止测试孔之间的交
叉扩增)。测试孔出口通道177从测试孔175通向出口孔隙178,出口孔隙178允许气体从测试
孔175逸出并离开盒100。
[0211] 在一些实施方式中,来自泡罩包装140的液体与所施加的样品的均匀或均一混合可产生更准确的测试结果。就其而言,将混合腔室153配置为促进来自泡罩包装140的液体
与所施加的样品的均匀混合,例如,通过包括促进混合腔室153内的液体的湍流而非层流
横截面形状和/或弯曲的区域。湍流是流体动力学中的流动状态,其特征在于流体的压力和
流速的混乱变化。湍流与层流形成对比,层流在流体于平行层中流动时发生,在这些层之间
没有破坏。
[0212] 流体通道150的区段151、152、153、154可被完全包围在基部125的材料内,或可具有由基部125(具有形成密封这些通道的上表面的盖105)的材料形成的三个表面。流体通道
150的区段155、156以及测试孔入口通道176和测试孔出口通道177可被完全包围在基部125
的材料内,可具有由基部125(具有形成密封这些特征的上表面的盖105)的材料形成的三个
表面,或可具有由基部125(具有形成这些特征的下表面的电路板179以及形成这些特征的
上表面的盖105)的材料形成的两个表面。
[0213] 图1C说明了沿流体通道150的流动方向,具有作为沿流体通道的某些点的标签示出的带圈的数字。下面讨论带圈的数字,作为流体180通过盒100内的流体通道150行进时的
进展的示例步骤,每个步骤包括示出了该步骤处的流体行进方向的方向箭头。
[0214] 在步骤(1)之前,用户在样品引入区域120处施加样品。为了图1C的清晰和简洁,在图1C中未标出图1B中以参考编号标记的组件。同样在步骤(1)之前,使泡罩包装140破裂,以
使得其液体内容物从其先前密封的腔室中释放。
[0215] 在步骤(1)中,从气动界面160流出的空气或其它流体沿气动流体通道161以所示的方向行进至破裂的泡罩包装140。
[0216] 在步骤(2)中,从破裂的泡罩包装140释放的液体(在本文中称为“反应混合物”)以所示的方向通过孔141行进,并进入流体通道150的第一区段151中。反应混合物继续沿第一
区段151流动直到步骤(3),当其进入样品引入区域120,开始进一步沿流体通道以其自身运
送样品。
[0217] 在步骤(4)中,反应混合物和样品离开样品引入区域120,并以所示的方向沿流体通道150的第二区段152流动。可预先选择反应混合物的体积以从样品引入区域120将所施
加的样品完全冲洗或实质上完全冲洗,和/或至少填充测试孔175及其相应的入口通道176。
[0218] 在步骤(5)中,反应混合物和样品以所示的方向流入流体通道150的较宽的第三区段153的入口,并且在步骤(6)中,将反应混合物和样品混合成均匀的溶液,其中样品均匀地
分布在整个反应混合物中。如上所述,第三区段153包括弯曲的区段和平面的混合腔室,将
该混合腔室配置为促进反应混合物和样品的混合。在一些实施方式中,可选择由气动界面
160限定的流体速度,以进一步促进此混合。
[0219] 在步骤(7)中,经混合的反应混合物和样品(称为“测试流体”)离开混合腔室153,并进入流体通道150的第四区段154(其通向测试区域170A)。
[0220] 在步骤(8)中,测试流体以所示的方向沿流体通道150的第五区段155行进,通过测试区域170A行进至测试孔175。
[0221] 在步骤(9)中,测试流体到达第一测试孔入口通道176,并且沿从步骤(9)的流体通道的箭头分成三叉所示出的三个可能的通道引导其流动。
[0222] 步骤(10)的通道示出了测试流体进一步沿流体通道150的区段156流动至随后的测试孔入口通道176。可选地,可关闭测试孔入口通道176处的阀174,防止测试流体流动至
步骤(10)。
[0223] 步骤(11)的通道示出了测试流体的气体部分通过阀门174的可选的流动。在一些实施方式中,阀门174可包括液体不可渗透、气体可渗透的过滤器,以允许存在于测试流体
中的任何气体在进入测试孔175之前通过阀174排出。在一些实施方式中,可不将阀174配置
为排出气体。
[0224] 步骤(12)的通道示出了测试流体流入测试孔175的方向。在一些实施方式中,可关闭阀174以在预定的触发发生时封闭测试孔175。触发可在相当于至少为测试孔175(以及额
外的入口通道176和出口通道177)的体积的预定体积的液体已沿步骤(12)的通道流动之后
发生。阀门关闭触发的另一实例可在经过预定量的时间之后发生,该预定量的时间相当于
预期该体积的液体沿步骤(12)的通道流动的时间。在另一实施方式中,触发可为气动界面
160的去活化,此时流体可开始沿所示的通道反向流动,导致在不同的测试孔中发生的扩增
程序的交叉污染。在一些实施方式中,所描述的阀174的位置可替代地为气体出口孔隙,其
可选地用液体不可渗透、气体可渗透的过滤器覆盖,并且所描述的阀可被沿测试孔入口通
道176或沿流体通道区段156安置。
[0225] 步骤(13)的通道示出了测试流体或其气体成分通过出口通道177流出测试孔175的方向。出口通道177可为从测试孔175通向外面的通道,并且通过气动界面160提供的压
力,可将测试流体推入出口通道177。在一些实施方式中,可在测试孔175和出口通道177的
界面处提供液体不可渗透、气体可渗透的过滤器,从而使得仅测试流体的气体成分流过出
口通道177。
[0226] 在步骤(14),来自测试流体的气体通过出口孔隙178从盒100中排出。出口孔隙178可被液体不可渗透、气体可渗透的过滤器覆盖,以允许气体逸出盒100并防止液体逸出盒
100。有利地,允许和促进气体从测试流体排出可使保留在测试孔中的气体量最小化,使测
试孔中的液体量最大化。如下所述,使在电极之间的通道中形成气泡的可能性最小化可有
利地产生更可靠的信号和更准确的测试结果。
[0227] 回到图1B,测试区域170A包括流体通道150的区段155和区段156、测试孔175、测试孔入口通道176、测试孔出口通道177、孔隙/阀176、孔隙/阀178和电路板179。电路板179包
括测试孔的电极171A和电极171B、用于传送电流或其它电信号的导体172和电极界面135。
电极界面135包括接触板173,将接触板173的一半配置为用于将测试孔的激励电极与读取
器设备的电压源或电流源连接,并且将接触板173的另一半配置为用于将测试孔的信号电
极与测试设备的信号读取导体电连接。为了图1B的清晰,测试区域170A的重复特征中的仅
某些特征用参考编号标记。
[0228] 电路板179可为印刷电路板,例如具有多层的网版印刷电路板或丝网印刷电路板。电路板179可被印刷到柔性塑料基底或半导体基底上。电路板179可至少部分地由与基部
125分开的材料形成,并被固定至基部125的下侧,而基部125的上覆区域126包括流体通道
150的区段155和区段156、测试孔175、测试孔入口176、测试孔出口178和孔隙/阀176、孔隙/
阀178。例如,电路板179可为粘附、固定或层压至上覆区域126的丙烯酸的多层印刷电路板。
电极界面135可延伸超出上覆区域126的边缘。测试孔175可形成为上覆区域126的材料中的
开口,从而使得电路板179的电极171A、电极171B暴露在孔175中。就其而言,电极171A、电极
171B可与流入至孔175中的流体直接接触。电路板179可通过在其上表面上具有树脂而被涂
覆黄油,以产生测试孔底部的光滑的平坦的表面。
[0229] 可向测试孔175提供测试程序的固体干成分,例如引物和蛋白质。这些干成分的特定选择和化学性质可被定制适应于盒100被设计用于测试的特定的一个或多个靶标。可向
测试孔175提供相同或不同的干成分。可用流入测试孔中的液体(例如,与所施加的样品混
合的来自泡罩包装140的液体)将这些干成分水化,从而使其被激活用于测试程序。有利地,
分别提供泡罩包装140中的液体成分与测试孔175中的干的固体成分使得待在使用前储存
的盒100能够包含扩增程序期望的组分,同时还将扩增的启动延迟直至施加样品之后。
[0230] 测试孔175被描述为在以距电极界面135交错的距离处被布置成两排的圆形孔。测试孔175通常可为圆柱形的(例如形成为上覆区域126的材料中的圆形开口),并且通过其上
侧(例如盖105或部分上覆区域126)和下侧(例如电路板179)的平面表面围成。每个测试孔
175包含两个电极171A和171B,其中一个电极是被配置为向测试孔175中的样品施加电流的
激励电极,且另一电极是被配置为检测从激励电极流过液体样品的电流的信号电极。在一
些实施方式中,可向一个或多个测试孔提供热敏电阻来代替电极,以便提供对盒100内的流
体温度的监测。
[0231] 每个测试孔可独立于其它测试孔而被监测,从而每个测试孔可构成不同的测试。每个测试孔内所描述的电极171A和电极171B是彼此平行放置的线性电极。所描述的测试孔
175的布置提供了紧凑的测试区域170A,其具有从流体通道150到每个测试孔175的通路。一
些实施方式可仅包括单个测试孔,并且各种实施方式可包括以其它构造布置的两个以上的
测试孔。此外,在其它实施方式中测试孔的形状可以改变,并且电极形状可为图4A-图4G中
所示的任意电极。
[0232] 在一些实施方式中,测试孔175内的气泡(特别是如果气泡沿电极171A和电极171B之间的电流通道定位)可在由信号电极捡取的信号中产生噪音。该噪音可降低基于来自信
号电极的信号确定的测试结果的准确度。当沿电流通路仅存在液体、或当沿电流通路存在
最低限度的气泡时,可获得期望的高质量信号。如上所述,最初存在于沿流体通道150流动
的流体中的任意空气可通过出口孔隙178推出。此外,电极171A、电极171B和/或测试孔175
可被塑造为减轻或防止液体样品的集结,其中空气或气泡在液体样品中形成并沿电极聚
集。
[0233] 例如,电极171A和电极171B位于测试孔175的底部。这可允许任意空气或气体上升至测试孔中的流体顶部并远离电极之间的通道。如本文所用的,测试孔的底部是指在其中
较重的液体由于重力而沉降的测试孔的部分,并且测试孔的顶部指的是在其中较轻的气体
上升到较重的液体之上的测试孔的部分。此外,电极171A和电极171B远离测试孔175的周围
或边缘而被设置,测试孔175是通常发生气泡集结的位置。
[0234] 此外,电极171A和电极171B可由薄的、扁平的材料层形成,该材料层相对于形成测试孔底部的下电路板层具有最小高度。在一些实施方式中,电极171A和电极171B可使用电
沉积和图案化形成,以形成金属膜薄层(例如高度约300nm)。该最小高度可有助于防止或减
轻气泡沿电极和下层之间的界面被截留。在一些实施方式中,可将导电材料层沉积在每个
电极的顶部,以在电极的边缘和测试孔的底部之间产生更平滑的转换。例如,可将薄的
polymid层(例如高度约为5微米)沉积在电极的顶部,或者可用黄油涂覆电路板。额外地或
替代地,电极可位于下层中的沟槽中,沟槽具有约等于电极高度的深度。这些方法和其它合
适的方法可获得大致平坦或与孔的底部表面齐平的电极。
[0235] 有利地,上述特征可有助于保持电极171A和电极171B被液体包围,并防止或减少气泡沿电极171A和电极171B之间的电流通道被定位。
[0236] 图1D是描述盒100的测试区域170B的俯视平面图的线图。如同图1B,为了图1D的图的简洁和清晰,某些重复的特征仅在一个位置用参考编号标记。
[0237] 测试区域170B是测试区域170A的替代实施方式,两个实施方式之间的差异是测试孔175内的不同的电极构造。在测试区域170B的实施方式中,向测试孔提供环形电极171C和
环形电极171D。测试区域170A的线性电极171A和线性电极171B中的任一电极可为激励电极
或信号电极。在测试区域170B的实施方式中,内部电极171D为激励电极,且外部电极171C为
信号电极。
[0238] 内部电极171D可为连接至电流提供导体172B的圆盘形或圆形电极,电流提供导体172B转而连接至电极界面135的电流提供板173,电流界面135将电流(例如指定频率下的AC
电流)从读取器设备传输至内部电极171D。可将内部电极171D安置在测试孔175的中心。外
部电极171C是围绕内部电极171D同心地形成的、并且与内部电极171D通过间隙隔开的半圆
形电极。当导电导线将内部电极171D连接至电流提供导体172B时,外部电极171C的半圆形
体发生断裂。外部电极171C连接至电流感测导体172B,其转而连接至电极界面135的电流感
测板173,电极界面135将感测到的电流传输到读取器设备。
[0239] 图1A-图1D的盒100提供了一种独立的、易于使用的设备,用于对靶标进行基于扩增的测试,例如其中使用分子扩增程序以指数方式对样品中的基因组材料进行拷贝的核酸
测试。有利地,由于扩增程序的液体成分和固体成分预先在盒内提供并自动地与样品混合,
用户仅需要施加样品并将盒100插入读取器设备中,以确定一些实施方式中的测试结果。在
一些实施方式中,盒或读取器中的一者或两者可包括加热器和控制器,将控制器配置为操
作加热器以将盒保持在用于扩增的期望的温度。在一些实施方式中,盒或读取器中的一者
或两者可包括马达,以对盒赋予振动或搅动,从而使任何被截留的气体上升到液体的顶部
并从测试孔排出。
[0240] 图2描述了被配置为用于检测靶标的另一示例的盒200的照片。将盒200用于生成本文所述的一些测试数据,并且表示关于盒100所描述的一些组件的替代的构造。
[0241] 盒200包括印刷电路板层205和丙烯酸层210,丙烯酸层210使用压敏粘合剂覆盖并粘附到部分印刷电路板层205。丙烯酸层210包括多个测试孔215A和多个温度监测孔215B,
其形成为延伸穿过丙烯酸层210的高度的圆形孔隙。印刷电路板层205可与上述的电路板
179类似地形成,并且包括位于每个测试孔215A内的成对电极220和位于每个温度监测孔
215B内的热敏电阻225。电极220和热敏电阻225各自连接至终止于印刷电路板的多条导线
230处的导体。如所示出的,对于信号电极,将6条导线标记为其后是数字1-6的“SIG”;对于
激励电极,将6条导线标记为其后是数字1-6的“EXC”;以及对于热敏电阻,将2条导线标记为
RT1和RT2。
[0242] 在本文所述的一些测试期间,遵循以下的示例的方案。首先,用户用测试流体填充孔215A,并用矿物油盖住流体。考虑到不存在引起扩增的引物时的明确的阴性对照,测试流
体可不具有引物对照。
[0243] 接下来,用户将盒200加热至65摄氏度10分钟,以使在测试流体中的任意被截留的空气膨胀并引起其作为气泡上升到液体的顶部。在该初始加热期间,在孔215A中形成气泡。
[0244] 在下一步骤中,用户使用移液管或其它工具从孔215A中的液体表面刮除气泡。如上所述,气泡的消除可促进更准确的测试结果。
[0245] 在消除气泡之后,用户让盒200冷却至室温。接下来,用户将环介导恒温扩增(LAMP)阳性对照(PC)注入每个测试孔215A的底部,将盒200放置在加热区上,并开始进行
LAMP测试。如本文所述,对从信号电极检测到的信号进行分析,以识别阳性信号悬崖。
[0246] 图3A和图3B描述了被配置为用于检测靶标的另一示例的盒300。图3A描述了盒300的顶部、前部和左侧透视图,并且图3B描述了示出盒300的孔320的轮廓的透视剖面图。盒
300表示关于盒100所描述的一些部件的替代的构造。
[0247] 盒300包括样品引入区域305、中心通道310、测试孔320、将测试孔320流体连接至中心通道310的分支315、位于每个测试孔320内的电极325A和电极325B、以及包括连接至导
体的接触板的电极界面320(导体转而连接至电极325A、电极325B中的各自之一,并且被配
置为从读取器设备接收信号或向读取器设备发送信号)。如图3B中所示,孔320可具有弯曲
的底部表面,从而使得每个孔通常为半球形。盒300被描述为具有开口顶部以便暴露其内部
部件,然而在使用中可提供盖或其它上层以密封盒300的流体通路。盖可包括排气口以允许
气体从盒300中逸出,例如如上文关于图1A-图1D所述的,提供有液体不可渗透、气体可渗透
的过滤器。
[0248] 在样品引入区域305处施加的流体样品沿中心通道310向下流动(例如响应于来自读取器设备的压力),通过连接在样品引入区域305上方的端口将样品注入盒300中。在一些
实施方式中,可向此种读取器设备提供一套的盒(例如堆叠放置),并且可向每个盒提供相
同或不同的样品。流体样品可主要为具有溶解的或被截留的气体(例如气泡)的液体。流体
可从中心通道310通过分支通道315流入测试孔320中。分支通道315可进入孔的顶部中,并
且可为弯曲的(例如包括具有小半径的多个转弯)以防止或减轻可能导致各孔之间的扩增
程序的交叉污染的流体的反向流动。
[0249] 图4A-图4G描述了电极构造的各种实例,其可在图1A-图3B的盒的测试孔中或在本文所述的另一合适的靶检测盒的测试孔或通道中使用。图4A-图4G中所示的测试孔被描绘
为圆形的,但在其它实例中,电极可被用于其它几何结构的测试孔中。除非另有说明,图4A-
图4G中的实心圆表示所公开的电极和通向电极的导体或来自电极的导体之间的接触。下文
使用的“宽度”是指沿图4A-图4G的页面的水平方向的维度,下文使用的“高度”是指沿图4A-
图4G的页面的垂直方向的维度。尽管以特定的朝向描绘,在其它实施方式中,图4A-图4G中
所示出的电极可以旋转。此外,所公开的示例的维度表示电极构造400A-400G的某些可能的
实施方式,并且变型可以具有遵循所提供的示例的维度之间的相同比例的不同维度。图4A-
图4G中所示的电极可由合适的材料(包括铂、金、)制成。在实验测试中,锡和铂的表
现相似,并且适用于某些测试设置和测试靶标。
[0250] 图4A描绘了第一电极构造400A,其中第一电极405A和第二电极405B各自形成为半圆形边缘。第一电极405A的直边邻近于第二电极405B的直边设置,并且通过沿构造400A的
宽度的间隙隔开。该间隙大于电极的半圆形体的半径。因此,将第一电极405A和第二电极
405B设置为相映照的半圆形边缘。在第一电极构造400A的一个实例中,第一电极405A和第
二电极405B的最接近部分之间的间隙跨越约26.369mm,电极405A和电极405B各自的高度
(沿直边)约为25.399mm,且电极405A和电极405B各自的半圆形体的半径约为12.703mm。
[0251] 图4B描绘了第二电极构造400B。类似于第一电极构造400A,第二电极构造400B的第一电极410A、第二电极410B各自形成为半圆形边缘并且被设置为相映照的半圆形体,其
直边朝向彼此。第二电极构造400B的第一电极410A和第二电极410B可与第一构造400A的第
一电极405A和第二电极405B的尺寸相同。在第二电极构造400B中,第一电极410A和第二电
极410B之间的沿构造400B的宽度的间隙小于第一构造400A中的间隙,并且该间隙小于电极
410A和电极410B的半圆形体的半径。在第二电极构造400B的一个实例中,第一电极410A和
第二电极410B的最接近部分之间的间隙跨越约10.158mm,电极410A和电极410B各自的高度
(沿直边)约为25.399mm,且电极410A和电极410B各自的半圆形体的半径约为12.703mm。
[0252] 图4C描绘了第三电极构造400C,其具有通过沿构造400C的宽度的间隙隔开的第一线性电极415A和第二线性电极415B,其中,间隙约等于电极415A和电极415B的高度。电极
415A和电极415B的宽度约为电极高度的一半到三分之一。在第三电极构造400C的一个实例
中,第一电极415A和第二电极415B的最接近部分之间的间隙跨越约25.399mm,电极415A和
电极415B各自的高度也约为25.399mm,并且电极415A和电极415B各自的宽度约为
10.158mm。第一电极415A和第二电极415B的端部可为成圆角的,例如具有约5.078mm的半
径。
[0253] 图4D描绘了第四电极构造400D,其具有通过沿构造400D的宽度的间隙隔开的第一矩形电极420A和第二矩形电极420B,其中,间隙约等于电极420A和电极420B的宽度。在第四
电极构造400D的一个实例中,第一电极420A和第二电极420B的最接近部分之间的间隙跨越
约20.325mm,电极420A和电极420B各自的高度也约为23.496mm,并且电极420A和电极420B
各自的宽度约为17.777mm。
[0254] 图4E描绘了第五电极构造400E,其具有通过沿构造400E的宽度的间隙隔开的第一线性电极425A和第二线性电极425B,其中,间隙约等于电极425A和电极425B的高度。第五电
极构造400E与第三电极构造400C类似,其中,电极425A和电极425B的宽度减小到电极415A
和电极415B的宽度的约一半到三分之二,同时具有相同的高度。在第五电极构造400E的一
个实例中,第一电极425A和第二电极425B的最接近部分之间的间隙跨越约25.399mm,电极
425A和电极425B各自的高度也约为25.399mm,并且电极420A和电极420B各自的宽度约为
5.078mm。第一电极425A和第二电极425B的端部可为成圆角的,例如具有约2.542mm的半径。
[0255] 图4F描绘了具有同心环形电极430A和同心环形电极430B的第六电极构造400F。第六电极构造400F是图1D的测试孔175中所示的构造。内部电极430B可为圆盘形电极或圆形
电极,并且可位于测试孔的中心。外部电极430A可为同心地围绕内部电极430B所形成的半
圆形电极,并且通过间隙与内部电极430B隔开。在第六电极构造400F中,间隙约等于内部电
极430B的半径。外部电极430A的半圆形体的断裂发生在导电导线将内部电极430B连接至电
流提供导体处。在第六电极构造400F的一个实例中,环形第一电极430A的内部边缘与圆形
第二电极430B的外部边缘之间的间隙跨越约11.430mm,圆形第二电极430B的半径约为
17.777mm,并且环形第一电极430A的环的厚度约为5.080mm。第一电极430A的末端可为成圆
角的(例如具有约2.555mm的半径),并且第一电极435A的环的开口端之间的间隙从顶点
顶点可为约28.886mm。
[0256] 图4G描绘了具有同心环形电极435A和同心环形电极435B的第七电极构造400G。与图4F的实施方式类似,内部电极435B可为圆盘形电极或圆形电极,其具有与内部电极430B
相同的半径,并且可位于测试孔的中心。外部电极435A可为围绕内部电极435A而同心地形
成的半圆形电极,并且通过间隙与内部电极435A隔开。在第七电极构造400G中,间隙大于内
部电极435B的半径,例如大2至3倍。相应地,外部电极435B具有比外部电极430B更大的半
径。在第七电极构造400G的一个实例中,环形第一电极435A的内边缘与圆形第二电极435B
的外边缘之间的间隙跨越约24.131mm,圆形第二电极435B的半径约为17.777mm,并且环形
第一电极435A的环的厚度约为5.080mm。第一电极435A的端部可为成圆角的,例如具有约
2.555mm的半径,并且第一电极435A的环的开口端之间的间隙从顶点到顶点可为约
46.846mm。
[0257] 在图4A-图4E的实施方式中,可将任一电极用作激励电极,并且可将另一电极用作信号电极。在图4F和图4G的实施方式中,将内部电极430B和内部电极435B配置为用作激励
电极(例如连接至电流源),并且将外部电极430A和外部电极435A配置为用作信号电极(例
如将其信号提供至存储器或处理器)。在一些示例的测试中,第六电极构造400F表现出图
4A-图4G中所示出的构造的最佳性能。
[0258] 图5A描述了第一电极(或激励电极)和第二电极(或信号电极),其可以在图1A-图3B的盒的测试孔内彼此间隔开、或在本文所述的另一合适的靶标检测盒的测试孔或通道中
彼此间隔开。
[0259] 聚集体、核酸复合物或聚合物的形成(例如在图1A-图3B的盒的测试孔内的扩增程序期间)可影响通过通道发送的一个或多个电学信号的波形特性。如图5A所示,第一电极或
激励电极510A与第二电极或敏感电极510B在测试孔505内间隔开。测试孔505可包含正在经
历扩增程序的测试溶液。在全部的该程序的一些程序中,可向激励电极510A提供激励电压
515,将激励电压515从激励电极510A传输到孔505内的流体(优选全部或实质上全部液体)
中。
[0260] 在通过液体样品并由液体样品衰减(由电阻R和电抗X示意性地表示)之后,在敏感电极510B处感测到或检测到经衰减的激励电压。流体充当与激励电极510A和敏感电极510B
串联电阻器R。流体也起到串联电容器的作用,由电抗X表示。类似于图表520中所示,在测
试的部分持续时间或所有持续时间内的原始感测信号可随时间表示为具有变化的幅度的
正弦曲线。
[0261] 激励电压515可为预定的驱动频率下的交流电流。所选择的特定频率可取决于例如寻求检测的特定靶标、测试样品的介质、扩增程序成分的化学组成、扩增程序的温度和/
或激励电压。在图1A-图3B的盒的一些实施方式中,在尽可能低的激励电压下,激励驱动频
率可在1kHz和10kHz之间。作为一个实例,在为了识别掺入5%全血中的流感嗜血杆菌(106
拷贝/反应)的靶标而进行的测试中,激励传感器驱动频率在0.15伏特下从100Hz变化到
100,000Hz。这些测试表明,期望的“信号悬崖”(在下文更详细描述的指示阳性测试样品的
部分信号中的人工产物)在低于100Hz时变得更容易被检测到,并且在1kHz和10kHz之间最
容易被检测到。此外,伴随在1kHz和10kHz之间的范围内的频率,信号悬崖可有利地在经过
12分钟的测试时间之前被识别。有利地,信号悬崖的更快的识别可以产生更短的测试时间,
进而引起更快地提供测试结果并且能够每天进行更多测试。在低于1kHz的频率下,信号(其
中信号悬崖可能在阳性样品中发现)的电抗分量单调地下降。对于其它测试,传感器驱动频
率可类似地进行微调以优化性能,即对信号悬崖的可检测性进行优化。信号悬崖的可检测
性是指始终如一地区分阳性样品和阴性样品的能力。
[0262] 图5B描述了示例的图表525,其示出了可从敏感电极510B提供的原始信号520中提取的阻抗信号530。阻抗信号530表示随时间变化的测试孔的电阻抗Z。阻抗Z可通过笛卡尔
复数方程表示如下:
[0263] Z=R+jX
[0264] 其中,R表示测试孔的电阻,并且是上述等式的实部,而且X表示测试孔的电抗,并且是上述等式的虚部(记为j)。因此,可以将测试孔的阻抗分解为两个分量,即电阻R和电抗
X。
[0265] 最初,可通过在扩增程序之前或扩增程序开始时进行测试孔的基线测量来确定电阻R的值。尽管在整个测试期间,测试流体的电阻可偏离该基线值,但由于测试流体的电阻
而通过敏感电极510B感测到的电流可与通过激励电极510A提供的信号同相。因此,可通过
随时间变化的信号520的同相分量的值来识别电阻的变化或偏离。电抗可由测试流体中的
电感效应、测试流体中的电容效应中的一者或两者产生,该效应可使流体暂时保留电流(例
如由激励电极510A提供的电子)。在一段时间之后,该保留的电流从测试流体流出至敏感电
极510B中。由于该延迟,因测试流体的电抗而由敏感电极510B感测到的电流可与从测试流
体的电阻感测到的电流异相。因此,可通过随时间变化的信号520的异相分量的值来识别测
试流体的电抗值。基于由扩增程序引起的测试流体的化学成分的变化,电抗可贯穿测试期
波动。可在电抗X中发现指示阳性样品的信号悬崖(例如电抗以阈值速率或阈值幅度上升
或下降或者以大于阈值速率或阈值幅度上升或下降,和/或电抗在预定的时间窗内上升或
下降)。
[0266] 在测试期间,可将激励电极510A以某种振幅和电压正弦地激励。激励电极510A与孔中的测试液体(可被视为电阻器R)串联。电阻器(例如测试流体)和电极形成分压器,其具
有由电阻器和电极化学性质/阻抗的比率确定的电压。在敏感电极510B处感测到的所得电
压波形表示复阻抗信号530。在一些实施方式中,可不生成例如阻抗信号530的曲线,而是如
本文所述,可将原始感测信号520分解为其电阻分量和电抗分量。提供阻抗信号530作为表
示测试流体的电阻和测试流体的电抗随时间变化的组合曲线的实例代表。复阻抗信号530
可被解释为正交调制的波形(例如由测试流体的电阻产生的同相波形和由测试流体的电抗
产生的异相波形的组合),其中,同相分量和异相分量以远大于调制频率的时间尺度改变。
同相波形与复阻抗的复合波形同相。一些实施方式可使用同步的检测器,例如具有在现场
可编程门阵列(FPGA)中实施的乘法器和低通滤波器,以从原始信号520提取同相分量和异
相分量并计算其振幅和相。
[0267] 为将阻抗信号530(或原始感测信号520)分解成作为其组成要素的电阻分量和电抗分量,对敏感电极510B处的电压波形520以比其Nyquist频率更快的频率(例如激励电压
的最高频率的两倍)进行采集,然后分解成同相分量(电阻)和异相分量(电抗)。可使用已知
的串联电阻(例如R值)来核算同相电压分量和异相电压分量,从而计算阻抗的实部(电阻)
和阻抗的虚部(电抗)。
[0268] 图5C描述了从基于示例的阳性测试生成的原始信号520提取的电阻分量540A和电抗分量540B随时间变化(t=3分钟至t=45分钟)的图表541。如所示出的,信号悬崖545表示
在特定时间窗TW期间的电抗540B的变化ΔR。信号悬崖545指示阳性样品。在信号悬崖545发
生之前,电抗曲线540B相对平坦或稳定,并且在信号悬崖545之后,电抗曲线540B再次相对
平坦或稳定。因此,在该实施方式中,由图表541表示的特定测试参数的信号悬崖545在预期
的区域535中出现ΔR的下降。
[0269] 对应于阳性样品信号悬崖545的电抗的变化ΔR的幅度以及信号悬崖545预期将发生的特定时间窗TW的位置和/或持续时间可取决于测试的许多参数而变化。这些参数包括
测试的特定靶标(例如靶标扩增的速率)、激励电压的频率、激励电极和传感器电极的构造
(例如其各自的形状和维度,分隔电极的间隙以及电极的材料)、采集速率、测试开始时提供
的扩增剂的量、扩增程序的温度和样品中存在的靶标的量。在一些实施方式中,可将阳性样
品的信号悬崖的预期特征(例如通过实验预先确定的)用于区分阳性样品和阴性样品。在一
些实施方式中,可将信号悬崖的预期特征用于确定医学病症的严重性或进展,例如通过特
定信号悬崖特征与样品中的靶标的特定初始量之间的相关性。在由读取器设备(将该读取
器设备配置为接收来自测试盒的敏感电极的信号)确定测试结果期间,可提供、存储、然后
获取预定的预期特性。
[0270] 对于给定的测试,可基于对由阳性对照样品(以及可选择地,阴性对照样品)产生的电抗曲线进行监测和分析,实验性地确定阳性样品的信号悬崖545的电抗的变化ΔR的预
期幅度和预期的时间窗TW。在一些实施方式中,可将影响信号悬崖的测试参数进行改变和
微调,以识别对应于可精确区分的信号悬崖的参数。可将如本文所述的读取器和盒进行配
置以与所测试的构造匹配,并且向读取器和盒提供用于该测试的预期的信号悬崖特征。
[0271] 例如,在用于流感嗜血杆菌的一组实验测试中,测试流体最初包括扩增引物和1,000,000个添加的靶标拷贝,激励电压为200mV P2P,测试参数包括对激励电流的频率的
10kHz扫描启动和10MHz扫描停止,并且将近电极间隙和远电极间隙分别配置为2.55mm和
5mm。将扩增温度设定为65.5摄氏度,并且两个电极设置(近间隙和远间隙各自一个)包括铂
电极。在低频率(10kHz-100kHz)下,使用5mm间隙电极构造,在进入扩增约23分钟(约10kHz)
和进入扩增约30分钟(约100kHz)时开始识别出可检测的信号悬崖,电抗的变化幅度在
10kHz时约为3.5欧姆-4欧姆,并在100kHz时下降至约3.25欧姆-3.5欧姆。在低频率(10kHz-
100kHz)下,使用2.5mm间隙电极构造,在进入扩增约25分钟(约10kHz)和进入扩增约30分钟
(约100kHz)时开始识别出可检测的信号悬崖,电抗的变化幅度约为3.5欧姆-4欧姆。在较高
频率下,信号悬崖的电抗下降减小,并且识别出这些较小的信号悬崖的时间移动至扩增程
序中的晚些时候。因此在该实例中,可将检验盒中的测试孔用5mm间隙电极进行配置,并且
可将读取器设备配置为在扩增期间向测试盒提供10kHz激励电流。可向读取器设备提供指
令,以在整个扩增期间内或在预期的信号悬崖时间(此处为23分钟)附近的时间窗(例如20
分钟至35分钟)内提供该电流并监测所得的测试孔的电抗。也可向读取器设备提供指令,以
基于在进入扩增23分钟左右表现出约3.5欧姆-4欧姆变化的电抗、或在预期的信号悬崖时
间附近的时间窗内来识别阳性样品。
[0272] 一旦被识别,可将ΔR和TW的值提供给读取器设备,用于区分该特定测试的阳性样品和阴性样品。在一些实例中,此种设备可确定电抗曲线540B在所识别的时间窗TW处是否
具有对应于信号悬崖的所需的值和/或斜率。在其它实施方式中,读取器设备可分析电抗曲
线的形状随时间的变化,以确定其是否包含信号悬崖。在一些实施方式中,读取器可基于所
识别的时间窗TW(信号悬崖545预期在此发生)来修改其测试程序(例如通过仅提供激励电
压并在该窗内监控所得信号),与整个测试时间内的连续监测相比,有利地节省功率和处理
资源。
[0273] 图5D描述了在阳性对照和阴性对照的示例的测试期间从敏感电极510B的原始传感器数据提取的电阻分量和电抗分量的图表551。具体而言,图表551示出了在35分钟的测
试持续时间内的阳性样品的电阻的曲线550A、阳性样品的电抗的曲线550B、阳性样品的电
阻的曲线550C以及阳性样品的电抗的曲线550D。如图5D所示,阳性样品信号悬崖发生在进
入测试约17分钟,以相对平坦且稳定的电抗曲线550B引向信号悬崖。相比之下,阴性样品电
抗曲线550D在同样的时间不表现出信号悬崖,而是从约t=8分钟至测试结束时保持二次曲
率。
[0274] 图5E描述了从基于示例的阳性测试生成的原始信号520提取的电阻分量560A和电抗分量560B随时间变化的图表561(从扩增开始起t=0分钟至t=60分钟)。如所示出的,信
号悬崖565表示在特定的时间窗TW期间内的电抗560B的变化ΔR。信号悬崖565指示阳性样
品。在信号悬崖565出现之前,电抗曲线560B相对平坦或稳定,并且在信号悬崖565之后,电
抗曲线560B再次相对平坦或稳定且具有轻微的凹度。由图表561表示的特定测试参数的信
号悬崖565在预期区域535中以峰形、尖形或钟形曲线出现,在此期间,电抗值以近似抛物线
以ΔR值上升和下降。如本文所述,改变某些测试参数(例如测试孔构造、扩增成分的化学性
质和初始量、靶标和激励电流特性)可改变从阳性样品产生的信号悬崖的几何结构。因此,
在一些实施方式中,电抗值vs时间曲线中的“信号悬崖”的几何结构可在不同测试之间变
化,但对于特定测试,曲线几何结构和/或定时信号悬崖(timing signal cliff)在该测试
的阳性样品之间的电抗变化和/或定时参数内保持一致。
[0275] 图6描述了可与本文描述的盒(例如盒100或盒300)一起使用的示例的读取器设备600的示意性框图。读取器设备600包括存储器605、处理器610、通信模块615、用户界面620、
加热器625、电极界面630、电压源635、压缩空气储存器640、马达650和可将盒插入其中的腔
660。
[0276] 当将测试盒100插入读取器设备时,盒的电极界面135与读取器设备600的电极界面630连接。这可允许读取器设备600检测到盒被插入(例如通过测试是否建立了通信通
道)。此外,此种通信可使读取器设备600能够识别特定的被插入的测试盒100,并获取相应
的测试协议。测试协议可包括测试的持续时间、测试的温度、阳性样品阻抗曲线的特征、以
及基于各种确定的测试结果输出给用户的信息。在其它实施方式中,读取器设备600可经由
用户界面620接收盒被插入的指示(例如通过用户输入“开始测试”命令,以及可选地通过测
试盒标识符)。
[0277] 存储器605包括一个或多个物理电子储存设备,将该设备配置为储存用于控制读取器设备600的操作的计算机可执行指令以及在读取器设备600的使用期间生成的数据。例
如,存储器605可接收并储存来自连接至电极界面630的敏感电极的数据。
[0278] 处理器610包括一个或多个硬件处理器,其执行计算机可执行指令,以在测试期间控制读取器设备600的操作,例如通过管理用户界面620、控制加热器625、控制通信模块615
和激活电压源635、压缩空气640和马达650。关于下文的图7A描述了测试操作的一个实例。
处理器610也可通过指令配置,以基于从被插入的测试盒的激励电极接收的数据确定测试
结果,例如通过实施下文所述的图7B的程序。可将处理器610配置为基于从单个盒的不同测
试孔接收的信号识别相同测试样品中的不同靶标,或可基于来自不同测试孔的信号的个体
分析或综合分析来识别单个靶标。
[0279] 通信模块615可以可选地在读取器设备600中提供,并且包括网络使能(network-enabled)的硬件组件(例如有线网络组件或无线网络组件),用于在读取器设备600和远程
计算设备之间提供网络通信。合适的网络组件包括WiFi、蓝牙、蜂窝调制解调器、以太网端
口、USB端口等。有利地,联网能力可使读取器设备600能够通过网络将测试结果和其它测试
数据发送到所识别的远程计算设备(例如储存电子病历的医院信息系统和/或实验室信息
系统、国家卫生机构数据库、以及临床医生或其它指定人员的计算设备)。例如,当通过读取
器设备确定测试结果时,医生可在他们的移动设备、笔记本电脑或办公室桌面上接收特定
患者的测试结果,使他们能够为诊断和治疗计划提供更快的回转时间。此外,联网能力可使
读取器设备600能够通过网络从远程计算设备接收信息,例如用于现有测试的更新的信号
悬崖参数、用于新测试的新的信号悬崖参数、以及更新的或新的测试协议。
[0280] 用户界面620可包括用于向用户呈现测试结果和其它测试信息的显示器,以及允许用户将命令或测试数据输入到用户读取器设备600的用户输入设备(例如按钮、触敏显示
器)。
[0281] 加热器625可被设置为邻近腔660,用于将被插入的盒加热到扩增程序的期望温度。尽管被描述为腔660的单侧上,但是在一些实施方式中,加热器625可以环绕腔。
[0282] 如本文所述,电压源635能够以预定的电压和预定的频率向被插入的测试盒的各个激励电极提供激励信号。可将压缩空气储存器640用于经由通道645向测试盒100的气动
界面160提供气动压力,从而促进测试盒内的液体的流动。压缩空气储存器640可根据读取
器设备600的需要储存先前压缩的空气或产生压缩空气。在其它实施方式中,可使用其它合
适的气动和压力提供机制来代替所储存或所产生的压缩空气。如上文所述,可操作马达
650以使致动器655朝向和远离被插入的盒的泡罩包装140移动,以便使泡罩包装破裂。
[0283] 图7A描述了如本文所述的用于在测试期间操作读取器设备的示例程序700的流程图。可由上述的读取器设备600执行程序700。
[0284] 在区块705处,读取器设备600可检测到检验盒100、盒200、盒300已被插入,例如响应于用户输入或响应于与插入的盒建立信号通道。在一些实施方式中,盒100、盒200、盒300
可包括信息元件,该信息元件识别将要对读取器设备600进行的特定测试,并且可选地包括
测试协议信息。
[0285] 在区块710处,读取器设备600可将盒100、盒200、盒300加热到用于扩增的指定温度。例如,温度可由储存在盒100、盒200、盒300上的信息提供,或者响应于对盒100、盒200、
盒300的识别而在读取器设备600的内部存储器中获取。
[0286] 在区块715处,读取器设备600可活化泡罩包装穿刺机械设备,例如马达650和致动器655。刺穿泡罩包装可使其液体内容物(包括用于促进扩增的化学成分)从其先前被密封
的腔室释放。
[0287] 在区块720处,读取器设备600可将气动泵激活,以将样品和液体从泡罩包装通过盒的流体通道移动至测试孔。如上所述,测试孔可包括排气口,其使推动液体通过盒的流体
通道成为可能,并且同样允许任意被截留的空气逸出。气动泵可包括压缩空气640或其它合
适的压力源,并且可与气动界面160流体连通。
[0288] 在区块725处,读取器设备600可从测试孔释放任意被截留的空气,例如通过推动流体穿过盒的流体通道直到某个阻力被感测到(例如流体通道的液体被推向具有排气口的
液体不可渗透、气体可渗透的过滤器)。区块725可任选地包括搅动被插入的盒,以促进任意
被截留的空气或气泡通过液体向上移动,并通过排气口排出。此外,在区块725处,读取器设
备600可选地可向盒提供信号,该信号引起位于测试孔之间的阀的关闭,以避免扩增程序的
混合。
[0289] 在判定区块730处,读取器设备600可以确定测试是否仍然在其指定的测试持续时间内。例如,在已知阳性样品中信号悬崖应出现的预期时间窗的情况下,测试的持续时间可
在该窗结束时或该窗结束后一些预定的时间段结束。如果是,则程序700转换到可选的判定
区块735,或转换到区块740(在省略区块735的实施方式中)。
[0290] 在可选的判定区块735处,读取器设备600通过记录来自测试孔敏感电极的数据来确定是否对测试孔扩增进行监测。例如,可向读取器600提供指令,以在测试的特定窗或多
个窗期间仅监控测试孔的阻抗。如果读取器设备600确定不监控测试孔扩增,则程序700循
环回到判定区块730。
[0291] 如果读取器设备600确定监控测试孔扩增,则程序700转换到区块740。在区块740处,读取器设备600向被插入的盒的测试孔的激励电极提供激励信号。如上所述,激励信号
可为特定频率和特定电压下的交流电流。
[0292] 在区块745处,读取器设备600检测并记录来自被插入的盒的测试孔的敏感电极的数据。在一些实施方式中,可将该数据储存以用于稍后的分析,例如在测试完成后。在一些
实施方式中,读取器设备600可实时对该数据进行分析(例如当测试仍在进行时),并且一旦
识别出阳性样品信号悬崖,便可停止测试。
[0293] 当读取器设备600在区块730处确定测试已不在其指定的持续时间内时,程序700移动至区块750以分析测试数据,并输出测试结果。测试结果可包括样品对于靶标测试为阳
性或阴性的指示,或可更具体地指示所测试的样品中的靶标的估计量。
[0294] 图7B描述了如本文所述的用于分析测试数据以检测靶标的示例程序的流程图,该程序可由读取器设备600按图7A的区块750执行。
[0295] 在区块755处,读取器设备600可获取从孔的电极所接收的记录到的信号数据。即使盒具有多个孔,也可单独地分析来自每个孔的数据。可稍后对来自孔的测试结果进行综
合分析,以基于在盒内进行的所有测试来确定单个靶标的单个测试结果或确定多个靶标的
多个测试结果。
[0296] 在区块760处,读取器设备600可跨越测试的一些不同时间点或所有不同时间点将信号分解成电阻分量和电抗分量。例如如上所述,在每个时间点,读取器设备600可确定原
始采集的电压波形的同向分量和异相分量,然后可使用电极电路的已知的串联电阻对这些
分量进行退卷积(deconvolute),以计算测试孔的阻抗的同相(电阻)部分和异相(电抗)部
分。
[0297] 在区块765处,读取器设备600可生成电抗值随时间变化的曲线。同样在区块765处,读取器设备600可以可选地生成电阻值随时间变化的曲线。
[0298] 在区块770处,读取器设备600可对电抗曲线进行分析,以识别指示阳性测试的信号变化。如上文关于图5C的信号悬崖所描述的,读取器设备600可寻找大于阈值的电抗变
化,可在预定的时间窗内寻找此种变化,可在预定的时间处对电抗曲线的斜率进行分析,或
可对电抗曲线的整体形状进行分析以确定信号悬崖(例如信号的上升或下降之前和之后是
相对更稳定的值)是否存在。
[0299] 在判定区块775处,基于在区块770处进行的分析,读取器设备600可确定是否在电抗曲线中识别出所寻求的信号变化。如果是,则程序750转换到区块780,以向用户输出阳性
测试结果的指示。如果不是,则程序750转换到区块785,以向用户输出阴性测试结果的指
示。结果可以在本地输出(例如在设备的显示器上输出),或通过网络输出到指定的远程计
算设备。
[0300] 示例设备的概述
[0301] 本文提供的方法、系统和组合物的一些实施方式包括包含激励电极和敏感电极的设备。在一些实施方式中,激励电极和敏感电极测量样品的电学性质。在一些实施例中,电
学性质包括复导纳、阻抗、电导率、电阻率、电阻和/或介电常数。
[0302] 在一些实施方式中,针对具有在测量期间不改变的电学性质的样品测量电学性质。在一些实施方式中,针对具有动态电学性质的样品测量电性质。在一些此种实施例中,
实时测量动态电学性质。
[0303] 在一些实施方式中,将激励信号施加至激励电极。激励信号可包括直流电流或直流电压,和/或交流电流或交流电压。在一些实施方式中,将激励信号电容耦合至/通过样
品。在一些实施方式中,激励电极和/或敏感电极被钝化,以防止样品和电极之间的直接接
触。
[0304] 在一些实施方式中,针对样品的电学性质将参数进行优化。在一些此种实施例中,参数可包括相对于样品体积大小和/或几何结构所施加的电压、所施加的频率和/或电极构
造。
[0305] 在一些实施方式中,可在测量期间将激励电压的电压和频率进行固定或改变。例如,测量可涉及检测期间的扫描电压和频率,或选择可针对每个样品进行优化的特定电压
和特定频率。在一些实施方式中,激励电压诱导在信号电极上感应出电流,该电流可随着设
备的导纳和/或样品特性而变化。
[0306] 在一些实施方式中,通过由电极-样品耦合阻抗、样品阻抗和电极间寄生阻抗组成的集总参数等效电路对导纳、设备和样品进行建模来优化检测参数。通过在设备的一个或
多个激励频率下测量电极-样品系统的导纳来确定集总参数等效电路的参数。在一些实施
方式中,使用幅度敏感检测技术和相位敏感检测技术两者测量电极-样品系统的复(具有实
部和虚部两者的数字)导纳。在一些实施方式中,通过测量跨越宽频率范围的导纳来确定对
应于频率区域之间的转换的频率,以优化检测参数。在一些实施方式中,通过从集总参数模
型中给定的值计算来确定对应于频率区域之间的转换的频率,以优化检测参数。
[0307] 在一些实施方式中,电容耦合的电极-样品系统的导纳包含三个频率区域:由电极-样品耦合阻抗支配的低频率区域、由样品阻抗支配的中频率区域、以及由寄生电极间阻
抗支配的高频率区域。电极-样品耦合区域中的导纳本质上是电容性的,并且其特征在于随
着频率线性增加的幅度,其相位为90度。样品区域中的导纳本质上是电导性的,并且其特征
在于导纳相对于频率没有显著变化,其相位约为0度。导纳电极间区域本质上是电容性的,
并且其特征在于随着频率线性增加的幅度和90度的相位。
[0308] 在一些实施方式中,拾音电极处的感应电流通过以下关系与激励电压和复导纳相关:
[0309] 电流=(复导纳)×(电压)
[0310] 在一些实施方式中,设备测量激励电压幅度和感应电流幅度两者,以确定复导纳的幅度。在一些实施方式中,将设备校准到已知的激励电压,并测量感应电流的幅度。为了
确定复导纳的相位,设备可测量激励电压和感应电流之间的相对相位差
[0311] 在一些实施方式中,直接测量幅度和相位。
[0312] 在一些实施方式中,间接测量幅度和相位,例如通过使用同步的检测和异步的检测两者。同步的检测器给出感应电流的同相分量。异步的检测器给出感应电流的正交分量
可将两个组件组合以确定复导纳。
[0313] 在一些实施方式中,未将电极钝化。
[0314] 在一些实施方式中,将激励电极和/或检测电极钝化。可将激励电极和/或检测电极钝化,以防止例如电极与其中的样品或组分之间的不期望的粘附、污染、吸附或其它有害
的物理相互作用。在一些实施方式中,钝化层包括介电材料。在一些实施方式中,钝化使得
能够从电极到样品有效电容耦合。通过测量电极/样品系统的特性(例如可以包括:钝化层
的介电性质、钝化层的厚度、钝化/样品界面的面积、钝化表面粗糙度、样品/钝化界面处的
双电层、温度、所施加的电压和所施加的频率、样品的电学性质、电极材料的电学性能和/或
化学性能)来确定耦合的效率。
[0315] 在一些实施方式中,将电极构造和制造进行优化,以减轻电极之间的不期望的寄生耦合。这可通过电场屏蔽、变化的介电常数电极基板(dielectric constant electrode 
substrate)的使用、布局优化和/或接地层来实现。
[0316] 用于检测生物分子的示例设备的概述
[0317] 本文提供的方法、系统和组合物的一些实施方式包括用于检测靶标(例如生物分子)的设备。在一些此种实施方式中,将样品电学性质的测量用作生物分子测定的检测策
略。
[0318] 在一些实施方式中,靶标是可被捕获探针部分和/或检测探针部分识别和/或结合的核酸、蛋白质、小分子、药物、代谢物、毒素、寄生虫、完整病毒、细菌、孢子或任意其它抗
原。
[0319] 在一些实施方式中,靶标为核酸。在一些实施方式中,方法包括核酸扩增。在一些实施方式中,扩增包括恒温扩增。在一些实施方式中,通过测量反应溶液的电学性质或其中
的变化来对核酸扩增反应进行定量。在一些实施方式中,在反应过程中对扩增反应的电学
性质进行实时测量,或使用反应前和反应后的电学性质测量进行比较测量。
[0320] 在一些实施方式中,经由检测探针(例如抗体、适体或其它分子识别部分和/或结合部分)与抗原的特异性结合来检测靶抗原。在一个示例的实施方式中,将检测抗体连接至
核酸序列以形成抗体-核酸嵌合复合物。为了检测抗原的目的,在测定之前合成嵌合复合
物。可将许多不同的核酸结合至单个抗体,从而增加嵌合复合物结合至抗原的检测的灵敏
度。如本文所述,在除去未结合至抗原的任意过量嵌合复合物后,将嵌合复合物的核酸部分
进行扩增,并通过反应溶液的电学性质(或其中的变化)的测量来对扩增反应进行定量。以
此方式,核酸(通过嵌合复合物结合至抗原)的扩增程度表示靶抗原的存在并允许抗原的定
量。与电学检测结合使用的代表抗原识别的二级扩增允许比其它抗原检测方法更大的容易
度、灵敏度和动态范围。
[0321] 在一些实施方式中,捕获探针(例如抗体、适体或针对抗原的其它分子识别部分和/或结合部分)通过缀合或连接而结合至表面。捕获探针固定至表面上允许通过清洗除去
过量的、未结合的试剂和/或抗原。嵌合复合物结合至表面捕获的抗原,使未结合的嵌合复
合物能够通过清洗除去。以此方式,仅保留捕获的抗原用于嵌合复合物的检测。图8中描述
了示例的实施方式。在一些实施方式中,捕获探针和检测抗体是相同的。
[0322] 在一些实施方式中,通过共价缀合、链霉亲和素-生物素连接的使用或本领域人员普遍使用和熟悉的其它生物缀合和分子固定方法,将捕获探针固定至表面上。在一些实施
方式中,表面是平面表面、支架、过滤器、微球、任何形状的颗粒、纳米颗粒或珠等。图9中描
述了示例的实施方式。
[0323] 示例的磁珠的概述
[0324] 本文提供的方法、系统和组合物的一些实施方式包括磁珠或其用途。在一些实施方式中,微球、颗粒或珠是磁性的和/或可磁化的。在这些实施方式中,磁性支持物的使用可
促进珠的清洗,以从表面除去过量的抗原和/或非特异性吸附的嵌合复合物。方法(包括磁
性粒子支持物的使用)可包括磁性的放大的免疫测定(MAIA)。图10中描述了示例的实施方
式。
[0325] 在一些实施方式中,将磁珠用于捕获靶标,并且用于在纯的电学(MEMS)样品处理和/或扩增/检测盒的背景下的磁泳操作(magnetophoretic manipulation),并减少或消除
对流体内流动/压力驱动的流动性的依赖。在一些实施方式中,将磁珠用于从样品中提取
和/或浓缩靶基因组物质。参见例如Tekin,HC.,et al.,Lab Chip DOI:10.1039/
c3lc50477h,以引用的方式将其整体并入。在Sasso,LA.,et al.,Microfluid 
Nanofluidics.13:603-612中描述了用于本文提供的实施方式的自动化微流体处理平台,
以引用的方式将其整体并入本文。用于本文提供的实施方式的珠的实例包括
for Nucleic Acid IVD(ThermoFisher Scientific)、或 SILANE Viral NA 
Kit(ThermoFisher Scientific)。
[0326] 示例的fC4D激励和检测的概述
[0327] 在一些实施方式中,所公开的设备、系统和/或方法利用基于fC4D的策略来实时监测核酸扩增。因此,一个或多个相敏电导率测量值可指示样品内的一个或多个靶标。
[0328] 在一些方面,方法包括在特定的驱动电压值下的快速扫描频率,以确定与扩增相关的样品电导率是最大时的最佳激励频率(fopt)。在fopt下,传感器输出对应于激励电压和
感应电流之间的相对相位差的最小值,从而使通过电导率测量进行高灵敏度生物分子量化
成为可能。
[0329] 在一些实施方式中,fC4D检测系统采用至少两个电极。将两个电极放置在相对靠近微通道,在该微通道中进行核酸扩增。向两个电极之一施加AC信号。信号被施加至其的电
极可通过微通道电容耦合至两个电极中的第二个。因此,在一些方面,第一电极是信号电
极,且第二电极是信号电极。
[0330] 通常,在信号电极处检测到的信号具有与AC信号相同的频率,AC信号被施加至信号电极但幅度较小并且具有负相移。随后,拾音电流可被放大。在一些方面,将拾音电流转
换为电压。在一些方面,电压是经整流的电压。在一些方面,使用低通滤波器将经整流的电
压转换为DC信号。在将信号发送至DAQ系统用于进一步处理之前,信号可以被偏置成零。
[0331] 上述系统可由一系列电容器和电阻器表示。在通道内的核酸扩增期间发生的电导率的变化可引起系统的总阻抗减小,从而引起所产生的拾音信号的水平增加。所得的输出
信号的水平方面的此种变化可表现为DAQ系统上的一个或多个峰。
[0332] 用电路实施信号发生和解调电子学。例如,使用传统的制造和装配技术制造印刷电路板(“PCB”)、ASIC设备或其它集成电路(“IC”)。在一些方面,将此种电子器件完全或部
分地设计为单次使用部件和/或一次性部件。将此种电路的物理几何结构和电学特性(钝化
层厚度、电极极板面积、通道横截面积和长度以及介电强度)进行改变,以获得期望的结果。
[0333] 示例的核酸检测系统包括至少一个通道,并沿通道的至少部分长度检测一种或多种物理性质(例如pH、光学性质、电学性质和/或特性),从而确定通道是否含有特定的感兴
趣的核酸和/或特定的感兴趣的核苷酸。
[0334] 可将示例的检测系统配置为包括用于容纳样品和一种或多种传感器化合物(例如一种或多种核酸探针)的一个或多个通道、用于将样品和传感器化合物引入通道中的一个
或多个输入端口,以及在一些实施方式中,通过其可移出通道内容物的一个或多个输出端
口。
[0335] 可选择一种或多种传感器化合物(例如一种或多种核酸探针),使得感兴趣的核酸和/或核苷酸(如果存在于样品中)和传感器化合物的颗粒之间的直接或间接的相互作用引
起聚集体的形成,该聚集体改变通道的至少部分长度的一种或多种物理性质,例如pH、光学
性质或电学性质和/或特性。
[0336] 在某些情况下,聚集体、核酸复合物或聚合物的形成抑制或阻止通道中的流体流动,并因此引起沿通道长度测量的电导率和电流的显著降低。类似地,在这些情况下,聚集
体、核酸复合物或聚合物的形成引起沿通道长度的电阻率的可测量的增加。在某些其它情
况下,聚集体、核酸复合物或聚合物是导电的,并且聚集体、核酸复合物或聚合物的形成增
强了沿通道的至少部分长度的电学通路,从而引起沿通道长度测量的电导率和电流的可测
量的增加。在这些情况下,聚集体、核酸复合物或聚合物的形成引起沿通道长度的电阻率的
可测量的降低。
[0337] 在某些情况下,聚集体、核酸复合物或聚合物的形成影响通过通道发送的一个或多个电学信号的波形特征。如所示出的,例如在图11中,第一电极(或激励电极)1116和第二
电极(“拾音”或“传感器”电极)118沿通道1104彼此间隔开。图11表示上文关于图5A-图5D所
描述的方法的替代或补充方法。第一电极1116和第二电极1118可不与包含在通道1104内的
所测量的溶液接触。在这种意义上,第一电极1116和第二电极1118电容耦合至通道1104内
的溶液。电容耦合的强度取决于电极几何结构、钝化层厚度和钝化层材料,特别是其相对介
电强度。
[0338] 在一些方面,溶液被限制至通道1104。该通道可具有微米级的横截面积。就其而言,溶液表现为其电阻取决于溶液的电导率和通道1104的几何结构的电阻器。
[0339] 在一些实施方式中,将交流电流/交流电压施加至激励电极1116,并且在信号电极1118处测量感应电流。感应电流与可随溶液的电导率而变化的电极间阻抗成比例。如所示
出的,将激励电压1400施加至激励电极1116,并且通过信号电极1118检测到感应电流1410。
[0340] 在一些实施方式中,检测器灵敏度至少部分取决于激励频率。因此,在一些方面,当感应电流的相位的绝对值处于最小值时,出现最大灵敏度。在该区域中,芯片阻抗由流体
阻抗主导。流体阻抗是流体电导率和芯片几何结构的函数。复阻抗信息对于确保最大的检
测器灵敏度和正确的检测器操作是重要的。
[0341] 对等效电路的集总参数模型的分析显示,检测器灵敏度与CWALL、溶液电阻、RLAMP、寄生电容、CX和耦合的电容的强度密切相关。具体而言,当激励频率f满足以下条件时,相对于
电导率变化而言的电极间阻抗的变化最大:
[0342] 1/(πRLAMPCWALL)<
[0343] 如图12所示,信号的阻抗取决于激励频率,并且在通道1104中发生LAMP反应之后发生变化。同样如图12所示,左侧的不均等可限定如下频率区域,在该频率区域下方,耦合
阻抗占优势,并且溶液阻抗的变化变得实际上不可见。右侧的不均等可限定如下频率区域,
在该频率区域上方,寄生效应占优势,并且电极1116和电极1118实际上被移转在一起。
[0344] 如图13所示,在两个极值区域中,阻抗是电容器状的,并且与激励电压异相(接近90°)。在两个区域之间,阻抗开始接近简单电阻器的极限,并且阻抗相对于频率响应变平。
实际上,最大检测器灵敏度对应于阻抗的相位最小值。
[0345] 为了阐明对同步检测的需要,可在简化模型中考虑用于电流的两个平行通道:经由流体通道通过芯片的电流和寄生电容或几何电容。在给定频率f下给定激励信号V,感应
电流I将为:
[0346] I(t)=(Y+2πfCxf)V(t)
[0347] 其中,Y是由于耦合至流体通道而产生的芯片的导纳、Cx是寄生电容、以及j是虚部。乘以j表示通过寄生通道的电流与激励电压90°异相。图14中示出了相对于激励频率的
所测量的样品芯片的阻抗。
[0348] 在同步的检测器中,拾音电流乘以同相方波m,然后进行低通过滤。
[0349]
[0350] 直接示出与调制信号90°异相的信号的贡献将为零,因此我们可忽略该分析中的寄生电容。为了看到针对通过流体通道的电流的同步检测效果,可将感应电流(减去寄生贡
献)与调制波相乘:
[0351]
[0352] 其中,|Y|是导纳的幅度,以及 以及H.F.T.表示高频项(例如大于f)。低通过滤后,可留下同步输出的DC项:
[0353]
[0354] 通过注意下式,此表达式可被简化如下:
[0355]
[0356] 结果为:
[0357]
[0358] 或者,通过注意下式,可通过Z以阻抗表示:
[0359]
[0360] 其中,棒表示复共轭。因此同步的检测器输出变为:
[0361]
[0362] 考虑到芯片的简单电路模型,明确地计算阻抗,并且预测同步的检测器的输出。
[0363] 简单的等效电路模型包括与电阻器R串联的两个电容器C。如上所讨论的,电阻R主要是微流体几何结构和溶液电导的函数。电容主要是电极面积、用于钝化层的电介质和钝
化层厚度的函数。简化电路的阻抗Z由下式给出:
[0364]
[0365] 阻抗的幅度的平方是:
[0366] |Z|2=R2+(πfC)-2
[0367] 并且同步的检测器的输出是:
[0368]
[0369] 其中分子和分母乘以电导G=1/R的平方。
[0370] 对于电导率计,电池常数k可被定义为:
[0371]
[0372] 其中,k具有反向长度的单位。电池常数k主要取决于电极位置、面积和流体通道,并且可能不是简单的线性关系。然后,同步的检测器输出为:
[0373]
[0374] 为协助该分析,可引入无量纲电导率参数 其中:
[0375]
[0376] 从而:
[0377]
[0378] 检测器输出对无量纲电导率 的依赖性是显著的。
[0379] 1)对于 检测器响应与 渐近地成比例。
[0380] 2)在 处,检测器响应达到局部最大值smax=|V|fc。
[0381] 3)对于 检测器响应与 渐近地成比例。
[0382] 考虑到检测器响应对无量纲电导的依赖性,将芯片和检测器的设计紧密关联是重要的。根据实际电导解释先前提出的点,结果如下:
[0383] 1)对于 检测器响应与σ渐近地成比例。
[0384] 2)对于 检测器响应与 渐近地成比例。
[0385] 3)在σ=πkfc处,检测器响应变为非单调的。
[0386] 换句话说,增加激励频率扩展了同步的检测器输出为线性的电导率范围。相对于图15中的无量纲电导率,绘制同步的检测器响应。
[0387] 为了评估集总参数模型的有效性,测量了KCl的已知的导电溶液的检测器响应。芯片的通道为2mm,横截面积为0.01mm2。两个电极各为9mm2,用10μm的SU8光刻胶的层将其钝
化。对电池常数和电容进行估计,并选择激励频率,使得对应于检测器输出中的非线性的电
导率约为5mS/cm。在10kHz、15kHz和20kHz的激励频率下重复实验。
[0388] 已测量出LAMP前的化学的电导率为约10mS/cm。下表1显示了由前面发现的约束条件控制的最小检测器频率的估计值,即:
[0389]
[0390] 表1
[0391]
[0392] 模型的结果在图16中示出,证明了其与宽范围的电导率以及给定步骤的检测器输出具有良好的频率的一致性。重要的是要注意,在每个频率下使用相同的两个参数k和C。模
型预测了检测器响应的定性行为。即,响应的函数形式,临界电导率(在该处发生非线性)对
激励频率的依赖性。模型高估了超过临界电导率的电导率的频率依赖性行为的差异。
[0393] 作为快速估算电导和壁电容的工具,除了边缘场效应之外,还可以忽略表面电导率和电容效应。可使用几何结构特定的有限元模型来进一步细化该粗略估算。
[0394] 电极被建模为具有面积AE的平行板电容器,由具有相对介电强度εr和厚度为t的电介质隔开。然后将电容近似为:
[0395]
[0396] 其中,ε0为介电常数。
[0397] 流体可被建模为具有横截面积AF、长度l和导电率σ的简单电阻器。因此,可将流体通道的电导近似为
[0398]
[0399] 由此,还可将电池常数进行近似计算。
[0400] 在一些方面,将设备配置为在引入芯片之后确定“阻抗谱”。设备可包括数控的激励频率。设备可具有快速扫频能力。设备可包括感应信号的同相分量和正交分量,从其可确
定复阻抗。至少部分地基于曲线拟合或其它启发式方式确定阻抗谱的适合度(fitness),以
确定适当的芯片插入和/或适当的样品引入。在一些方面,首先通过在由初始扫描确定的频
率下进行的激励来测试该设备。在一些实施方式中,设备包括利用同步检测的检测器。以此
方式,可实时检测可归因于流体通道的所测量的感应电流(在相位最小值处)。
[0401] 示例的通道的概述
[0402] 在一些实施方式中,通道具有以下维度:沿其最长维度(y轴)测量、并沿平行于检测系统的基板的平面延伸的长度;沿垂直于其最长维度的轴(x轴)测量、并沿平行于基板的
平面延伸的宽度;沿垂直于与基板平行的平面的轴(z轴)测量的深度。示例的通道可具有实
质上大于其宽度和深度的长度。在一些情况下,长度:宽度之间的示例的比率可为:2:1、3:
1、4:1、5:1、6:1、7:1、8:1、9:1、10:1、11:1、12:1、13:1、14:1、15:1、16:1、17:1、18:1、19:1或
20:1或在由上述比率中的任意两个限定的范围内。
[0403] 在一些实施方式中,将通道配置为具有实质上等于或小于在通道中形成的聚集体、核酸复合物或聚合物(优选地,由于感兴趣的核酸与用于检测感兴趣的核酸的传感器化
合物(例如一种或多种核酸探针)的颗粒之间的相互作用而在通道中悬浮时)的直径的深度
和/或宽度。
[0404] 在一些实施方式中,将通道配置为具有沿x轴的范围从约1nm至约50,000nm的宽度、或在由上述范围内的任意两个数字限定的范围内的宽度,但不限于这些示例的范围。示
例的通道具有沿y轴的范围从约10nm到约2cm的长度、或在由上述范围内的任意两个数字限
定的范围内的长度,但不限于这些示例的范围。示例通道具有沿z轴的范围从约1nm到约1微
米的深度、或在由上述范围内的任意两个数字限定的范围内的深度,但不限于这些示例的
范围。
[0405] 在一些实施方式中,通道具有任何合适的横截面形状(例如沿x-z平面获取的截面),包括但不限于圆形、椭圆形、矩形、正方形、D形(由于各向同性蚀刻)等。
[0406] 在一些实施方式中,通道具有在从10nm至10cm的范围内的长度,例如至少为或者等于10nm、50nm、100nm、200nm、400nm、600nm、800nm、1μm、10μm、50μm、100μm、300μm、600μm、
900μm、1cm、3cm、5cm、7cm或10cm,或在由上述长度中的任意两个限定的范围内的长度。在一
些实施方式中,通道具有在从1nm至1μm的范围内的深度,例如至少为或者等于1nm、5nm、
7nm、10nm、50nm、100nm、200nm、400nm、600nm、800nm、1μm、10μm、20μm、30μm、40μm、50μm、100μm、500μm或1mm,或在由上述深度中的任意两个限定的范围内的深度。在一些实施方式中,通
道具有在从1nm至50μm的范围内的宽度,例如诸如1nm、5nm、7nm、10nm、50nm、100nm、200nm、
400nm、600nm、800nm、1μm、10μm、20μm、30μm、40μm、50μm、100μm、500μm或1mm,或在由上述宽度中的任意两个限定的范围内的宽度。
[0407] 在一些实施方式中,通道在稍后被插入到设备中的盒中形成。在一些方面,盒可为一次性盒。在一些方面,盒由符合成本效益的塑料材料制成。在一些方面,盒的至少部分由
纸和用于流体的基于薄层的材料制成。
[0408] 图17A-图17B中说明了用于检测样品中的特定核酸和/或特定核苷酸的存在或不存在的检测系统2100的实施方式。图17A是系统的俯视图,而图17B是系统的横截面侧视图。
检测系统2100包括实质上沿水平x-y平面延伸的基板2102。在一些实施方式中,基板2102可
由介电材料(例如二氧化)构成。用于基板2102的其它示例材料包括但不限于玻璃、蓝宝
石或金刚石。
[0409] 基板2102支撑通道2104或包括通道2104,通道2104至少具有内表面2106和用于容纳流体的内部空间2108。在一些情况下,在基板2102的顶表面中蚀刻通道2104。通道2104的
内表面2106的示例的材料包括但不限于玻璃或二氧化硅
[0410] 在某些实施方式中,通道2104和基板2102由玻璃构成。由于玻璃缓慢溶解至生物流体中以及蛋白质和小分子粘附至玻璃表面,生物条件代表了使用玻璃衍生的植入的障
碍。在某些非限制性实施方式中,使用自组装单层的表面改性提供了用于对核酸检测和分
析的玻璃表面进行改性的方法。在某些实施方式中,将通道2104的内表面2106的至少部分
进行预处理或共价改性,以包括使传感器化合物能够特异性地共价结合至内表面的材料或
用该材料涂覆。在某些实施方式中,还可用材料将覆盖通道的盖玻片2114进行共价改性。
[0411] 用于对通道2104的内表面2106进行改性的示例材料包括但不限于硅烷化合物(例如三氯硅烷、烷基硅烷、三乙氧基硅烷、全氟硅烷),两性离子磺内酯,聚(6-9)乙二醇(Peg),
全氟辛基,荧光素,石墨烯化合物。通道内表面的共价改性降低了某些分子的非特异性
吸收。在一个实例中,内表面的共价改性可使传感器化合物分子能够共价键合至内表面,同
时防止其它分子非特异性地吸收至内表面。例如使用聚(乙二醇)(Peg)对通道2104的内表
面2106进行改性,以减少材料对内表面的非特异性吸附。
[0412] 在一些实施例中,通道2104是在纳米或微米级制造的,以具有界限清楚且光滑的内表面2106。Sumita Pennathur and Pete Crisallai(2014),“Low Temperature 
Fabrication and Surface Modification Methods for Fused Silica Micro-and 
Nanochannels,”MRS Proceedings,1659,pp 15-26.doi:l0.1557/opl.2014.32教导了用于
制造通道和对通道内表面进行改性的示例技术,在此以引入的方式明确地将其整体内容并
入本文。
[0413] 通道2104的第一端部包括输入端口2110或与输入端口2110流体连通,并且通道2104的第二端部包括输出端口2112或与输出端口2112流体连通。在某些非限制性实施方式
中,将端口2110和端口2112设置在通道2104的末端。
[0414] 在一些实施方式中,将具有通道2104和端口2110、端口2112的基板2102的顶表面用盖玻片2114覆盖并封闭。在一些实施方式中,使用刚性塑料限定通道(包括顶部),并且还
可使用半透膜。
[0415] 第一电极2116在通道2104的第一端部处(例如在输入端口2110处或其附近)电学连接。第二电极2118在通道2104的第二端部处(例如在输出端口2112处或其附近)电学连
接。第一电极2116和第二电极2118电学连接至电源或电压源2120,以在第一电极和第二电
极之间施加电位差。即,跨越通道的至少部分长度施加电位差。当流体存在于通道2104中并
且受所施加的电位差的影响时,电极2116、电极2118和流体产生完整的电学通路。
[0416] 将电源或电压源2120配置为以可逆方式施加电场,使得电位差以沿通道长度的第一方向(沿y轴)被施加并且还以第二相反方向(沿y轴)被施加。在电场或电位差方向处于第
一方向的一个实例中,将正电极连接在通道2104的第一端部处(例如在输入端口2110处或
其附近),并且将负电极连接在通道2104的第二端部处(例如在输出端口2112处或其附近)。
在电场或电位差方向处于第二相反方向的另一实例中,将负电极连接在通道2104的第一端
部处(例如在输入端口2110处或附近),并且将正电极连接在通道2104的第二端部处(例如
在输出端口2112处或其附近)。
[0417] 在一些实施方式中,将电源或电压源2120配置为施加AC信号。可动态地改变AC信号的频率。在一些方面,将电源或电压源2120配置为提供具有10Hz-109Hz之间的频率的电
学信号。在一些方面,将电源或电压源2120配置为提供具有105Hz-107Hz之间的频率的电学
信号。
[0418] 将通道2104的第一端部和第二端部(例如在输入端口2110和输出端口2112处或其附近)电学连接至核酸检测电路2122,将核酸检测电路2122编程或配置为检测通道2104的
一种或多种电学性质的值,用于确定通道2104中存在或不存在特定核酸和/或核苷酸。在单
个时间段(例如在将样品和一种或多种传感器化合物引入通道中之后的某些时间段)或在
多个不同的时间段(例如在将样品和一种或多种传感器化合物引入通道中之前及之后)检
测电学性质值。在一些方面,在从样品引入到贯穿LAMP扩增的设定时间段内连续检测电学
性质值。所检测的示例的电学性质包括但不限于电流、电导电压、电阻、频率或波形。某些示
例的核酸检测电路2122包括处理器或计算设备,或将其配置为处理器或计算设备(例如图
18中示出的设备1700)。某些其它核酸检测电路2122包括但不限于电流表、伏特计、欧姆表
或示波器。
[0419] 在一个实施方式中,核酸检测电路2122包括测量电路2123,将该测量电路编程或配置成沿通道2104的至少部分长度测量一种或多种电学性质值。核酸检测电路2122还包括
平衡电路2124,将该平衡电路编程或配置成在一段时间内周期性地或连续地监测通道的电
学性质的一个或多个值,和/或在该值已达到平衡后(例如已停止超过方差或公差的一定的
阈值的变化)选择该值中的单个值。
[0420] 核酸检测电路2122还可包括比较电路2126,将该比较电路编程或配置成比较通道的两种以上的电学性质值,例如参比电学性质值(例如在将样品和所有传感器化合物都引
入通道中的状态之前所测量的)和电学性质值(例如在将样品和所有传感器化合物引入通
道中之后所测量的)。比较电路2126可使用比较以确定通道中存在或不存在核酸。在一个实
施方式中,比较电路2126计算所测量的电学性质值与参比电学性质值之间的差值,并将该
差值与指示通道中的核酸存在或不存在的预定值进行比较,并使用该信息来诊断或预测受
试者中的疾病状态或者存在或不存在感染。
[0421] 在某些实施方式中,在将样品和传感器化合物两者都引入通道中时,将比较电路2126编程或配置成比较当沿通道长度以第一方向将电场或电位差跨越通道施加时的第一
电学性质值(例如电流的幅度)和当沿通道长度以第二相反方向将电场或电位差跨越通道
施加时的第二电学性质值(例如电流的幅度)。在一个实施方式中,比较电路2126计算第一
值和第二值的幅度之间的差异,并将该差异与指示通道中的核酸存在或不存在的预定值
(例如差异是否实质上为零)进行比较。例如,如果差异实质上为零,这表明在通道中不存在
核酸(可为分散形式、聚合物形式或聚集体形式)。如果差异实质上不为零,这表明在通道中
存在核酸(可为分散形式、聚合物形式或聚集体形式)。
[0422] 在某些实施方式中,将核酸检测电路2122编程或配置成确定样品中的核酸的绝对浓度,和/或相对于样品中一种或多种额外的物质的核酸的相对浓度。
[0423] 在一些实施方式中,将比较电路2124和平衡电路2126配置为分开的电路或模块,而在其它实施方式中,将它们配置为单个集成电路或模块。
[0424] 核酸检测电路2122具有输出2128,在一些实施方式中,可将输出2128连接到一个或多个外部设备或外部模块。例如,核酸检测电路2122可将参比电学性质值和/或一个或多
个所测量的电学性质值发送到以下中的一个或多个:处理器2130(用于进一步计算、处理和
分析)、非暂时性储存设备或存储器2132(用于值的储存)、和/或视觉显示设备2134(用于向
用户显示该值)。在一些实施方式中,核酸检测电路2122生成样品是否包含核酸的指示,并
且将该指示发送至处理器2130、非暂时性储存设备或存储器2132和/或视觉显示设备2134。
[0425] 在使用图17A和图17B的系统的示例的方法中,将一种或多种传感器化合物(例如一种或多种核酸探针)和样品依次或同时引入通道中。当流体的流动和/或流体中的带电粒
子的流动不受抑制(例如由于不存在聚集体)时,流体中的导电粒子或导电离子从输入端口
2110沿y轴顺着通道2104的至少部分长度行进至输出端口2112。导电粒子或导电离子的移
动产生或生成由核酸检测电路2122沿通道2104的至少部分长度检测的第一电学性质值或
“参比”电学性质值或值的范围(例如电流、电导率、电阻率或频率)。在一些实施方式中,平
衡电路2124周期性地或连续地监测一段时间内的电学性质值,直到电学性质值达到平衡。
然后,平衡电路2124选择其中的一个值作为参比电学性质值,以避免电学性质的瞬态变化
的影响。
[0426] 如本文所用的“参比”电学性质值是指在将样品和所有传感器化合物(例如一种或多种核酸探针)引入通道之前的通道的电学性质的值或值的范围。即,参比值是在样品中的
核酸与所有传感器化合物之间的任何相互作用之前表征通道的值。在一些情况下,在将传
感器化合物引入通道中之后,但在将样品和另外的传感器化合物引入通道中之前的时间段
检测参比值。在一些情况下,在将传感器化合物和样品引入通道中之后、但在将另外的传感
器化合物引入通道中之前的时间段检测参比值。在一些情况下,在将样品或传感器化合物
引入通道中之前的时间段检测参比值。在一些情况下,参比值是预先确定的,并储存在可从
其中获取参比值的非暂时性储存介质上。
[0427] 在一些情况下,在通道中形成导电聚集体、聚合物或核酸复合物(例如由于样品中的感兴趣的核酸与一种或多种核酸探针之间的相互作用)增强了沿通道2104的至少部分长
度的电学通路。在这种情况下,核酸检测电路2122检测沿通道2104的至少部分长度的第二
电学性质值或第二电学性质值的范围(例如电流、电导率、电阻率或频率)。在一些实施方式
中,在检测到第二电学性质值之前,在将样品和所有传感器化合物引入通道之后核酸检测
电路2122安排等待时间段或调整时间段。等待时间段或调整时间段允许聚集体、聚合物或
核酸复合物在通道中形成(优选当悬浮在通道中时),并允许聚集体、聚合物或核酸复合物
形成以改变通道的电学性质(优选当悬浮在通道中时)。
[0428] 在一些实施方式中,平衡电路2124在引入样品和所有传感器化合物之后的一段时间内周期性地或连续地监测电学性质值,直到该值达到平衡。然后,平衡电路2124可选择其
中的一个值作为第二电学性质值,以避免电学性质中的瞬态变化的影响。
[0429] 比较电路2126将第二电学性质值与参比电学性质值进行比较。如果确定第二值和参比值之间的差异对应于电流或电导率的预定的增加(或电阻率的降低)范围,则核酸检测
电路2122确定聚集体、聚合物或核酸复合物存在于通道中,并且因此,核酸靶标存在于样品
中或在样品中检测到。基于此,可诊断或鉴定受试者中的靶标以及疾病状态或感染状态的
存在或不存在。
[0430] 在某些其它实施方式中,当通道中流体的流动和/或流体中的带电粒子的流动被部分阻断或完全阻断时(例如通过形成聚集体、聚合物或核酸复合物),流体中的导电颗粒
或导电离子不能沿y轴顺着通道2104的至少部分长度从输入端口2110自由行进至输出端口
2112。导电颗粒或导电离子的受阻或停止的移动产生或生成第三电学性质值或第三电学性
质值的范围(例如电流或信号、电导率、电阻率或频率),由核酸检测电路2122沿通道2104的
至少部分长度检测到。在第二电学性质值之外或代替第二电学性质值而检测第三电学性质
值。在一些实施方式中,在检测第三电学性质值之前,在将样品和所有传感器化合物都引入
通道之后核酸检测电路2122可等待等待时间段或调整时间段。等待时间段或调整时间段允
许聚集体、聚合物或核酸复合物在通道中形成,并允许聚集体、聚合物或核酸复合物的形成
以改变通道的电学性质
[0431] 在一些实施方式中,平衡电路2124在引入样品和所有传感器化合物之后的一段时间内周期性地或连续地监测电学性质值,直到该值达到平衡。然后,平衡电路2124可选择其
中的一个值作为第三电学性质值,以避免电学性质中的瞬态变化的影响。
[0432] 比较电路2126将第三电学性质值与参比电学性质值进行比较。如果确定第三值和参比值之间的差异对应于电流或电导率的预定的降低(或电阻率的增加)范围,则核酸检测
电路2122确定聚集体、聚合物或核酸复合物存在于通道中,并且因此鉴定靶核酸存在于样
品中。
[0433] 沿通道长度的流体流动取决于与通道的维度相关的聚集体、聚合物或核酸复合物的大小,以及在通道的内表面处的双电层(EDL)的形成。
[0434] 一般而言,EDL是带电固体(例如通道的内表面、分析物颗粒、聚集体、聚合物或核酸复合物)和含电解质的溶液(例如通道的流体内容物)之间的净电荷区域。EDL存在于通道
的内表面周围以及通道内的任何核酸颗粒和聚集体、聚合物或核酸复合物周围。来自电解
质的反离子被吸引向通道内表面的电荷,并感应出净电荷区域。EDL影响通道内以及分析物
颗粒和感兴趣的聚集体、聚合物或核酸复合物周围的离子流动,通过不允许任何反离子通
过通道的长度而产生二极管样行为。
[0435] 为了在数学上求解EDL的特征长度,求解Poisson-Boltzmann(“PB”)方程和/或Poisson-Nemst-Plank方程(“PNP”)。将这些解决方案与用于流体流动的Navier-Stokes
(NS)方程耦合,以创建非线性组的耦合方程,对该方程进行分析以理解示例的系统的操作。
[0436] 考虑到通道表面、EDL和聚集体、聚合物或核酸复合物之间的维度的相互作用,以仔细选择的维度参数对示例的通道进行配置和构建,该维度参数确保当在通道中形成具有
一定的预定大小的聚集体、聚合物或核酸复合物时,导电离子沿通道的长度的流动实质上
被抑制。在某些情况下,将示例的通道配置为具有实质上等于或小于核酸检测期间在通道
中形成的聚集体颗粒的直径的深度和/或宽度。在某些实施方式中,在选择通道的维度参数
时还考虑EDL的大小。在某些情况下,将示例的通道配置为具有实质上等于或小于在通道的
内表面周围生成的EDL的尺寸以及通道中的聚集体、聚合物或核酸复合物的尺寸的深度和/
或宽度。
[0437] 在某些实施方式中,在检测系统的使用之前,通道不含传感器化合物(例如一种或多种核酸探针)。即,检测系统的制造商可不对通道进行预处理或改性来包含传感器化合
物。在这种情况下,在使用期间,用户将一种或多种传感器化合物(例如处于电解质缓冲液
中)引入通道,并在样品不存在的情况下用传感器化合物检测通道的参比电学性质值。
[0438] 在某些其它实施方式中,在检测系统的使用之前,将通道进行预处理或改性,从而使通道的内表面的至少部分包含传感器化合物或涂覆有传感器化合物(例如一个或多个核
酸捕获探针)。在一个实例中,制造商检测用传感器化合物改性的通道的参比电学性质值,
并且在使用期间,用户可使用所储存的参比电学性质值。即,检测系统的制造商可对通道进
行预处理或改性来包含传感器化合物。在这种情况下,用户需要将样品和一种或多种另外
的传感器化合物引入通道。
[0439] 某些示例的检测系统包括单个通道。某些其它的示例的检测系统包括在单个基板上提供的多个通道。此类检测系统可包括任何合适数量的通道,包括但不限于至少为或等
于2个、3个、4个、5个、6个、7个、8个、9个或10个,或由上述数字中的任意两个限定的范围内
的多个通道。
[0440] 在一个实施方式中,检测系统包括多个通道,其中至少两个通道彼此独立地运行。示例的通道2104和图17A-图17B的相关组件在同一基板上再现,以获得此种多通道检测系
统。使用多个通道来检测相同样品中的相同核酸、相同样品中的不同核酸、不同样品中的相
同核酸和/或不同样品中的不同核酸。在另一实施方式中,检测系统包括多个通道,其中至
少两个通道彼此协同地运行。在一些方面,取决于所寻求检测的靶标,通道被不同地塑形。
[0441] 用于床边检测用途的示例的设备的概述
[0442] 在一些实施方式中,设备是便携式的且被配置为检测样品中的一个或多个靶标。如图19所示,设备包括被配置为控制fC4D电路905的处理器900。fC4D电路905包括信号发生
器907。将信号发生器907配置为通过如上所述的通道2104或测试孔提供一个或多个信号。
将信号发生器907连接至前置放大器915,以放大来自信号发生器907的一个或多个信号。使
一个或多个信号通过多路复用器909和通道2104。将来自通道2104的信号通过后置放大器
911放大并由信号分离器913解调。模拟数字转换器917将信号恢复并将数字信号传送至处
理器900。处理器900包括配置用于测量、平衡、比较等的电路,以确定在样品中是否检测到
期望的靶标。在一些实施方式中,可首先发生模拟数字转换。在一些此类实施方式中,可对
感应波整体进行采集,并且在软件中进行数字解调。
[0443] 在一些实施方式中,还将处理器900连接至一个或多个加热元件920。一个或多个加热元件920可为电阻加热元件。将一个或多个加热元件920配置成对通道2104中的样品
和/或溶液进行加热。在一些实施方式中,将样品加热至高于或等于0℃、5℃、10℃、15℃、20
℃、25℃、30℃、35℃、40℃、45℃、50℃、55℃、60℃、65℃、70℃、75℃、80℃、85℃、90℃、95℃、100℃、105℃、110℃、115℃、120℃、130℃、140℃、150℃、160℃、170℃、180℃、190℃、
200℃、210℃、220℃、230℃、240℃、250℃、260℃或任意温度,或位于上述数字中的两个之
间的任意温度范围。在一些实施方式中,将样品冷却至低于或等于40℃、35℃、30℃、25℃、
20℃、15℃、10℃、5℃、0℃、-5℃、-10℃、-15℃、-20℃或任意温度,或位于上述数字中的两
个之间的任意温度范围。考虑到前文,将处理器900和/或其它电路配置为读取样品和/或通
道2104的温度925,并控制一个或多个加热元件920直到达到期望的加热设定点930。在一些
方面,将整个通道2104配置为由一个或多个加热元件920加热。在其它方面,仅将部分通道
2104配置为由一个或多个加热元件920加热。
[0444] 将处理器900配置为从一个或多个用户输入端(例如键盘触摸屏、按钮、开关或麦克风等)接收用户输入940。数据被输出950并记录951,报告给用户953,被推送到基于
储存系统952等。在一些实施方式中,将数据发送到另一设备,以进行处理和/或进一步处
理。例如,可将fC4D数据推送到云,并随后进行处理,以确定样品中存在或不存在靶标。
[0445] 在一些方面,将设备配置为消耗相对低的功率。例如,设备可能仅需要1瓦-10瓦的功率。在一些方面,设备需要7瓦以下的功率。将设备配置为处理数据、与一个或多个其它设
备无线连通、通过通道发送并检测信号、对样品/通道进行加热、和/或用可触摸的显示器检
测和显示输入/输出。
[0446] 在一些实施方式中,样品收集器、样品制备器和流体盒形成为分开的物理设备。因此,使用第一样品收集器设备收集样品。样品可包括唾液、粘液、血液、血浆、粪便或脑脊髓
液。然后将样品转移到第二样品制备设备。样品制备设备包括核酸扩增所需的组分和试剂。
在制备样品后,将其转移至包括流体盒的第三设备,在其中进行扩增、fC4D激励和测量。在
一些实施方式中,样品收集和样品制备由单个设备完成。在一些实施方式中,将样品制备和
流体盒包含在单个设备内。在一些实施方式中,将单个设备配置为收集样品、制备样品、将
至少部分样品进行扩增、以及用fC4D对样品进行分析。
[0447] 示例的紧凑的流体盒的概述
[0448] 在一些方面,设备包括可拆装的流体盒,该流体盒可连接到另一配套设备。将可拆装的流体盒配置为一次性的单次使用盒。在一些实施方式中,盒包括多个通道。通道可被不
同地塑形。在一些方面,使用4种形状的通道并重复,以确保准确性。在一些方面,使用多于4
种形状的通道并重复,以确保准确性。在一些方面,将各通道配置为检测一种独特的靶标。
在其它方面,将各通道配置为检测相同的靶标。在一些实施方式中,盒包括一个或多个加热
元件。通常,流体盒可包括配置用于fC4D分析的至少一个通道。
[0449] 在一些方面,盒包括多层层压结构。将一个或多个通道压印和/或激光切割至基板中。在一些实施方式中,基板包括聚丙烯膜。膜的一面或两面涂覆有粘合剂。将该通道层固
定在聚酰胺加热器线圈上,以对通道的全部或一部分进行加热。通道至少部分地被亲水性
PET层覆盖。可将印刷电极设置在PET层下面。在一些方面,每个通道提供至少一个热敏电阻
以用于温度反馈。
[0450] 在其它方面,盒包括经注射模塑的塑料。将一个或多个通道设置在经注射模塑的塑料中。通过将PET激光焊接至IM塑料,在所有通道或部分通道上涂覆PET层或PET膜。注射
模塑可以提供刚性和3D结构的益处,并且也允许例如便于操控的阀门和框架等特征。取决
于特定设计,盒可包括或不包括印刷电子器件和/或加热元件和/或热敏电阻。
[0451] 在图20中描述了流体盒500的示例的实施方式。如所示出的,盒2500包括4层。PCB/PWB层2501具有在其上显迹的电极2505。可使用例原子沉积的方法用30nm二氧化钛层将
电极钝化。PCB/PWB层可包括用于将4个层保持在一起的螺钉或其它保持设备的入口点
2506。可将电源和检测电路连接至PCB/PWB层。衬垫层2510具有切口2513和2514、以及入口
点2506。衬垫层可由例如氟硅橡胶的材料制成。下刚性基板层2520包括入口点2506和入口
端口2522。上刚性层2530包括入口点2506和入口端口2522。下刚性层和上刚性层可各自由
例如丙烯酸的材料制成。当将4个层经由通过多个层的多个入口点2506来固定螺钉或其它
保持设备而组装在一起时,形成4个通道。切口2513和切口2514形成通道的侧面。切口513形
成具有两个梯形末端的通道,并且切口2514形成具有实质上直的侧面的通道。PCB/PWB层
2501的部分(包括电极2505)形成通道的底部。下刚性层2520形成通道的顶部,并且入口端
口2522向通道提供入口和出口端口。上层的入口端口2522和上刚性层的入口端口提供了向
每个通道提供试剂的手段。在一些实施方式中,具有两个梯形末端的通道可具有约30μl至
约50μl的体积。在一些实施方式中,具有实质上直的侧面的通道可具有约20μl至约30μl的
体积。可通过改变至少衬垫层的压缩来调节此体积。图21描述了图20的流体盒2500的俯视
图,并且示出了用于螺钉或其它保持设备的入口点506、与通道2550连通的入口2522、以及
电极2505。图22提供了两个电极2505的示例的维度。图23提供了具有两个梯形末端的通道
2550的示例的维度。在一些实施方式中,将通道加热至60℃、61℃、62℃、63℃、64℃、65℃、
66℃、67℃、68℃、69℃、70℃、71℃、72℃、73℃、74℃或75℃或在由上述数字的任意两个限
定的范围内的温度,并加压。在一些方面,可将通道加压至1个、2个、3个、4个、5个或6个大气
压或在由上述压力的任意两个限定的范围内。
[0452] 在一些实施方式中,流体设备的通道可适于或被配置为保持样品体积大于或等于1μl、2μl、3μl、4μl、5μl、6μl、7μl、8μl、9μl、10μl、20μl、30μl、40μl、50μl、60μl、70μl、80μl、
90μl、100μl、200μl、300μl、400μl、500μl、600μl、700μl、800μl、900μl或1000μl或前述体积的任意两个之间的体积或前述体积的任意两个之间的任意范围。在一些实施方式中,流体
设备的通道可适于被加压。在一些实施方式中,通道中的样品可被加压至大于或等于1个大
气压、2个大气压、3个大气压、4个大气压、5个大气压、6个大气压、7个大气压、8个大气压、9
个大气压、10个大气压,或前述压力的任意两个之间的任意范围的压力。在一些实施方式
中,流体设备的通道可适于被保持在大于或等于-20℃、-15℃、-10℃、-5℃、0℃、5℃、10℃、
15℃、20℃、25℃、30℃、35℃、40℃、45℃、50℃、55℃、60℃、65℃、70℃、85℃、80℃、85℃、90℃、95℃、100℃、105℃、110℃、115℃、120℃、130℃、140℃、150℃、160℃、170℃、180℃、190℃、200℃、210℃、220℃、230℃、240℃、250℃、260℃的温度,或前述温度的任意两个之间的
任何温度或前述温度的任意两个之间的任意范围。
[0453] 示例的样品收集的概述
[0454] 在一些实施方式中,本文公开的方法、系统和设备利用简化且直接的样品收集程序。以此方式,缩短了从样品收集到分析的步骤数。换句话说,在一些实施方式中,期望将用
户转移和/或操作样品的次数最小化,以避免样品的污染。在一些方面,将本文公开的设备
配置为与多种样品收集方法兼容,以适合所有类型的测试环境。因此,在一些方面,利用均
匀的小瓶-至-芯片界面。通过调整样品收集系统,无论所收集和分析的样品类型如何,检测
硬件保持不变。
[0455] 示例的测定的概述
[0456] 本文提供的方法、系统和组合物的一些实施方式包括在单个容器中的来自粗制样品的靶标的简单的裂解/扩增/检测。一些实施方式包括用于非核酸靶标的检测的基于免疫
的扩增。一些实施方式包括添加到反应、引起增加的电导率变化的试剂。一些实施方式包括
恒温扩增策略,例如LAMP、SDA和/或RCA。在一些实施方式中,用于检测的靶标是生物标记物
(例如蛋白质)、小分子(例如药物或麻醉剂)、或生物武器(例如毒素)。通过将基于免疫的结
合试剂(例如抗体或适体)与将参与恒温扩增反应的核酸缀合,可以实现对此种靶标的检
测。在一些实施方式中,扩增反应的添加剂可增加溶液电导率变化,该变化与靶标的定量相
关。添加剂的使用可提供检测的更大的灵敏度和动态范围。
[0457] 本文提供的方法的一些实施方式允许样品收集和处理具有以下期望特征的一种或多种:无离心、便携、便宜、一次性、可不需要壁式插座电器(wall outlet electrics)、可
易于使用或使用直观;可只需要相对较低的技术技能来使用、可从小体积样品(例如70μl)
中提取RNA和/或DNA、可能能够使RNA和/或DNA稳定直至扩增、可使用无冷链储存需要的热
稳定试剂、对低水平的琐细样品(例如具有1,000拷贝/mL或更低的样品)来说是可兼容测定
的和/或具有能够检测跨越例如至少4个数量级的病毒载量的动态范围。
[0458] 如本文所述,所提供的方法、系统和组合物的一些实施方式包括用于诊断设备的样品的收集和处理。所收集的样品(也称为生物样品)的实例可包括例如植物、血液、血清、
血浆、尿液、口水、腹水、脊髓液、精液、肺灌洗液、唾液、痰液、粘液、排泄物、包含细胞或核酸的液体培养基、包含细胞或核酸的固体培养基、组织等。获得样品的方法可包括使用:手指
针刺、足跟针刺、静脉穿刺、成人鼻抽吸、儿童鼻抽吸、鼻咽清洗、鼻咽抽吸、拭子擦拭、杯中
大量收集、组织活检或灌洗。更多实例包括环境样品,例如土壤样品和水样品。
[0459] 示例的扩增的概述
[0460] 本文提供的方法、系统和组合物的一些实施方式包括核酸靶标的扩增。核酸扩增的方法是公知的,并且包括在反应期间变化温度的方法(例如PCR)。
[0461] 更多实例包括恒温扩增,其中,反应可以在实质上恒定的温度下发生。在一些实施方式中,核酸靶标的恒温扩增引起溶液的电导率的变化。存在多种类型的恒温核酸扩增方
法,如基于核酸序列的扩增(NASBA)、链置换扩增(SDA)、环介导扩增(LAMP)、Invader测定、
滚环扩增(RCA)、信号介导的RNA扩增技术(SMART)、解旋酶依赖性扩增(HDA)、重组酶聚合酶
扩增(RPA)、切开核酸内切酶信号扩增(NESA)和切开核酸内切酶辅助的纳米粒子激活
(NENNA)、核酸外切酶辅助的靶标再循环、连接体(Junction)或Y-探针、分裂DNAZyme和脱氧
核酶扩增策略、产生经扩增的信号的模板导向的化学反应、非共价DNA催化反应、杂交链反
应(HCR)和经由DNA探针的自组装的检测以产生超分子结构。参见例如Yan L.,et al.,
Mol.BioSyst.,(2014)10:970-1003,在此以引用的方式明确地将其整体并入。
[0462] 在LAMP的实例中,将正向引物组中的两个引物命名为内引物(F1c-F2,c链代表“互补的”)和外引物(F3)。在60℃时,内引物的F2区首先与靶标杂交,并通过DNA聚合酶延伸。然
后,外引物F3在F3c处结合至相同的靶链,并且聚合酶将F3延伸以置换新合成的链。由于F1c
和F1区的杂交,所置换的链在5'末端形成茎-环结构。在3'末端,反向引物组可与该链杂交,
并且通过聚合酶生成在两端具有茎-环结构的新链。哑铃结构的DNA进入指数扩增循环,并
且通过重复延伸和链置换可制备具有靶DNA的多个反向重复序列的链。在本文提供的方法
的一些实施方式中,LAMP的组分包括4种引物、DNA聚合酶和dNTP。LAMP应用的实例包括病毒
病原体,包括登革热(M.Parida,et al.,J.Clin.Microbiol.,2005,43,2895-2903)、日本脑
炎(M.M.Parida,et al.,J.Clin.Microbiol.,2006,44,4172-4178)、基孔肯雅病毒
(M.M.Parida,et al.,J.Clin.Microbiol.,2007,45,351-357)、西尼罗河病毒(M.Parida,
et al.,J.Clin.Microbiol.,2004,42,257-263)、严重急性呼吸综合症(SARS)
(T.C.T.Hong,Q.L.Mai,D.V.Cuong,M.Parida,H.Minekawa,T.Notomi,F.Hasebe and 
K.Morita,J.Clin.Microbiol.,2004,42,1956-1961)和高致病性禽流感(HPAI)H5N1
(M.Imai,et al.,J.Virol.Methods,2007,141,173-180),在此以引用的方式将前述参考文
献各自以其整体明确地并入本文。
[0463] 在SDA的实例中,探针包括两部分:5'末端处的Hinc II识别位点,以及包含与靶标互补的序列的另一区段。DNA聚合酶可将引物延伸并掺入脱氧腺苷5'-[α-硫代]三磷酸
(dATP[αS])。然后,由于核酸内切酶不能切割包含硫代磷酸修饰的另一条链,限制性核酸内
切酶Hinc II在Hinc II识别位点处切开探针链。核酸内切酶裂解暴露3'-OH,然后通过DNA
聚合酶进行延伸。新生成的链仍含有Hinc II的切开位点。随后切开新合成的双链,然后将
DNA聚合酶介导的延伸重复数次并且这产生恒温扩增级联。在本文提供的方法的一些实施
方式中,SDA的组分包括4种引物、DNA聚合酶、REase HincII、dGTP、dCTP、dTTP和dATPαS。SDA
的应用的实例包括结核分枝杆菌基因组DNA(M.Vincent,et al.,EMBO Rep.,2004,5,795-
800,在此以引用的方式明确地将其整体并入本文)。
[0464] 在NASBA的实例中,正向引物1(P1)由两部分组成,其中一部分与RNA靶标的3'末端互补,且另一部分与T7启动子序列互补。当P1结合至RNA靶标(RNA(+))时,逆转录酶(RT)将
引物延伸至RNA的互补DNA(DNA(+))中。然后,RNase H降解RNA-DNA(+)杂交体的RNA链。然
后,反向引物2(P2)结合至DNA(+),并且逆转录酶(RT)产生含有T7启动子序列的双链DNA
(dsDNA)。在该初始阶段之后,系统进入扩增阶段。T7RNA聚合酶基于dsDNA生成许多RNA链
(RNA(-)),并且反向引物(P2)结合至新形成的RNA(-)。RT延伸反向引物,并且RNase H将
RNA-cDNA双链的RNA降解为ssDNA。然后,新产生的cDNA(DNA(+))变成P1的模板,并重复该循
环。在本文提供的方法的一些实施方式中,NASBA的组分包括2种引物、逆转录酶、RNA酶H、
RNA聚合酶、dNTP和rNTP。NASBA应用的实例包括HIV-1基因组RNA(D.G.Murphy,et al.,
J.Clin.Microbiol.,2000,38,4034-4041)、丙型肝炎病毒RNA(M.Damen,et al.,
J.Virol.Methods,1999,82,45-54)、人巨细胞病毒mRNA(F.Zhang,et  al.,
J.Clin.Microbiol.,2000,38,1920-1925)、细菌种类的16S RNA(S.A.Morre,et al.,
J.Clin.Pathol.:Clin.Mol.Pathol.,1998,51,149-154)和肠道病毒基因组RNA(J.D.Fox,
et al.,J.Clin.Virol.,2002,24,117-130)。在此以引用的方式明确地将前述参考文献各
自以其整体并入本文。
[0465] 恒温扩增方法的更多实例包括:自身持续序列复制反应(3SR)、90-I、BAD Amp、交叉引物扩增(CPA)、恒温指数扩增反应(EXPAR)、恒温嵌合引物引发的核酸扩增(ICAN)、恒温
多重置换扩增(IMDA)、连接介导的SDA、多重置换扩增、聚合酶螺旋反应(PSR)、限制性级联
指数扩增(RCEA)、智能扩增程序(SMAP2)、单引物恒温扩增(SPIA)、基于转录的扩增系统
(TAS)、转录介导的扩增(TMA)、连接酶链反应(LCR)和/或多重交叉置换扩增(MCDA)。
[0466] 示例的免疫-恒温扩增的概述
[0467] 本文提供的方法、系统和组合物的一些实施方式包括使用免疫-恒温扩增以检测非核酸靶标。在一些此种实施方式中,将用于恒温扩增方法的引物连接至抗体或其片段或
适体。如本文所用的“适体”可包括特异性地结合至靶分子的肽或寡核苷酸。在一些实施方
式中,可通过共价键或非共价键将抗体或适体连接至用于恒温扩增方法中的引物。在一些
实施方式中,可通过生物素和链霉亲和素接头将用于恒温扩增方法中的引物连接至抗体或
适体。在一些实施方式中,可使用THUNDER-LINK(Innova Biosciences,UK)将用于恒温扩增
方法中的引物连接至抗体或适体。
[0468] 在一些实施方式中,靶抗原结合至抗体或适体,并且连接至抗体或适体的引物是用于恒温扩增和/或引发恒温扩增的底物。参见例如Pourhassan-Moghaddam et al.,
Nanoscale Research letters,8:485-496,在此以引用的方式明确地将其整体并入本文。
在一些实施方式中,将靶抗原以夹心形式捕获在特异性地结合至靶抗原的两种抗体或适体
(Abs;捕获抗体和检测抗体)之间。预固定在固体支持表面上的捕获Ab捕获靶Ag,并且与用
于恒温扩增方法中的引物连接的检测Ab附着至所捕获的Ag。清洗后,进行恒温扩增,并且扩
增产物的存在间接表明样品中的靶标Ag的存在。
[0469] 示例的增强的电导率变化的概述
[0470] 本文提供的方法、系统和组合物的一些实施方式包括增强由核酸扩增产生的溶液电导率的变化。在一些实施方式中,随着扩增反应的继续,可将由核酸扩增产生的焦磷酸盐
(“PPi”)的螯合作用用于增强溶液电导率的变化。不受任何一种理论的束缚,在核酸扩增期
间可能发生的电导率变化可基于来自溶液的镁阳离子和PPi离子的沉淀。本文提供的方法
的一些实施方式可包括通过改变平衡来增加电导率的变化,其另外导致镁阳离子和PPi离
子的沉淀。在一些实施方式中,这通过与镁阳离子竞争PPi的分子的添加来实现。在一些此
种实施方式中,提供了具有高离子迁移率的化合物,其将产生对净溶液电导率的高的贡献。
因此,通过用PPi沉淀化合物而从溶液中除去化合物产生溶液的电导率的显著变化。在本文
提供的方法的一些实施方式中,可随着扩增的继续而结合PPi并引起溶液电导率的变化和/
或增强的变化的化合物/复合物包括Cd2+-cyclen-香豆素、具有双(2-吡啶基甲基)胺(DPA)
单元的Zn2+络合物、DPA-2Zn2+-酚盐、吖啶-DPA-Zn2+、DPA-Zn2+-芘和氮杂冠-Cu2+络合物。参
见例如Kim S.K.et al.,(2008)Accounts of Chemical Research 42:23-31,以及Lee D-
H,et al.,(2007)Bull.Korean Chem.Soc.29:497-498;Credo G.M.et al.,(2011)Analyst 
137:1351-1362,以及Haldar B.C.(1950)“Pyrophosphato-Complexes of Nickel and 
Cobalt in Solution”Nature4226:744-745,在此以引用的方式明确地将其整体各自并入
本文。
[0471] 一些实施方式包括化合物,例如2氨基-6-巯基-7-甲基嘌呤核糖核苷(MESG)。在试剂盒中使用MESG以检测焦磷酸盐,例如 焦磷酸盐测定试剂盒(ThermoFischer 
Scientific),其中MESG在无机磷酸盐的存在下由嘌呤核苷磷酸化酶(PNP)转化为核糖1-磷
酸盐和2氨基-6-巯基-7甲基嘌呤。MESG的酶促转化使得吸光度最大值从330nm迁移到
360nm。PNP催化焦磷酸盐转化为两当量的磷酸盐。然后,磷酸盐由MESG/PNP反应消耗,并通
过360nm处吸光度的增加来检测。通过将一分子焦磷酸盐扩增成两分子磷酸盐,可获得额外
的灵敏度。另一试剂盒包括PIPER焦磷酸盐测定试剂盒(ThermoFischer Scientific)。
[0472] 在一些实施方式中,增强由核酸扩增产生的溶液电导率的变化包括结合经扩增的DNA的化合物。在一些此种实施方式中,随着扩增的继续,携带电荷的物质结合至增高量的
经扩增的DNA,引起溶液电导率的净减少。在一些实施方式中,携带电荷的物质可包括通常
用作DNA/RNA着色剂/染料的带正电荷的分子(例如溴化乙锭、结晶紫、SYBR),其通过静电吸
引结合至核酸。这些小的带电分子物质结合至大的低可迁移性扩增产物可通过有效降低染
料分子的电荷迁移率来降低溶液的电导率。应当注意,尽管此种静电吸引是DNA经常被染色
以用于凝胶电泳的机制,但结合至扩增子的分子不必是传统上被用作DNA着色剂的化合物。
由于这些分子因其作为电荷载体(溶液电导率的贡献者)的功能以及其结合至扩增子的能
力而被利用,它们不需要具有任何DNA着色性质。
[0473] 一些实施方式包括连接至纳米颗粒的抗体或适体的用途。在一些此种实施方式中,靶抗原的存在引起抗体的聚集和溶液的电导率的变化。不受任何一种理论的束缚,液体
中的胶体纳米悬浮液的有效电导率可表现出对双电层(EDL)特征、体积分数、离子浓度和其
它物理化学性质的复合依赖。参见例如Angayarkanni  SA.,et al.,Journal of 
Nanofluids,3:17-25,在此以引用的方式明确地将其整体并入本文。抗体缀合的纳米颗粒
是本领域熟知的。参见例如Arruebo M.et al.,Journal of Nanomaterials 2009:Article 
ID 439389和Zawrah MF.,et al.,HBRC Journal 2014.12.001,在此以引用的方式明确地
将其整体各自并入本文。本文所提供的方法使用的纳米颗粒的实例包括γ-Al2O3、SiO2、
TiO2和α-Al2O3、以及金纳米颗粒,参见例如Abdelhalim,MAK.,et al.,International 
Journal of the Physical Sciences,6:5487-5491,以引用的方式明确地将其整体并入本
文。通过使用电化学阻抗光谱(EIS)执行测量,连接至纳米颗粒的抗体的使用也可增强在表
面处产生的信号。参见例如Lu J.,et al.,Anal Chem.84:327-333,在此以引用的方式明确
地将其整体并入本文。
[0474] 本文提供的方法、系统和组合物的一些实施方式包括连接至酶的抗体或适体的用途。在一些实施方式中,酶活性引起溶液电导率的变化。在一些此种实施方式中,通过将电
荷转移到与测定组分接触的基质来检测电导率的变化。
[0475] 示例的病毒靶标的概述
[0476] 本文提供的方法、系统和组合物的一些实施方式包括某些病毒和病毒靶标的检测。病毒靶标可包括病毒核酸、病毒蛋白和/或病毒活性产物(例如酶或其活性)。用本文提
供的方法和设备检测的病毒蛋白的实例包括病毒衣壳蛋白、病毒结构蛋白、病毒糖蛋白、病
毒膜融合蛋白、病毒蛋白酶或病毒聚合酶。还用本文所述的方法和设备检测对应于编码上
述病毒蛋白的基因的至少部分的病毒核酸序列(RNA和/或DNA)。易于从公共数据库获得这
些靶标的核苷酸序列。易于从期望的病毒靶标的核酸序列设计用于恒温扩增的引物。还易
于通过商业途径和/或通过本领域熟知的技术获得针对这些病毒的蛋白质的抗体和适体。
用本文提供的方法、系统和组合物检测的病毒的实例包括DNA病毒(例如双链DNA病毒和单
链病毒)、RNA病毒(例如双链RNA病毒、单链(+)RNA病毒和单链(-)RNA病毒)和逆转录病毒
(例如单链逆转录RNA病毒和双链逆转录DNA病毒)。利用该技术检测的病毒包括动物病毒,
例如人病毒、家畜病毒(domestic animal viruses)、牲畜病毒(livestock viruses)或植
物病毒。用本文提供的方法、系统和组合物检测的人病毒的实例包括下面表2中列出的那
些,其也提供了从其中易于设计用于扩增的引物的示例的核苷酸序列。
[0477] 表2
[0478]
[0479]
[0480]
[0481]
[0482]
[0483] 示例的细菌靶标的概述
[0484] 本文提供的方法、系统和组合物的一些实施方式包括某些细菌和细菌靶标的检测。细菌靶标包括细菌核酸、细菌蛋白和/或细菌活性的产物(例如毒素和酶活性)。易于从
公共数据库中获得指示某些细菌的核苷酸序列。易于从这些细菌靶标的核酸序列设计用于
恒温扩增的引物。易于通过商业途径和/或通过本领域熟知的技术获得某些细菌的蛋白的
抗体和适体。用本文提供的方法、系统和组合物检测的细菌的实例包括革兰氏阴性细菌或
革兰氏阳性细菌。用本文提供的方法、系统和组合物检测的细菌的实例包括:铜绿假单胞
菌、荧光假单胞菌、食酸假单胞菌、产碱假单胞菌、恶臭假单胞菌、嗜麦芽寡养单胞菌、洋葱
伯克霍尔德氏菌、嗜水气单胞菌、大肠杆菌、弗氏柠檬酸杆菌、鼠伤寒沙门氏菌、伤寒沙门氏
菌、副伤寒沙门氏菌、肠炎沙门氏菌、痢疾志贺氏菌、弗氏志贺氏菌、宋内志贺氏菌、阴沟肠
杆菌、产气肠杆菌、肺炎克雷伯菌、产酸克雷伯菌、粘质沙雷氏菌、土拉热弗朗西斯菌、摩氏
摩根氏菌、奇异变形杆菌、普通变形杆菌、产碱普罗威登斯菌、雷氏普罗威登斯菌、斯氏普罗
威登斯菌、鲍氏不动杆菌、醋酸钙不动杆菌、溶血不动杆菌、小肠结肠炎耶尔森氏菌、鼠疫耶
尔森氏菌、假结核耶尔森氏菌、中间型耶尔森氏菌、百日咳博德特氏菌、副百日咳博德特氏
菌、支气管炎博德特氏菌、流感嗜血杆菌、副流感嗜血杆菌、溶血性嗜血杆菌、副溶血性嗜血
杆菌、杜克雷嗜血杆菌、多杀性巴斯德氏菌、溶血性巴斯德氏菌、卡他莫拉氏菌、幽门螺杆
菌、胎儿弯曲杆菌、空肠弯曲杆菌、大肠弯曲杆菌、伯氏疏螺旋体、霍乱弧菌、副溶血性弧菌、
嗜肺性军团杆菌、单核细胞增多性李斯特菌、淋病奈瑟氏球菌、脑膜炎奈瑟氏球菌、金氏菌
属、莫拉氏菌属、阴道加德纳菌、脆弱拟杆菌、吉氏拟杆菌、拟杆菌3452A同源群、普通拟杆
菌、卵形拟杆菌、多形拟杆菌、单形拟杆菌、埃氏拟杆菌、内脏拟杆菌、艰难梭菌、结核分枝杆
菌、鸟分枝杆菌、胞内分枝杆菌、麻风分枝杆菌、白喉棒状杆菌、溃疡棒状杆菌、肺炎链球菌、
无乳链球菌、酿脓链球菌、粪肠球菌、屎肠球菌、金黄色葡萄球菌、表皮葡萄球菌、腐生葡萄
球菌、中间葡萄球菌、猪葡萄球菌hyicus亚种、溶血葡萄球菌、人葡萄球菌和/或解糖葡萄球
菌。更多实例包括炭疽芽孢杆菌(B.anthracis)、球芽孢杆菌(B.globigii)、布鲁氏菌属
(Brucella)、草生欧文氏菌(E.herbicola)或土拉弗朗西斯菌。
[0485] 示例的抗原靶标的概述
[0486] 本文提供的方法、系统和组合物的一些实施方式包括某些抗原靶标的检测。使用抗体、其结合片段或连接至引物(被配置为用于扩增,例如恒温扩增)的适体检测抗原。易于
通过商业途径和/或通过本领域熟知的技术获得针对某些抗原的抗体和适体。如本文所使
用的,“抗原”包括由抗体、其结合片段或适体特异性地结合的化合物或组合物。用本文提供
的方法、系统和组合物检测的抗原的实例包括蛋白质、多肽、核酸和小分子(例如药物化合
物)。分析物的更多实例包括毒素,例如蓖麻毒素、相思豆毒素、肉毒杆菌毒素或葡萄球菌肠
毒素B。
[0487] 示例的寄生虫靶标的概述
[0488] 本文提供的方法、系统和组合物的一些实施方式包括某些寄生虫靶标的检测。寄生虫靶标包括寄生虫核酸、寄生虫蛋白和/或寄生虫活性的产物(例如毒素和/或酶、或酶活
性)。易于从公共数据库中获得指示某些寄生虫的核苷酸序列。易于从此类寄生虫靶标的核
酸序列设计用于恒温扩增的引物。易于通过商业途径和/或本领域熟知的技术获得某些寄
生虫的蛋白质的抗体和适体。用本文提供的方法、系统和组合物检测的寄生虫的实例包括
某些体内寄生虫,例如原生动物有机体如棘阿米巴属、巴贝虫属、分歧巴贝虫、牛双芽巴贝
虫、马巴贝虫、微小巴贝虫、邓肯巴贝虫、巴拉姆希阿米巴、结肠小袋绦虫、芽囊原虫属、隐孢
子虫属、圆孢子虫、脆弱双核阿米巴、痢疾阿米巴、蓝氏贾第鞭毛虫、贝氏等孢子球虫、利什
曼原虫属、福氏耐格里阿米巴原虫、恶性疟原虫、间日疟原虫、卵形疟原虫经典亚种、卵形疟
原虫变异亚种、三日疟原虫、诺氏疟原虫、鼻孢子虫、牛-人肉孢子虫、猪-人肉孢子虫、刚地
弓形虫、阴道毛滴虫、布氏锥虫或克氏锥虫;某些蠕虫有机体,例如短尖伯特绦虫、司氏伯特
绦虫、绦虫、多头带绦虫、阔节裂头绦虫、细粒棘球绦虫、多房棘球绦虫、伏氏棘球绦虫、少节
棘球绦虫、微小膜壳绦虫、缩小膜壳绦虫、欧猥迭宫绦虫、牛肉绦虫或猪带绦虫;某些吸虫有
机体,例如华支睾吸虫、麝猫后支睾吸虫、矛形双腔吸虫、多刺棘口吸虫、肝片吸虫、大片吸
虫、布氏姜片吸虫、棘颚口线虫、刚棘颚口线虫、横穿后殖吸虫、结合次睾吸虫、麝猫后睾吸
虫、猫后睾吸虫、华支睾吸虫、卫氏并殖吸虫、非洲并殖吸虫、卡利并殖吸虫、猫肺并殖吸虫、
斯氏并殖吸虫、双侧宫并殖吸虫、埃及血吸虫、日本血吸虫、曼氏血吸虫和间插血吸虫、湄公
血吸虫、血吸虫属、毛毕吸虫或裂体科;某些蛔虫有机体,例如十二指肠钩口线虫、美洲板口
线虫、哥斯达黎加管圆线虫、异尖线虫、蛔虫属、似蚓蛔线虫、浣熊拜林蛔线虫、马来丝虫、帝
汶丝虫、肾膨结线虫、麦地那龙线虫、蠕形住肠蛲虫、格氏蛲虫、破坏微线虫、罗阿罗阿丝虫、
链尾曼森线虫、盘尾丝虫、粪类圆线虫、加利福尼亚吸吮线虫、结膜吸吮线虫、犬弓首蛔虫、
猫弓首蛔虫、旋毛形线虫、布氏旋毛虫、纳氏旋毛虫、本地毛形线虫、毛首鞭形线虫、狐鞭虫
或班氏吴策线虫;其它寄生虫,例如原棘头虫、念珠棘虫、锯齿状舌形虫、狂蝇总科、丽蝇科、
麻蝇科、螺旋锥蝇(丽蝇科)、穿皮潜蚤、臭虫科:温带臭虫、或人皮蝇。寄生虫的更多实例包
括体外寄生虫,例如人虱、体虱、耻阴虱、毛囊蠕形螨、皮脂蠕形螨、犬蠕形螨、疥螨、或蛛形
纲如恙螨科、或人蚤、或蛛形纲如硬蜱科和/或隐喙蜱科。
[0489] 示例的microRNA靶标的概述
[0490] 本文提供的方法、系统和组合物的一些实施方式包括某些microRNA(miRNA)靶标的检测。miRNA包括在RNA沉默或基因表达的转录后调节中起作用的小的非编码RNA分子。一
些miRNA与由异常的表观遗传模式(包括异常的DNA甲基化和组蛋白修饰模式)引起的各种
人类疾病中的失调有关。例如来自受试者的样品中的某些miRNA的存在或不存在指示疾病
或疾病状态。易于从miRNA的核苷酸序列设计用于检测miRNA并用于恒温扩增的引物。易于
从公共数据库中获得miRNA的核苷酸序列。用本文提供的方法、系统和组合物检测的miRNA
靶标的实例包括:hsa-miR-1,hsa-miR-1-2,hsa-miR-100,hsa-miR-100-1,hsa-miR-100-2,
hsa-miR-101,hsa-miR-101-1,hsa-miR-101a,hsa-miR-101b-2,hsa-miR-102,hsa-miR-
103,hsa-miR-103-1,hsa-miR-103-2,hsa-miR-104,hsa-miR-105,hsa-miR-106a,hsa-miR-
106a-1,hsa-miR-106b,hsa-miR-106b-1,hsa-miR-107,hsa-miR-10a,hsa-miR-10b,hsa-
miR-122,hsa-miR-122a,hsa-miR-123,hsa-miR-124a,hsa-miR-124a-1,hsa-miR-124a-2,
hsa-miR-124a-3,hsa-miR-125a,hsa-miR-125a-5p,hsa-miR-125b,hsa-miR-125b-1,hsa-
miR-125b-2,hsa-miR-126,hsa-miR-126-5p,hsa-miR-127,hsa-miR-128a,hsa-miR-128b,
hsa-miR-129,hsa-miR-129-1,hsa-miR-129-2,hsa-miR-130,hsa-miR-130a,hsa-miR-
130a-1,hsa-miR-130b,hsa-miR-130b-1,hsa-miR-132,hsa-miR-133a,hsa-miR-133b,hsa-
miR-134,hsa-miR-135a,hsa-miR-135b,hsa-miR-136,hsa-miR-137,hsa-miR-138,hsa-
miR-138-1,hsa-miR-138-2,hsa-miR-139,hsa-miR-139-5p,hsa-miR-140,hsa-miR-140-
3p,hsa-miR-141,hsa-miR-142-3p,hsa-miR-142-5p,hsa-miR-143,hsa-miR-144,hsa-miR-
145,hsa-miR-146a,hsa-miR-146b,hsa-miR-147,hsa-miR-148a,hsa-miR-148b,hsa-miR-
149,hsa-miR-15,hsa-miR-150,hsa-miR-151,hsa-miR-151-5p,hsa-miR-152,hsa-miR-
153,hsa-miR-154,hsa-miR-155,hsa-miR-15a,hsa-miR-15a-2,hsa-miR-15b,hsa-miR-16,
hsa-miR-16-1,hsa-miR-16-2,hsa-miR-16a,hsa-miR-164,hsa-miR-170,hsa-miR-172a-2,
hsa-miR-17,hsa-miR-17-3p,hsa-miR-17-5p,hsa-miR-17-92,hsa-miR-18,hsa-miR-18a,
hsa-miR-18b,hsa-miR-181a,hsa-miR-181a-1,hsa-miR-181a-2,hsa-miR-181b,hsa-miR-
181b-1,hsa-miR-181b-2,hsa-miR-181c,hsa-miR-181d,hsa-miR-182,hsa-miR-183,hsa-
miR-184,hsa-miR-185,hsa-miR-186,hsa-miR-187,hsa-miR-188,hsa-miR-189,hsa-miR-
190,hsa-miR-191,hsa-miR-192,hsa-miR-192-1,hsa-miR-192-2,hsa-miR-192-3,hsa-
miR-193a,hsa-miR-193b,hsa-miR-194,hsa-miR-195,hsa-miR-196a,hsa-miR-196a-2,
hsa-miR-196b,hsa-miR-197,hsa-miR-198,hsa-miR-199a,hsa-miR-199a-1,hsa-miR-
199a-1-5p,hsa-miR-199a-2,hsa-miR-199a-2-5p,hsa-miR-199a-3p,hsa-miR-199b,hsa-
miR-199b-5p,hsa-miR-19a,hsa-miR-19b,hsa-miR-19b-1,hsa-miR-19b-2,hsa-miR-200a,
hsa-miR-200b,hsa-miR-200c,hsa-miR-202,hsa-miR-203,hsa-miR-204,hsa-miR-205,
hsa-miR-206,hsa-miR-207,hsa-miR-208,hsa-miR-208a,hsa-miR-20a,hsa-miR-20b,hsa-
miR-21,hsa-miR-22,hsa-miR-210,hsa-miR-211,hsa-miR-212,hsa-miR-213,hsa-miR-
214,hsa-miR-215,hsa-miR-216,hsa-miR-217,hsa-miR-218,hsa-miR-218-2,hsa-miR-
219,hsa-miR-219-1,hsa-miR-22,hsa-miR-220,hsa-miR-221,hsa-miR-222,hsa-miR-223,
hsa-miR-224,hsa-miR-23a,hsa-miR-23b,hsa-miR-24,hsa-miR-24-1,hsa-miR-24-2,hsa-
miR-25,hsa-miR-26a,hsa-miR-26a-1,hsa-miR-26a-2,hsa-miR-26b,hsa-miR-27a,hsa-
miR-27b,hsa-miR-28,hsa-miR-296,hsa-miR-298,hsa-miR-299-3p,hsa-miR-299-5p,hsa-
miR-29a,hsa-miR-29a-2,hsa-miR-29b,hsa-miR-29b-1,hsa-miR-29b-2,hsa-miR-29c,
hsa-miR-301,hsa-miR-302,hsa-miR-302a,hsa-miR-302b,hsa-miR-302c,hsa-miR-302c,
hsa-miR-302d,hsa-miR-30a,hsa-miR-30a-3p,hsa-miR-30a-5p,hsa-miR-30b,hsa-miR-
30c,hsa-miR-30c-1,hsa-miR-30d,hsa-miR-30e,hsa-miR-30e,hsa-miR-30e-5p,hsa-miR-
31,hsa-miR-31a,hsa-miR-32,hsa-miR-32,hsa-miR-320,hsa-miR-320-2,hsa-miR-320a,
hsa-miR-322,hsa-miR-323,hsa-miR-324-3p,hsa-miR-324-5p,hsa-miR-325,hsa-miR-
326,hsa-miR-328,hsa-miR-328-1,hsa-miR-33,hsa-miR-330,hsa-miR-331,hsa-miR-335,
hsa-miR-337,hsa-miR-337-3p,hsa-miR-338,hsa-miR-338-5p,hsa-miR-339,hsa-miR-
339-5p,hsa-miR-34a,hsa-miR-340,hsa-miR-340,hsa-miR-341,hsa-miR-342,hsa-miR-
342-3p,hsa-miR-345,hsa-miR-346,hsa-miR-347,hsa-miR-34a,hsa-miR-34b,hsa-miR-
34c,hsa-miR-351,hsa-miR-352,hsa-miR-361,hsa-miR-362,hsa-miR-363,hsa-miR-355,
hsa-miR-365,hsa-miR-367,hsa-miR-368,hsa-miR-369-5p,hsa-miR-370,hsa-miR-371,
hsa-miR-372,hsa-miR-373,hsa-miR-374,hsa-miR-375,hsa-miR-376a,hsa-miR-376b,
hsa-miR-377,hsa-miR-378,hsa-miR-378,hsa-miR-379,hsa-miR-381,hsa-miR-382,hsa-
miR-383,hsa-miR-409-3p,hsa-miR-419,hsa-miR-422a,hsa-miR-422b,hsa-miR-423,hsa-
miR-424,hsa-miR-429,hsa-miR-431,hsa-miR-432,hsa-miR-433,hsa-miR-449a,hsa-miR-
451,hsa-miR-452,hsa-miR-451,hsa-miR-452,hsa-miR-452,hsa-miR-483,hsa-miR-483-
3p,hsa-miR-484,hsa-miR-485-5p,hsa-miR-485-3p,hsa-miR-486,hsa-miR-487b,hsa-
miR-489,hsa-miR-491,hsa-miR-491-5p,hsa-miR-492,hsa-miR-493-3p,hsa-miR-493-5p,
hsa-miR-494,hsa-miR-495,hsa-miR-497,hsa-miR-498,hsa-miR-499,hsa-miR-5,hsa-
miR-500,hsa-miR-501,hsa-miR-503,hsa-miR-508,hsa-miR-509,hsa-miR-510,hsa-miR-
511,hsa-miR-512-5p,hsa-miR-513,hsa-miR-513-1,hsa-miR-513-2,hsa-miR-515-3p,
hsa-miR-516-5p,hsa-miR-516-3p,hsa-miR-518b,hsa-miR-519a,hsa-miR-519d,hsa-miR-
520a,hsa-miR-520c,hsa-miR-521,hsa-miR-532-5p,hsa-miR-539,hsa-miR-542-3p,hsa-
miR-542-5p,hsa-miR-550,hsa-miR-551a,hsa-miR-561,hsa-miR-563,hsa-miR-565,hsa-
miR-572,hsa-miR-582,hsa-miR-584,hsa-miR-594,hsa-miR-595,hsa-miR-598,hsa-miR-
599,hsa-miR-600,hsa-miR-601,hsa-miR-602,hsa-miR-605,hsa-miR-608,hsa-miR-611,
hsa-miR-612,hsa-miR-614,hsa-miR-615,hsa-miR-615-3p,hsa-miR-622,hsa-miR-627,
hsa-miR-628,hsa-miR-635,hsa-miR-637,hsa-miR-638,hsa-miR-642,hsa-miR-648,hsa-
miR-652,hsa-miR-654,hsa-miR-657,hsa-miR-658,hsa-miR-659,hsa-miR-661,hsa-miR-
662,hsa-miR-663,hsa-miR-664,hsa-miR-7,hsa-miR-7-1,hsa-miR-7-2,hsa-miR-7-3,
hsa-miR-708,hsa-miR-765,hsa-miR-769-3p,hsa-miR-802,hsa-miR-885-3p,hsa-miR-9,
hsa-miR-9-1,hsa-miR-9-3,hsa-miR-9-3p,hsa-miR-92,hsa-miR-92-1,hsa-miR-92-2,
hsa-miR-9-2,hsa-miR-92,hsa-miR-92a,hsa-miR-93,hsa-miR-95,hsa-miR-96,hsa-miR-
98,hsa-miR-99a,和/或hsa-miR-99b。
[0491] 示例的农业分析物的概述
[0492] 本文提供的方法、系统和组合物的一些实施方式包括某些农业分析物的检测。农业分析物包括核酸、蛋白质或小分子。易于从公共数据库中获得指示某些农业分析物的核
苷酸序列。易于从此类农业分析物的核酸序列设计用于恒温扩增的引物。易于通过商业途
径和/或本领域熟知的技术获得某些农业分析物的蛋白质的抗体和适体。
[0493] 将本文提供的方法和设备的一些实施方式用于鉴定肉产品、鱼产品或酵母产品(如啤酒、葡萄酒或面包)中的有机体或有机体的产物的存在。在一些实施方式中,将物种特
异性的抗体或适体、或物种特异性的引物用于鉴定食品产品中的某些微生物的存在。
[0494] 本文提供的方法、系统和组合物的一些实施方式包括农药的检测。在一些实施方式中,在样品(例如土壤样品或食品样品)中检测农药。用本文所述的设备和方法检测的农
药的实例包括除草剂、杀虫剂或杀真菌剂。除草剂的实例包括2,4-二氯苯氧基乙酸(2,4-
D)、莠去津、草甘膦、2甲4氯丙酸、麦草畏、百草枯、草铵膦、威百亩、棉隆、氟硫草定、二甲戊
灵、EPTC、氟乐灵、啶嘧磺隆、甲磺隆、敌草隆、除草醚、三氟甲草醚、三氟羧草醚、甲基磺草
酮、磺草酮或尼替西农。用本文所述的设备和方法检测的杀虫剂的实例包括有机氯化物、有
机磷酸盐/酯、氨基甲酸酯、拟除虫菊酯、新烟碱和ryanoid。用本文所述的设备和方法检测
的杀真菌剂的实例包括多菌灵、乙霉威、嘧菌酯、甲霜灵、精甲霜灵、链霉素、氧四环素、百菌
清、戊唑醇、代森锌、代森锰锌、戊唑醇、腈菌唑、三唑酮、腈苯唑、脱氧雪腐镰刀菌烯醇或代
森锰锌。
[0495] 示例的生物标志物的概述
[0496] 本文提供的方法、系统和组合物的一些实施方式包括某些疾病的某些生物标志物的检测。生物标志物可包括核酸、蛋白质、蛋白质片段和抗原。一些生物标志物可包括本文
提供的靶标。示例的紊乱包括癌症,例如乳腺癌、结直肠癌、胃癌、胃肠道间质肿瘤、白血病
和淋巴瘤、肺癌、黑色素瘤、脑癌和胰腺癌。一些实施方式可包括检测样品中的生物标志物
的存在或不存在、或生物标志物的水平。生物标志物可指示某些疾病的存在、不存在或阶
段。示例的生物标志物包括雌激素受体、孕酮受体、HER-2/neu、EGFR、KRAS、UGT1A1、c-KIT、
CD20、CD30、FIP1L1-PDGFRα、PDGFR、费城染色体(BCR/ABL)、PML/RAR-α、TPMT、UGT1A1、EML4/ALK、BRAF以及某些氨基酸(例如亮氨酸、异亮氨酸和缬氨酸)的升高的水平。
[0497] 实施例
[0498] 实施例1 PDMS中的fC4D LAMP扩增前/后检测
[0499] 根据NEB的标准方案,使用流感嗜血杆菌的基因组的5'非翻译区作为靶标,制备LAMP反应混合物。将混合物等分入扩增前小瓶(-对照)和扩增后小瓶(+对照)中。将扩增前
小瓶在85℃下热灭活20分钟以防止扩增。将扩增后小瓶在63℃下扩增60分钟。将来自每个
小瓶的等份试样依次加载(在室温下于两个小瓶之间交替)至PDMS/玻璃芯片v.1.1上,同时
进行实时数据收集。图24是描述传感器电压随时间变化的图。
[0500] 实施例2在PDMS中用全血进行fC4D扩增前/后检测
[0501] 使用流感嗜血杆菌的基因组的5'非翻译区作为靶标,用0%、1%和5%全血(v/v)制备反应混合物。将混合物等分入扩增前小瓶(-对照)和扩增后小瓶(+对照)中。将扩增前
小瓶在85℃下热灭活20分钟以防止扩增。将扩增后小瓶在63℃下扩增60分钟。将来自每个
小瓶的等份试样依次加载(在室温下于两个小瓶之间交替)至PDMS/玻璃芯片v.1.1上,同时
进行实时数据收集。图25、图26和图27是分别描述0%、1%和5%全血的扩增前(-对照)和扩
增后(+对照)的传感器电压随时间变化的图。
[0502] 实施例3过滤LAMP扩增前/后
[0503] 如实施例1中所述制备样品。在测量之前,使用50kD过滤器对所有样品(去掉一个作为对照)进行旋转过滤。将来自每个小瓶的等份试样依次加载(在室温下于两个小瓶之间
交替)至PDMS/玻璃芯片v.1.1上,同时进行实时数据收集。过滤改善了S/N和电导率变化。图
28和图29分别是描述了对于未过滤样品和经过滤的样品而言的用0%全血进行的扩增前(-
对照)和扩增后(+对照)的传感器电压随时间变化的图。
[0504] 实施例4 1k-1M靶标拷贝的电导率检测
[0505] 使用流感嗜血杆菌的基因组的5'非翻译区作为靶标制备反应混合物。使用fC4D仪器进行检测。数据为对3重复求平均值。图30描述了时间随靶标加载变化的图,误差棒示出
标准偏差。无模板阴性对照在60分钟加热时没有示出信号。
[0506] 实施例5在PDMS中用全血进行的fC4D扩增前/后检测
[0507] 使用流感嗜血杆菌的基因组的5'非翻译区作为靶标,用0%或1%全血(v/v)制备反应混合物。将混合物等分入扩增前小瓶(-对照)和扩增后小瓶(+对照)中。将扩增前小瓶
在85℃下热灭活20分钟以防止扩增。将扩增后小瓶在63℃下扩增60分钟。将来自每个小瓶
的等份试样依次加载(在室温下于两个小瓶之间交替)至PDMS/玻璃芯片v.1.1上,同时进行
实时数据收集。图31描述了来自扩增前小瓶(-对照)和扩增后小瓶(+对照)的各种样品的电
导率的图。
[0508] 实施例6使用MAIA进行的乙型肝炎表面抗原检测
[0509] 将生物素化的多克隆抗体捕获探针(抗-HBsAg)缀合至链霉亲和素功能化的1微米磁性微球(Dynal T1)。通过将生物素化的多克隆捕获探针(抗HBsAg)缀合至链霉亲和素,并
将链霉亲和素-抗体复合物缀合至生物素化的DNA靶标,合成嵌合检测复合物。抗体功能化
的珠从溶液中捕获HBs抗原。通过嵌合体Ab-DNA复合物的结合及随后的嵌合体复合物的DNA
模板部分的扩增来检测HBs抗原。图32描述了与核酸缀合的抗原和抗体之间的结合。图33描
述了示出乙型肝炎表面抗原的检测的图。
[0510] 实施例7用低离子强度缓冲液进行的检测
[0511] 分别用表2和表3中列出的试剂制备商业化扩增溶液和T10扩增溶液。商业化扩增溶液通常用于一般的扩增反应中。T10扩增溶液具有减少的Tris-HCl含量,并且不存在硫酸
铵。制备400μL的每种溶液,并将约15μL的每种溶液加载到实验盒的不同通道中。将溶液加
热至63.0℃。使用数据收集板收集数据。
[0512] 图34描述了结果。与由商业化扩增溶液提供的信号相比,T10扩增缓冲液提供了至少高30%的信号。
[0513] 表2
[0514]
[0515]
[0516] 表3
[0517]试剂 1x浓度(mM) 10x浓度(mM) FW 为了10mL 10x添加的mg
Tris-HCl 2 20 157.6 31.52
(NH4)2SO4 0 0 132.14 0.00
KCl 50 500 74.55 372.75
MgSO4 2 20 246.48 49.30
Tween 20 0.10% 1% 100% 0.1mL
DI水       9.9mL
[0518] 实施例8流体盒的阻抗特性
[0519] 用1288mS/cm参比缓冲液填充图17A中描述的流体盒的通道,并且将激励频率从小于约100Hz至大于约1MHz进行扫描,并且测量阻抗(“|Z|”)或arg Z随频率的变化。结果在图
35中示出,该图描述了|Z|或arg Z随频率的变化。
[0520] 实施例9含有HCV序列的核酸的扩增
[0521] 在各种条件下通过LAMP进行的一系列实验中扩增含有包含丙型肝炎病毒(HCV)序列的核酸的样品,并且确定了阈值循环(Ct)值连同标准偏差(SD)和相对标准偏差(RSD)%。
核酸包括:包含HCV序列的合成核酸;包含HCV序列的合成RNA。所有反应均含有5%Tween-
20。对于含有约一百万拷贝的包含HCV序列的合成核酸的反应的实验,平均Ct为856、SD为
15、并且RSD为1.72%。
[0522] 在各种条件下通过LAMP对含有包含HCV序列的合成RNA的血浆样品进行扩增,所述条件包括:未经处理、在添加合成RNA之前通过加热进行处理、在添加合成RNA之后通过加热
进行处理、以及加入100mM DTT。每个反应包含约25k拷贝的核酸。表4总结了结果。
[0523] 表4
[0524]
[0525] 与未经处理的样品相比,如RSD所示,100mM DTT的添加或在添加合成RNA之前加热处理的血浆改善了扩增。与未经处理的样品相比,添加DTT或在添加合成RNA之前加热处理
的血浆也产生更快的扩增(约快50秒)(分别为P=0.03和P=0.002)。
[0526] 在各种条件下通过LAMP对含有HCV(SeraCare,Milford MA)的血浆样品进行扩增,所述条件包括:将血浆进行加热处理、添加100mM DTT、添加SDS和/或DTT。表5总结了结果。
[0527] 表5
[0528]
[0529] 如RSD值所示,与未经处理的血浆相比,将血浆进行加热处理或添加DTT改善了扩增结果。与未经处理、经加热处理或添加DTT的血浆相比,添加0.05%SDS或0.1%SDS降低了
扩增的再现性和速度。
[0530] 实施例10含有HCV的临床样品的扩增
[0531] 通过具有不同浓度的DTT的LAMP对含有HCV的临床血浆样品进行扩增。将WarmStart LAMP反应混合物(New England Biolabs)用于制备四份样品。样品包括:含有约
~20k拷贝的HCV/反应的5%血浆(SeraCare,Milford MA)、50U/反应的鼠RNase抑制剂,具
有不同浓度的Tween和DTT。用1%和5%Tween对含有包含HCV序列(1M拷贝/rxn)的合成核酸
的样品进行测试。也测试了无靶标对照(NTC)。LAMP在67℃下进行,并且结果在Zeus QS3系
统上以1分钟/循环测量60个循环,取每个循环的数据,并在LAMP完成后应用上/下熔解曲线
(up/down melt curve)。结果总结在表6中。
[0532] 表6
[0533]
[0534] 如RSD值所示,与含有1%Tween的样品相比,含有5%Tween的样品具有经改善的扩增。实施类似的研究进一步改变反应管中的Tween的浓度。结果总结在表7中。
[0535] 表7
[0536]
[0537]
[0538] 更高浓度的Tween和DTT的反应体积具有更好的HCV样品的扩增结果的再现性,具体而言,在重复的反应中,极端离群值更少、失败的扩增更少、并且扩增的重复的RSD值更
低。在5mM DTT和10mM DTT下,不存在重复,该重复对于任何浓度的Tween而言都没有扩增。
同样,在4%和5%Tween下,除了低DTT浓度(1mM及以下)外,没有失败的重复或极端离群值。
[0539] 实施例11用盒扩增靶标
[0540] 使用盒进行一系列的三个实验,该盒实质上与图2中所描述的盒相似,具有六个孔,每个孔具有环形电极。每个孔与所测量的通道相关联。样品包括包含来自流感嗜血杆菌
(Hinf)或乙型肝炎病毒(HBV)的序列的靶核酸。通过LAMP对样品进行扩增,并测量阻抗方面
的变化。
[0541] 通过将盒预加热至72℃共20分钟来准备孔,用25μl“无模板和引物对照”(NTPC)缓冲液填充每个孔,用矿物油覆盖缓冲液,将盒加热至72℃共20分钟,从孔中除去气泡,在室
温下将盒冷却10分钟。将样品注入预填充的孔的底部,并将盒置于67℃或76.5℃下以进行
特定实验的LAMP。用于Hinf研究的频率为60kHz。表8中列出了每个盒的样品和相应的孔/通
道。表9中列出了靶序列和引物。表10中列出了反应组分。
[0542] 表8
[0543]孔/通道 样品
1 合成HBV
2 合成HBV
3 合成HBV
4 NTPC
5 Hinf
6 Hinf
[0544] 表9
[0545]
[0546]
[0547] 表10
[0548]
[0549]
[0550] 图36A和图36B中示出了在65℃下在盒上进行的LAMP的数据。图36A是在图2的盒的测试孔中感测到的衰减的激励信号的异相部分的图,其中x轴为时间,线代表NTPC的样品上
的LAMP,并且标记了Hinf和合成HBV的实例。图36B是在图2的盒的测试孔中感测到的衰减的
激励信号的同相部分的图,具有代表合成HBV(通道1-3)、NTPC(通道4)和Hinf(通道5-6)的
线。含有合成HBV的样品在65℃下未在盒上扩增。所标记的Hinf样品示出了指示阳性样品的
示例的信号悬崖。
[0551] 图36C和图36D中示出了在67℃下在盒上进行的LAMP的数据。图36C是在图2的盒的测试孔中感测到的衰减的激励信号的异相部分的图,其中x轴为时间,并且线代表NTPC的样
品上的LAMP,并且标记了Hinf和合成HBV的实例。图36D是在图2的盒的测试孔中感测到的衰
减的激励信号的同相部分的图,具有代表合成HBV(通道1-3)、NTPC(通道4)和Hinf(通道5-
6)的线。含有合成HBV的样品在67℃下于约49分钟时在盒上扩增。所标记的Hinf样品示出了
指示阳性样品的示例的信号悬崖。
[0552] 图36E和图36F中示出了在67℃下在盒上进行的LAMP的数据。图36E是在图2的盒的测试孔中感测到的衰减的激励信号的异相部分的图,其中x轴为时间,线代表NTPC的样品上
的LAMP,并且标记了Hinf和合成HBV的实例。图36F是在图2的盒的测试孔中感测到的衰减的
激励信号的同相部分的图,具有代表合成HBV(通道1-3)、NTPC(通道4)和Hinf(通道5-6)的
线。含有合成HBV的样品在67℃下于约46分钟时在盒上扩增。
[0553] 还使用Applied Biosystems QuantStudioTM 3实时PCR系统在67℃下通过定量PCR对样品进行测试。使用Thermo Fisher的QS3软件计算阈值循环(Ct),阈值设定为100k,并且
对于相同反应的每一组,将基线设定为相同的值。表11列出了含有Hinf或合成HBV的样品的
平均Ct值。
[0554] 表11
[0555]样品(靶标浓度) 平均Ct SD RSD(%)
Hinf PC(1M c/μl) 1704.5 10.4 0.6
HBV Synt(10B c/μl) 380.4 5.5 1.5
[0556] 实施系统和术语
[0557] 本文公开的实施方式提供用于靶标分析物的存在和/或量的检测的系统、方法和设备。本领域技术人员将认识到,这些实施方式能够以硬件或硬件和软件和/或固件的组合
来实施。
[0558] 本文所述的信号处理和读取器设备控制功能可作为一个或多个指令储存在处理器可读介质或计算机可读介质上。术语“计算机可读介质”是指可由计算机或处理器获取的
任何可用介质。作为实例且不受限制,此种介质可包括可用于以指令或数据结构的形式储
存期望的程序代码并且可由计算机获取的RAM、ROM、EEPROM、闪存、CD-ROM或其它光盘储存
器、磁盘储存器或其它磁性储存设备、或任何其它介质。应当注意,计算机可读介质可为有
形的(tangible)和非暂时性的。术语“计算机程序产品”是指与可由计算设备或处理器执
行、处理或计算的代码或指令(例如“程序”)组合的计算设备或处理器。如本文所使用的,术
语“代码”可指可由计算设备或处理器执行的软件、指令、代码或数据。
[0559] 结合本文公开的实施方式描述的各种说明性逻辑框和模块可由机器来实施或进行,机器例如用于执行本文所述的功能而设计的通用处理器、数字信号处理器(DSP)、专用
集成电路(ASIC)、现场可程序化门阵列(FPGA)或其它可程序化逻辑设备、分立的门或晶体
管逻辑、分立的硬件组件或其任意组合。通用处理器可为微处理器,但在替代实施方式中,
处理器可为控制器、微控制器或其组合等。处理器也可作为计算设备的组合而被实施,例如
DSP和微处理器的组合、多个微处理器、与DSP核结合的一个或多个微处理器、或任何其它的
此类配置。尽管本文的描述主要关于数字技术,但处理器也可主要包括模拟组件。例如,本
文描述的任何信号处理算法能够以模拟电路实施。计算环境可包括任何类型的计算机系
统,包括但不限于基于微处理器的计算机系统、主机计算机、数字信号处理器、便携式计算
设备、个人记事本、设备控制器和电器中的计算引擎(仅举几例)。
[0560] 本文公开的方法包括用于实现所描述的方法的一个或多个步骤或者动作。在不脱离权利要求的范围的情况下,方法步骤和/或动作可彼此互换。换句话说,除非为了正在描
述的方法的适当操作而要求步骤或动作的特定顺序,否则可在不脱离权利要求的范围的情
况下修改特定步骤和/或动作的顺序和/或使用。
[0561] 如本文所用的术语“包含”与“包括”、“含有”或“特征在于”是同义的,并且是包含性的或开放式的,并且不排除另外的、未列举的要素或方法步骤。
[0562] 以上描述公开了本发明的一些方法和材料。本发明易于在方法和材料方面进行修改,以及易于在制造方法和装置方面改变。通过考虑到本公开或本文公开的发明的实践,此
种修改对于本领域技术人员而言将变得显而易见。因此,不旨在将本发明限于本文公开的
具体实施方式,而是涵盖落入本发明的真实范围和精神内的所有修改和替代实施方式。
[0563] 本文引用的所有参考文献(包括但不限于公开和未公开的申请、专利和参考文献)以引用的方式将其整体并入本文,并且在此作为本说明书的一部分。如果以引用的方式并
入的出版物和专利或专利申请与申请文件文件包含的公开相矛盾,则说明书旨在取代和/
或优先于任何此种矛盾材料。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈