复合材料

阅读:217发布:2022-01-20

专利汇可以提供复合材料专利检索,专利查询,专利分析的服务。并且本 发明 提供一种 复合材料 ,其包括用可 固化 树脂 基质浸渍的强化 纤维 层和多个 位置 与所述强化纤维相邻或接近的导电复合粒子。每一所述导电复合粒子由导电组分和聚合组分构成,其中所述聚合组分包括一或多种 聚合物 ,所述聚合物最初为固相且实质上不溶于所述可固化树脂,但在所述复合材料的固化周期期间能够进行至少部分相转变成为 流体 相。,下面是复合材料专利的具体信息内容。

1.一种可固化复合材料,其包含:
i)至少一个用可固化树脂基质浸渍的强化纤维结构层;以及
ii)至少一种与所述强化纤维相邻或接近的导电复合粒子,所述导电复合粒子包含导电组分和聚合组分,其中所述导电复合粒子的所述聚合组分包含一或多种聚合物,所述聚合物在所述复合材料固化之前最初为固相且实质上不溶于所述可固化树脂,但在所述复合材料的固化周期期间能够通过溶解于所述树脂基质中进行至少部分相转变成为流体相。
2.根据权利要求1所述的复合材料,其中所述可固化树脂基质为热固性组合物,其中在所述复合材料固化期间所述导电复合粒子中至少50%的所述聚合组分可溶于所述树脂基质中,且其中所述相转变成为所述流体相通过所述聚合组分溶解于所述树脂基质中发生。
3.根据权利要求1或2所述的复合材料,其中每一导电复合粒子的所述导电组分包含一或多种电导率大于1×103S/m的导电材料。
4.根据权利要求1所述的复合材料,其中每一导电复合粒子的所述导电组分包含一或多种选自金属材料、非金属导电材料以及其组合的导电材料。
5.根据权利要求1所述的复合材料,其中所述导电复合粒子的所述导电组分包含一或多种选自、金、铂、钯、镍、、铅、、其合金以及混合物的金属材料。
6.根据权利要求1所述的复合材料,其中所述导电复合粒子的所述导电组分包含一或多种选自石墨烯、石墨以及其组合的非金属导电材料。
7.根据权利要求1所述的复合材料,其中所述聚合组分包含聚醚砜。
8.根据权利要求1所述的复合材料,其中所述导电复合粒子的所述聚合组分包含至少一种选自由以下各项组成的群组的热塑性聚合物:聚酯、聚、聚酰胺、聚邻苯二甲酰胺、聚苯乙烯、聚丁二烯、聚丙烯酸酯、聚丙烯酸系物、聚甲基丙烯酸酯、聚醚砜(PES)、聚醚醚砜(PEES)、聚苯砜、聚砜、聚酯、液晶聚合物、聚酰亚胺、聚醚酰亚胺(PEI)、聚醚酮酮(PEKK)、聚醚醚酮(PEEK)、聚芳基醚、聚芳基硫化物、聚苯、聚苯醚(PPO)、聚环乙烷(PEO)、聚环氧丙烷、其共聚物以及组合。
9.根据权利要求1所述的复合材料,其中所述导电复合粒子的所述聚合组分进一步包含至少一种热固性树脂。
10.根据权利要求9所述的复合材料,其中所述导电复合粒子的所述聚合组分进一步包含固化剂或催化剂。
11.根据权利要求1所述的复合材料,其中所述导电复合粒子的所述导电组分的重量含量相对于所述导电复合粒子的总重量为1%到90%。
12.根据权利要求1所述的复合材料,其中多个导电复合粒子以所述复合材料中的总树脂内含物的体积计以0.1体积%到25体积%的含量存在。
13.根据权利要求1所述的复合材料,其中存在多个导电复合粒子,且所述粒子的平均粒度小于150μm。
14.根据权利要求1所述的复合材料,其中存在多个导电复合粒子,且所述粒子的平均粒度在10μm到60μm的范围内。
15.根据权利要求1所述的复合材料,其进一步包含非导电粒子,其中与非导电粒子组合的所述导电复合粒子以所述复合材料中的总树脂内含物的体积计以至多25体积%的含量存在。
16.根据权利要求1所述的复合材料,其中所述可固化树脂基质包含一或多种选自由以下各项组成的群组的热固性树脂:环氧树脂、双顺丁烯二酰亚胺、乙烯基酯树脂、氰酸酯树脂、经异氰酸酯改性的环氧树脂、酚系树脂、苯并噁嗪、甲缩合树脂、聚酯以及丙烯酸系物。
17.根据权利要求1所述的复合材料,其进一步包含用可固化树脂基质浸渍的强化纤维的第二结构层,其中所述至少一种导电复合粒子位于所述至少一个用可固化树脂基质浸渍的强化纤维结构层和所述第二结构层的强化纤维层之间。
18.一种可固化复合层压物,其包含:
用第一可固化树脂基质浸渍的强化纤维结构层;以及
与所述结构层的两个相对表面之一接触的第二可固化树脂基质的层,
其中所述第二可固化树脂基质包含多个导电复合粒子且所述第一可固化树脂基质无任何导电复合粒子,以及
其中每一导电复合粒子包含导电组分和聚合组分,所述聚合组分包含一或多种聚合物,所述聚合物在所述复合层压物固化之前最初为固相且实质上不溶于所述第二可固化树脂基质,但在所述复合层压物固化周期期间能够通过溶解于所述第二树脂基质中进行至少部分相转变成为流体相。
19.根据权利要求18所述的可固化复合层压物,其进一步包含:
与所述结构层的两个相对表面中的另一者接触的所述第二可固化树脂基质的另一层。
20.一种制造复合结构的方法,其包含:
(a)将至少一种导电材料分散于聚合材料中以形成复合掺合物;
(b)任选地热处理所述掺合物;
(c)由所述复合掺合物形成微米级导电复合粒子,所述粒子的平均粒度小于150μm;
(d)任选地热处理所述微米级导电复合粒子;以及
(e)形成包含至少一个用可固化树脂基质浸渍的强化纤维层和多个与所述强化纤维相邻的微米级导电复合粒子的复合材料,
其中每一导电复合粒子中的所述聚合材料包含一或多种聚合物,所述聚合物在所述树脂基质固化之前最初为固相且实质上不溶于所述可固化树脂基质,但在所述复合材料固化周期期间能够通过溶解于所述树脂基质中进行至少部分相转变成为流体相。
21.根据权利要求20所述的方法,其进一步包含:
(f)固化所述复合材料,其中所述导电复合粒子中的所述聚合材料通过在固化期间溶解于所述树脂基质中进行至少部分相转变成为流体相,以及
固化之后,所述导电复合粒子的所述导电材料充当相邻强化纤维层之间的导电桥。
22.根据权利要求20或21所述的方法,其中所述可固化树脂基质为热固性组合物,其中在固化期间每一导电复合粒子中至少50%的所述聚合材料可溶解。
23.根据权利要求20所述的方法,其中步骤(a)在挤压机中执行并且所述挤压的复合掺合物呈丸粒形式。
24.根据权利要求23所述的方法,其中步骤(c)通过低温研磨执行。
25.根据权利要求20所述的方法,其中在步骤(a)中待分散的所述导电材料为选自由以下各项组成的群组的形式:薄片状、粉末、树枝状、纤维、球形、经金属涂布的产物以及其组合。
26.根据权利要求20所述的方法,其中所述导电复合粒子的所述导电材料包含一或多种选自银、金、铂、钯、镍、铜、铅、锡、铝、钛、其合金以及混合物的金属材料。
27.根据权利要求20所述的方法,其中所述导电材料是选自由以下各项组成的群组:有或无导电涂层的短切碳纤维、石墨薄片、石墨纳米片、碳黑、单壁碳纳米管SWCNT、双壁碳纳米管DWCNT、多壁碳纳米管MWCNT、碳纳米纤维、碳纳米球、碳纳米棒富勒烯、碳纳米绳、碳纳米带、碳纳米原纤维、碳纳米针、碳纳米薄板、石墨烯、碳纳米锥、具有卷样形状的碳纳米卷、基于氮化的产物。
28.根据权利要求20所述的方法,其中所述复合材料通过用所述可固化树脂基质浸渍所述强化纤维层形成,且在树脂浸渍之前将所述导电复合粒子并入所述可固化树脂基质中,且其中在浸渍之后所述导电复合粒子仍保留在所述强化纤维层的外表面上。
29.根据权利要求20所述的方法,其中所述复合材料通过以下方式形成:
使无导电复合粒子的可固化树脂基质层与强化纤维层的表面接触,之后施加热和压以使所述树脂基质浸渍所述强化纤维;以及
随后使含有所述导电复合粒子的第二树脂基质层与所述经浸渍强化纤维层的表面接触。
30.根据权利要求20所述的方法,其中所述复合材料通过以下方式形成:
使两个无导电复合粒子的可固化树脂基质层与强化纤维层的相对表面接触,之后施加热和压力以使所述树脂基质浸渍所述强化纤维;以及
随后,使含有所述导电复合粒子的树脂基质层与所述经树脂浸渍的强化纤维的表面接触。
31.一种可固化复合材料,其包含:
至少一个用可固化树脂基质浸渍的强化纤维结构层;以及
与所述结构层相邻的非编织薄纱,所述薄纱包含随机布置的导电聚合纤维,每一所述导电聚合纤维包含导电组分和聚合组分,
其中每一导电聚合纤维的所述聚合组分包含一或多种聚合物,所述聚合物在所述可固化树脂基质固化之前最初为固相且实质上不溶于所述可固化树脂基质,但在所述树脂基质固化时能够进行至少部分相转变成为流体相。
32.一种适用于树脂浸泡的结构预成形物,所述结构预成形物包含:
一或多个无树脂的强化纤维层;以及
至少一种包含随机布置的导电聚合纤维的非编织薄纱,每一所述导电聚合纤维包含导电组分和聚合组分,
其中每一导电聚合纤维的所述聚合组分包含一或多种聚合物,所述聚合物最初为固相且实质上不溶于通过树脂浸泡引入所述预成形物中的可固化树脂组合物,但在经树脂浸泡的所述预成形物的固化周期期间能够进行至少部分相转变成为流体相。
33.一种制造复合结构的方法,其包含:
(a)以堆叠布置铺迭两个或两个以上用可固化树脂基质浸渍的强化纤维结构层以形成迭层;
(b)将至少一个非编织薄纱放置于两个相邻结构层之间,
其中所述薄纱包含随机布置的导电聚合纤维,每一所述导电聚合纤维包含导电组分和聚合组分;以及
(c)固化所述迭层,
其中每一导电聚合纤维的所述聚合组分包含一或多种在所述迭层固化之前最初为固相且实质上不溶于所述可固化树脂基质的聚合物,并且接着在固化期间,所述聚合组分通过溶解于所述树脂基质中进行至少部分相转变成为流体相。
34.一种制造复合结构的方法,其包含:
(a)形成干燥纤维预成形物,所述干燥纤维预成形物包含(i)多层干燥纤维和(ii)至少一个放置于两个相邻纤维层之间的非编织薄纱组成,其中所述薄纱包含导电聚合纤维,每一所述导电聚合纤维包含导电组分和聚合组分;
(b)用可固化液体树脂组合物浸泡所述干燥纤维预成形物;以及
(c)固化经树脂浸泡的所述纤维预成形物,
其中每一导电聚合纤维的所述聚合组分包含一或多种在浸泡期间并且在所述经树脂浸泡的纤维预成形物固化之前最初为固相且实质上不溶于所述可固化液体树脂组合物的聚合物,接着在固化期间,所述聚合组分通过溶解于所述树脂组合物中进行至少部分相转变成为流体相。
35.一种适合于树脂浸泡的结构纤维预成形物,所述结构纤维预成形物包含与导电聚合纤维物理结合的强化纤维,
其中每一所述导电聚合纤维包含导电组分和聚合组分,且每一导电聚合纤维的所述聚合组分包含一或多种聚合物,所述聚合物最初为固相且实质上不溶于在树脂浸泡期间引入所述预成形物中的可固化树脂组合物,但在经树脂浸泡的所述预成形物的固化周期期间能够进行至少部分相转变成为流体相。
36.根据权利要求35所述的结构纤维预成形物,其中所述纤维的所述物理结合是选自:
混合、在相同纤维层中对准、置放于不同但相邻的纤维层中。
37.一种适合于树脂浸泡的结构预成形物,所述结构预成形物包含多个纤维层,至少一个所述纤维层包含强化纤维和导电聚合纤维,
其中每一所述导电聚合纤维包含导电组分和聚合组分,且每一导电聚合纤维的所述聚合组分包含一或多种聚合物,所述聚合物最初为固相且实质上不溶于在树脂浸泡期间引入所述预成形物中的可固化树脂组合物,但在经树脂浸泡的所述预成形物的固化周期期间能够进行至少部分相转变成为流体相。

说明书全文

复合材料

背景技术

[0001] 在航天工业中,因为飞行器框架中的大量主要和次要结构由复合材料制成,故复合物的使用变得越来越重要。飞行器设计中复合物的优点包括高强度重量比、极好选疲劳持久性、耐腐蚀性以及可挠性,从而使零件和对于扣件和接合件的需要明显减少。然而,由于树脂基质的介电性质,故将这些材料用于新式飞行器的主要和次要结构存在特定挑战。尽管将纤维用作复合材料中的强化纤维可由于其石墨性质而沿其纵向方向传递某种程度的导电性,但复合材料中基质树脂的介电特性会降低复合材料和结构的整体导电性。飞行器主要结构需要导电性增加的复合物以满足对雷击保护、潜在放电、电接地以及电磁屏蔽的严格要求。
[0002] 树脂和复合物的导电性可通过在树脂基质中或复合结构的层间区域中并入不同导电粒子或聚合物来改良。所述目前先进的材料方案可用于改良复合物的z向导电性,而非其机械性能。“z向”是指与复合结构中强化纤维的布置平面正交的方向或穿过复合结构的厚度的轴。发明内容
[0003] 本发明涉及可提供厚度方向的高导电性以及改良的分层和抗冲击特性的纤维增强复合材料。根据本发明的一个实施例,纤维增强复合材料包括:
[0004] i)至少一个用可固化树脂基质浸渍的强化纤维结构层;以及
[0005] ii)至少一种与强化纤维相邻或接近的导电复合粒子。
[0006] 导电复合粒子为由至少一种分散于聚合材料中的导电材料构成的微米级粒子。因此,每一导电复合粒子具有导电组分和聚合组分。在树脂基质固化之前,导电复合粒子的聚合组分最初为固相且实质上不溶于可固化树脂基质中,但在树脂基质固化周期期间其能够进行至少部分相转变成为流体相。结构层的可固化树脂基质可为可硬化组合物,在树脂基质固化周期期间导电复合粒子的聚合组分至少部分可溶于所述可硬化组合物中。
[0007] 还公开了一种制造层间区域具有导电复合粒子的多层复合结构的方法。
[0008] 本发明的另一方面是针对特性类似于导电复合粒子的导电聚合纤维和非编织结构。附图说明
[0009] 图1示意性描述本发明的一个实施例的导电复合粒子。
[0010] 图2说明产生导电复合粒子的示范性方法。
[0011] 图3A示意性说明固化之前层间区域中含有导电粒子的复合结构。
[0012] 图3B示意性说明固化之后图2A中所述的复合结构。
[0013] 图4为展示根据本发明的一个实例制造的微米级导电复合粒子的扫描电子显微镜(SEM)图像。
[0014] 图5A和5B为两张展示基于在层间区域中并入/聚酰胺复合粒子的固化复合结构的横截面图的显微照片。
[0015] 图6为展示基于在层间区域中并入导电铜/PES粒子的固化复合结构的横截面的显微照片。

具体实施方式

[0016] 近来已开发“第三代韧化复合材料”以用于航天应用中的主要结构。所述材料的抗冲击性通过在纤维增强层片之间穿插聚合物插入层来改良。层间聚合物粒子、纤维或膜的存在由于材料的介电性质可明显降低纤维增强复合材料的“z向”导电性。因此,需要改良“第三代材料”的复合物z向导电性以确保可接受平的潜在放电和电接地而避免复合组分的潜在灾难性故障或雷击事件后与燃料蒸气燃烧和后续燃料槽爆炸有关的事故。
[0017] 基于树脂的复合物的导电性可通过向树脂基质中或在多层复合材料和结构的层间区域中并入不同导电粒子或聚合物来改良。可以高负载(通常大于50重量%)使用金属填充剂以降低树脂电阻率,但这一方法通常产生明显重量增加和实质机械特性降低。共轭导电聚合物可以相对较低的负载改良树脂系统导电性,但其危害用于航天应用的结构树脂系统和预浸物的热机械性能。也可使用如碳黑、碳纳米管、碳纳米纤维等基于碳的添加剂来改变树脂系统的组成,但其存在加工能和分散困难,从而限制其在先进复合结构中的使用。
[0018] 近来提出一系列具有导电涂层的层间粒子作为在两个相邻层之间产生电桥的方案。然而,所述导电粒子通常仅可提供高导电性或抗冲击特性,而无法兼顾两者。
[0019] 本发明提供一种多功能方案,其包括具有一或多个用可固化树脂基质浸渍的强化纤维结构层和具有韧化能力的导电复合粒子的复合材料。此外,当所述导电复合粒子用于多层复合结构的层间区域时,其能够在多层复合结构中的结构纤维层之间产生电桥。本发明的方案不仅改良复合结构的z向导电性,而且改良机械特性,如层间断裂韧性和抗冲击性。术语“导电复合粒子”下文用以表示“导电复合粒子”。导电复合粒子为由至少一种分散于至少一种聚合材料中的导电材料构成的微米级粒子。因此,每一导电复合粒子具有导电组分和聚合组分。
[0020] 当多种复合材料以多层配置堆叠(即铺迭)并且固化时,导电复合粒子的聚合组分溶解于结构层的树脂基质中,从而释放导电组分,进而在纤维层之间产生受控的层间区域和导电桥。这一材料方案可同时改良多层复合结构的抗冲击性和分层强度,同时散开或驱散复合结构较大区域上的电流,如雷击产生的电流,从而降低对局部产生灾难性破坏的可能。此外,导电复合粒子可潜在地为减轻或消除雷击直接作用且特别是第三代复合结构中的边缘辉光现象的有效方案。最后,导电复合粒子可在复合物电磁性能方面提供其它益处。基于高导电性和/或磁性填充剂的复合粒子可用作定制复合结构的电磁干扰(EMI)屏蔽效能、电容率以及磁导率特性的灵活工具。
[0021] 导电复合粒子
[0022] 图1示意性描述本发明的一个实施例的导电复合粒子。尽管图1展示球形粒子,但应了解本发明的导电复合粒子为可具有任何适合形状的离散三维结构,包括(但不限于)球形、扁球体、椭球体、立方体、多面体、杆形、圆盘形等。此外,粒子可具有严格定义的几何形状或形状可能不规则。
[0023] 导电复合粒子的平均粒度(d50)小于150μm,优选地在10-90μm的范围内,更优选地在10-60μm的范围内。d50表示粒度分布的中值,或者为使50%粒子具有这一粒度值或低于这一粒度值的分布值。
[0024] 导电复合粒子的导电组分可包括导电率大于1×103S/m的金属材料、非金属导电材料以及其组合。适合金属材料包括任何已知金属,包括(但不限于)、金、铂、钯、镍、铜、铅、、其合金以及其混合物。金属材料的导电率优选地大于1×107S/m,更优选地大于3×107S/m。适合非金属导电材料包括(但不限于)基于碳或石墨的材料。
[0025] 当导电材料为金属时,导电组分的含量以导电复合粒子的总重量计在1重量%到90重量%的范围内,优选地在30重量%到85重量%的范围内,且更优选地在50重量%-80重量%的范围内。当导电材料基于非金属或碳时,导电组分的含量以导电复合粒子的总重量计在1重量%到75重量%的范围内,优选地在1重量%到25重量%的范围内。
[0026] 导电复合粒子的聚合组分可包括一或多种在室温(即20℃-25℃)下或在不足以使树脂基质完全固化的条件下最初为固相且实质上不溶于可固化树脂基质(即主体树脂基质)但在主体树脂基质固化周期期间能够进行至少部分相转变成为流体相的聚合物。在固化周期期间,聚合组分在与树脂基质接触时溶解于树脂基质中。换句话说,聚合组分为在室温下或在不足以使树脂基质完全固化的条件下(例如在预浸物制造期间)于可固化树脂基质中不具有溶解性(或可忽略的溶解性)的材料,但在树脂基质固化周期期间其溶解性为实质溶解(即大于50%溶解)或全体溶解度(即完全溶解)。
[0027] 如本文所用的术语“固化(cure)”或“固化(curing)”是指通过经化学添加剂、紫外辐射微波辐射、电子束、γ幅射或其它适合热辐射或非热辐射引起聚合物链交联来使树脂基质硬化。
[0028] 如本文所讨论,聚合组分的聚合物在主体可固化树脂基质中的溶解特性可通过若干已知方法来测定,包括光学显微法、光谱法等。
[0029] 对于可溶于一种材料的另一种材料,其溶解度参数差(Δδ)应尽可能小。聚合物的溶解度参数可通过基于范克里弗伦(Van Krevelen)所述的基团贡献法(group contribution method)的计算(参见范克里弗伦(D.W.Van Krevelen),聚合物特性
(Properties of Polymers),修订版第3版,阿姆斯特丹埃尔塞维尔科技出版公司
(Elsevier Scientific Publishing,Amsterdam),1990,第7章,第189-224页)来测定。
[0030] 聚合物的溶解度参数也可使用汉森溶解度参数(Hansen Solubility Parameters,HSP)作为预测一种材料是否溶解于另一种材料中形成溶液的方式来测定。汉森参数是基于“相似相溶”的概念,其中在分子以类似方式键结于自身时,将一种分子定义为“类似于”另一种分子。
[0031] 导电复合粒子的聚合组分的适合聚合物可选自官能化或未官能化热塑性树脂单独或与热固性树脂组合的均聚物或共聚物。适合热塑性材料可包括(例如)单独或组合形式的以下各项中的任一者:聚酯、聚、聚酰胺、聚邻苯二甲酰胺、聚苯乙烯、聚丁二烯、聚丙烯酸酯、丙烯酸系物、聚甲基丙烯酸酯、聚醚砜(PES)、聚醚醚砜(PEES)、聚砜、聚酯、液晶聚合物、聚酰亚胺、聚醚酰亚胺(PEI)、聚醚酮酮(PEKK)、聚醚醚酮(PEEK)、聚芳基醚、聚芳基硫化物、聚苯、聚苯醚(PPO)、聚环乙烷(PEO)、聚环氧丙烷。适合聚合物也可包括弹性体(包括嵌段弹性体)或热塑性聚合物与弹性聚合物的组合。
[0032] 聚合组分优选地选自可与适合热可固性基质混溶、具有高模数以及玻璃转移温度(Tg)并且具有韧性的官能化热塑性聚合物。一般来说,Tg为至少150℃、优选地大于200℃的热塑性聚合物为适合的。
[0033] 热塑性聚合物的数目平均分子量可在2000到60,000的范围内。其优选地高于9000,例如11,000到25,000。主体热固性树脂中存在这些热塑性聚合物通过在交联热固性区域之间提供坚韧热塑性区域而增加固化的热固性树脂的韧性。官能化热塑性聚合物优选地含有与热固性树脂组合物中的官能团进行化学反应形成共价、离子或氢键的侧位或链封端官能团。所述官能团可通过单体反应或通过随后将产物聚合物在分离之前或之后进行转化而获得。热塑性聚合物的官能团优选地具有下式:
[0034] -A-Y。
[0035] 其中A为二价基,优选地为芳香族基,且Y为提供活性氢,特别是OH、NH2、NHR'或SH(其中R'为含有至多8个碳原子的烃基)的基团,或为提供其它交联反应性,特别是环氧基、(甲基)丙烯酸酯基、氰酸酯基、异氰酸酯基、亚乙酰基、亚乙基乙烯基、烯丙基、苯并噁嗪、酸酐、噁唑啉、顺丁烯二酰亚胺以及含有一定饱和度的单体的基团。
[0036] 导电复合粒子的聚合组分适于进行完全或部分相转变,例如可完全溶解或可部分溶解。“部分溶解”的意思是一部分聚合物组分溶解于基质中,而另一部分仍保持其原始或初始形式。部分溶解可通过确保预固化时间和温度不足以完全溶解或通过提供与一或多种不溶性聚合物的掺合物或共聚物形式(例如无规或嵌段共聚物形式)或与有机或无机化合物的掺合物形式或有机或无机化合物的衍生物形式的聚合物组分来实现。
[0037] 在另一实施例中,聚合组分可包含热塑性物和一或多种热固性树脂和热固性树脂的任选地选用的一或多种固化剂和/或催化剂的混合物。适合热固性材料可包括(但不限于)环氧树脂,即一种加成聚合树脂,特别是双顺丁烯二酰亚胺树脂、丙烯酸系物、不饱和聚酯、乙烯基酯树脂、氰酸酯树脂、经异氰酸酯改性的环氧树脂、酚系树脂、苯并噁嗪树脂、甲缩合树脂(如与尿素、三聚氰胺或苯酚缩合)、聚酯、丙烯酸系物、其反应产物以及组合。
[0038] 制造导电复合粒子的方法
[0039] 本发明的导电复合粒子可根据单步或多步工艺来制造。在一个实施例中,粒子通过两步方法来制造,所述两步工艺依序包括将导电组分分散于聚合材料中的初始高剪切力混配步骤和粒度减小步骤。图2中说明制造导电复合粒子的示范性方法。将导电材料31和聚合材料32在挤压机33中混配以形成丸粒。应了解“导电材料”可包括一或多种导电材料,且“聚合材料”可包括一或多种聚合物。在所述实施例中,可将聚合材料和导电材料同时或依序馈入挤压机中以优选地形成导电材料和聚合物的均匀实体掺合物。引入挤压机中的起始聚合材料32可为非晶相或为熔融物形式。
[0040] 制造粒子的起始导电材料可选自已知金属,包括(但不限于)银、金、铂、钯、镍、铜、铅、锡、铝、钛、其合金以及混合物。此外,起始导电材料可具有任何适合形状和形态,如单独或组合形式的薄片状、粉末、纤维、球形、树枝状、圆盘或具有微米或纳米尺寸的任何其它三维形状。起始导电材料优选地具有高比表面积和低表观密度。导电组分的表观密度(AD)优选地小于2.0g/cm3,且比表面积(SSA)优选地高于0.1m2/g。适合金属材料的实例为低密度3
525镍薄片(AD=0.65g/cm ,购自美国诺瓦曼特特殊产品公司(Novamet Specialty Products Corp.USA))、CAP 9银粉(SSA=3.0m2/g,购自英国庄信万丰公司(Johnson Matthey,UK))、FS34银薄片(SSA=1.2m2/g,购自英国庄信万丰公司)以及CH-L7铜粒(AD=
0.6-0.7g/cm3,SSA=0.23m2/g,购自德国GGP金属粉股份公司(GGP Metalpowder AG,Germany))。
[0041] 制造粒子的起始导电材料也可选自有或无导电性涂层的基于碳或石墨的材料,如短切碳纤维、石墨薄片、石墨纳米片、碳黑、单壁碳纳米管(SWCNT)、双壁碳纳米管(DWCNT)、多壁碳纳米管(MWCNT)、碳纳米纤维、碳纳米球、碳纳米棒富勒烯、碳纳米绳、碳纳米带、碳纳米原纤维、碳纳米针、碳纳米薄板、石墨烯、碳纳米锥、碳纳米卷(卷样形状)以及其相应氮化产物。这些“纳米”结构是指直径或最小尺寸小于1微米的结构。
[0042] 起始导电材料也可是选自经涂布产品。经涂布产品包括具有可具导电性或不具导电性的有机或无机核心和一或多个导电壳体的核-壳结构。适合金属涂布产品包括(但不限于)金属涂布石墨薄片、金属涂布聚合物、金属涂布纤维、金属涂布陶瓷、金属涂布玻璃、金属涂布空心玻璃球、碳涂布玻璃、碳涂布聚合物、碳涂布纤维、碳涂布陶瓷。
[0043] 非金属导电材料的实例为NC7000多壁碳纳米管(购自比利时纳米材料公司(Nanocyl,Belgium))、微米级3775石墨薄片(SSA=23.7m2/g,购自美国斯博瑞石墨粉公司(Asbury Graphite Mills,Inc.,USA))、微米级4012合成石墨薄片(SSA=1.5m2/g,购自美国艾斯博瑞石墨粉公司)。经涂布产品的实例为来自美国诺瓦曼特特殊产品公司的镍涂
3 3
布石墨薄片(AD=1.7g/cm-1.9g/cm )。
[0044] 应针对添加的导电材料的类型和量控制挤压机内的温度以达到挤压机内组合物的最优流变性。在一个优选实施例中,温度概况在约90℃到约350℃的范围内。可沿挤压机的长度使用可变温度概况。添加剂、稀释剂、分散剂、颜料或稳定剂可任选地添加到聚合物/导电物掺合物中以改良稳定性、加工能力以及导电材料在聚合材料中的分散。
[0045] 挤压机可视填充剂类型和含量以及聚合物流变性能而定装备有具有常规低或高剪切/混合概况或其组合的螺杆。在一个实施例中,可使用一系列常规低剪切混合螺杆部分以获得令人满意的分散水平。在一个优选实施例中,挤压机装备有高剪切概况的螺杆,其具有与无规混合单元结合的常规混合区段以在桶中产生剪切力与压力之间的最佳平衡而使分散水平达最佳,且所述工艺条件可通过使用装备有LD比率为40到1的24mm共旋转双螺杆系统的棱镜TS24HC(Prism TS24HC)挤压机实现。可使用具有不同馈料螺杆以适合不同材料(导电材料或聚合物丸粒)的两种不同馈料系统。可利用约200-300RPM的螺杆速度和多个加热区内的特定温度概况以对于既定掺合物获得60%-95%的最大扭矩。应了解可使用其它方法使用所属领域的技术人员已知的如下常规技术将导电材料分散于聚合材料中,如:机械混合、音波处理、高剪切混合、转子定子混合以及溶胶-凝胶技术。
[0046] 产生复合粒子的工艺也可包括粒度减小/微磨步骤。微磨可根据此项技术中已知的常规技术来进行,例如旋转冲击研磨、多重旋转(rotoplex)研磨(即用由细川密克朗株式会社(Hosokawa Micron Co.,Ltd.)制造的多重旋转研磨机研磨)、旋转分级机研磨、球磨研磨、用倒转针磨机(例如购自细川密克朗株式会社的阿尔派多重倒转机(Alpine Contraplex))超细研磨、流化床对向喷射研磨、旋流喷射研磨、低温研磨。在一个优选实施例中,接着使来自挤压机33(图2)的丸粒经受装备有不同旋转研磨介质的阿尔派(Alpine)低温研磨系统34研磨产生平均粒度(d50)小于150μm或在一些实施例中小于60μm的微米级粒子粉末。
[0047] 低温研磨为一种尺寸减小工艺,其中在低温液体(通常为液体氮或液体氩)中或在低温温度下使聚合物变脆并且随后进行研磨。已证明低温研磨法为产生具有精细并受控的粒度分布的粉末同时降低由组分挥发或过热所引起的热损伤的险的具成本有效性和能量有效性的方法。通常开发特定系列的使用螺柱、搅拌器、摇摆式搅拌器以及板式搅拌盘的步骤以获得展现所需平均粒度分布(d50)的微米级微粒。
[0048] 复合材料和结构
[0049] 本发明的导电复合粒子可用作纤维增强聚合物层(例如预浸物层片)之间的层间粒子。因此,本文中的主体树脂系统为纤维增强聚合物层或预浸物层片的树脂基质。
[0050] 主体树脂基质可为可硬化/热可固性组合物,其中在固化周期期间导电复合粒子的聚合组分至少部分可溶,其中相转变成为流体相通过将聚合组分溶解于树脂基质中而发生。最初,在混合期间或在预浸物制造过程期间,在导电复合粒子与主体树脂基质接触或分散于主体树脂基质中时,复合粒子为固相且不溶于主体树脂基质中。在复合材料/树脂基质的固化周期期间,每一复合粒子的聚合组分实质上或完全溶解于主体树脂基质中,从而释放导电组分作为复合物层间区域中的独特自由流动结构。应了解,在一些情况下,在固化之后聚合组分可能不会完全溶解(但实质上溶解),因此导电组分可能附着于少量残余不溶解聚合材料。在一些实施例中,在主体树脂基质固化周期期间聚合组分与主体树脂基质之间发生相分离。
[0051] 在固化期间可溶解复合粒子的聚合组分的主体树脂基质(或树脂系统)可含有一或多种未固化热固性树脂,其包括(但不限于)环氧树脂、双顺丁烯二酰亚胺、乙烯基酯树脂、氰酸酯树脂、经异氰酸酯改性的环氧树脂、酚系树脂、苯并噁嗪、甲醛缩合树脂(如与尿素、三聚氰胺或苯酚缩合)、聚酯、丙烯酸系物以及其组合。在一个实施例中,主体树脂基质为在树脂基质固化期间可溶解导电复合粒子中至少50%聚合组分的热固性组合物。
[0052] 适合环氧树脂包括芳香族二胺、芳香族单伯胺、氨基酚、多元酚、多元醇、聚羧酸的聚缩水甘油基衍生物。适合环氧树脂的实例包括双酚(如双酚A、双酚F、双酚S以及双酚K)的聚缩水甘油醚;以及基于甲酚和苯酚的酚醛清漆的聚缩水甘油醚。
[0053] 特定实例为4,4'-二氨基二苯基甲烷的四缩水甘油基衍生物(TGDDM)、间苯二酚二缩水甘油醚、三缩水甘油基-对氨基酚、三缩水甘油基-间氨基酚、溴双酚F二缩水甘油醚、二氨基二苯基甲烷的四缩水甘油基衍生物、三羟苯基甲烷三缩水甘油醚、苯酚-甲醛酚醛清漆的聚缩水甘油醚、邻甲酚酚醛清漆的聚缩水甘油醚或四苯基乙烷的四缩水甘油醚。
[0054] 适用于主体树脂基质的市售环氧树脂包括N,N,N',N'-四缩水甘油基二氨基二苯基甲烷(例如来自亨斯迈(Huntsman)的MY 9663、MY 720以及MY 721);N,N,N',N'-四缩水甘油基-双(4-氨基苯基)-1,4-二异丙基苯(例如来自迈图(Momentive)的EPON 1071);N,N,N',N'-四缩水甘油基-双(4-氨基-3,5-二甲基苯基)-1,4-二异丙基苯(例如来自迈图的EPON 1072);对氨基酚的三缩水甘油醚(例如来自亨斯迈的MY 0510);间氨基酚的三缩水甘油醚(例如来自亨斯迈的MY 0610);基于双酚A的材料的二缩水甘油醚,如2,2-双(4,4'-二羟基苯基)丙烷(例如来自陶氏(Dow)的DER 661或来自迈图的EPON 828)以及优选地25℃下的粘度为8-20Pa·s的酚醛清漆树脂;苯酚酚醛清漆树脂的缩水甘油醚(例如来自陶氏的DEN 431或DEN 438);基于二环戊二烯的酚系酚醛清漆(例如来自亨斯迈的拓为556(Tactix 556));1,2-邻苯二甲酸二缩水甘油酯(例如GLY CEL A-100);二羟基二苯基甲烷(双酚F)的二缩水甘油基衍生物(例如来自亨斯迈的PY 306)。其它环氧树脂包括环脂族物,如3',4'-环氧环己基-3,4-环氧环己烷甲酸酯(例如来自亨斯迈的CY 179)。
[0055] 一般来说,主体树脂基质含有一或多种热固性树脂以及其它添加剂,如固化剂、固化催化剂、共单体、流变控制剂、增粘剂、无机或有机填充剂、弹性韧化剂、韧化核-壳粒子、稳定剂、抑制剂、颜料、染料、阻燃剂、反应性稀释剂、可溶性或微粒热塑性物以及所属领域的技术人员熟知用于在固化之前或之后改变树脂基质特性的其它添加剂。
[0056] 任选地将固化剂和/或催化剂添加于主体树脂基质中,但必要时使用所述物质可提高固化速率和/或降低固化温度。固化剂适宜地选自已知固化剂,例如芳香族或脂族胺或胍衍生物。芳香族胺固化剂为优选的,优选地为每个分子具有至少两个氨基的芳香族胺且特别优选地为二氨基二苯砜,例如其中氨基在砜基的间位或对位。特定实例为3,3'-二氨基二苯砜(DDS)和4-,4'-二氨基二苯砜;亚甲基二苯胺;双(4-氨基-3,5-二甲基苯基)-1,4-二异丙基苯;双(4-氨基苯基)-1,4-二异丙基苯;4,4'-亚甲基双(2,6-二乙基)-苯胺(来自龙沙(Lonza)的MDEA);4,4'亚甲基双(3-氯,2,6-二乙基)-苯胺(来自龙沙的MCDEA);4,4'-亚甲基双(2,6-二异丙基)-苯胺(来自龙沙的M-DIPA);3,5-二乙基甲苯-2,4/2,6-二胺(来自龙沙的D-ETDA 80);4,4'-亚甲基双(2-异丙基-6-甲基)-苯胺(来自龙沙的M-MIPA);4-氯苯基-N,N-二甲基-脲(例如灭草隆(Monuron));3,4-二氯苯基-N,N-二甲基-脲(例如DiuronTM)以及双氰胺(例如来自太平洋锚化学(Pacific Anchor Chemical)的Amicure TM CG 1200)。
[0057] 双酚增链剂(如双酚S或二苯硫醚二酚)也适用作环氧树脂的固化剂。实例为3,3'-DDS和4-,4'-DDS。
[0058] 适合固化剂也包括酸酐,特别是多羧酸酐,如耐地酸酐(nadic anhydride)、甲基耐地酸酐、邻苯二甲酸酐、四氢邻苯二甲酸酐、六氢邻苯二甲酸酐、甲基四氢邻苯二甲酸酐、内亚甲基四氢邻苯二甲酸酐以及偏苯三酸酐。
[0059] 图3A和3B说明将导电复合粒子并入复合结构中的一个实施例。参考图3A,将多个导电复合粒子20分散于可固化复合物层23、24、25之间形成的层间区域21、22中。每一复合粒子20含有金属材料与聚合材料的混合物。每一复合物层23、24、25由用可固化树脂基质(即未固化或未完全固化)浸渍的强化纤维构成。接着使所得层压材料固化。如图3B所述,当固化复合物层的堆叠时,导电复合粒子20的聚合组分进行部分或完全相转变成为流体相,且完全溶解或实质上溶解于复合物层23、24、25的树脂基质中,从而将金属材料释放于层间区域中。当复合物层23、24、25含有如碳纤维的导电强化纤维时,释放的金属材料沿z向在强化纤维层之间形成导电桥。
[0060] “层间区域”是指多层复合结构中相邻强化纤维层之间的区域。将每一纤维层用一或多种聚合材料浸渍。所述层可称为“纤维增强聚合物层”。纤维增强聚合物层可呈预浸物形式。如本文所用的术语“预浸物”包括至少一部分体积已用树脂基质浸渍的纤维薄片或层。用于制造航天结构的预浸物通常为单向对准的强化纤维的经树脂浸渍薄片,通常称为“条带”或“单向条带”。树脂基质可以部分固化或未固化状态存在。预浸物可为完全浸渍预浸物或部分浸渍预浸物。通常,预浸物为准备模制并固化成最终复合部件的形式并且通常用于制造载荷结构部件,如飞行器的机翼、机身、舱壁以及控制表面。固化预浸物的重要特性为高强度和硬度以及重量降低。
[0061] 多个预浸物层片可以堆叠次序铺迭以形成“预浸物迭层”。迭层内的预浸物层片可彼此以所选方向(例如0°、±45°、90°等)置放。预浸物迭层可通过可包括(但不限于)手动铺迭、自动铺带(ATL)、高级纤维铺放(AFP)以及长丝缠绕的技术制造。
[0062] 复合结构或预浸物迭层的固化一般适宜地在至多200℃、优选地在170℃-190℃范围内的高温下且使用高压以抑制逸出气体的变形作用或抑制空隙形成、适宜地在至多10巴(bar)(1MPa)、优选地在3巴(0.3MPa)到7巴(0.7MPa)范围内的压力下进行。固化温度优选地通过以至多5℃/min(例如2℃/min到3℃/min)加热获得且维持至多9小时、优选地为至多6小时(例如2小时到4小时)的所需时间。在树脂基质中使用催化剂可允许甚至更低的固化温度。压力全部释放且温度通过以至多5℃/min、例如至多3℃/min冷却来降低。可在190℃到350℃范围内的温度和大气压力下采用适合加热速率以改良树脂基质的玻璃转移温度来执行后固化。
[0063] 为制造高性能复合材料和预浸物,适合强化纤维的特征大体上为具有大于100,000psi的拉伸强度和大于2,000,000psi的拉伸模数。适用于这些目的的纤维包括碳或石墨纤维、玻璃纤维以及由碳化、氧化铝、二氧化钛、硼等形成的纤维以及由有机聚合物(如聚烯烃、聚(苯并噻唑)、聚(苯并咪唑)、聚芳酯、聚(苯并噁唑)、芳香族聚酰胺、聚芳基醚等)形成的纤维,且可包括具有两种或两种以上所述纤维的混合物。所述纤维优选地选自玻璃纤维、碳纤维以及芳香族聚酰胺纤维,如杜邦公司(DuPont Company)以商品名KEVLAR出售的纤维。所述纤维可以由多个长丝组成的有裂痕、选择性不连续以及连续丝束形式、连续单向或多向条带形式或编织、非卷曲、非编织织物形式使用。编织形成可选自平针、缎纹或斜纹编织样式。非卷曲和多轴形式可具有多个层片和纤维方向。
[0064] 导电复合粒子的含量以复合结构中的总树脂含量计为0.1体积%到25体积%,且优选地在5体积%-15体积%的范围内。在某些实施例中,导电复合粒子可与非导电层间韧化粒子组合使用。在所述实施例中,导电与非导电粒子的组合的含量以复合材料的总树脂含量计可为至多25体积%。非导电层间韧化粒子可包括官能化、未官能化或交联弹性或热塑性粒子。用于非导电粒子的适合材料可选自由以下各物组成的群组:聚酰亚胺材料(例如P84)、乳化聚(苯醚)材料(例如EPPO 16)、聚(苯醚)材料(PPO)、羧基封端的丁二烯腈(CTBN)、聚酰胺(耐纶)、聚(醚醚酮)(PEEK)。非导电热塑性粒子可为交联热塑性粒子,例如由交联聚醚砜(PES)、交联聚醚醚砜(PEES)、交联聚醚酰亚胺(PEI)、交联聚苯醚(PPO)或其交联共聚物构成的粒子。
[0065] 制造复合材料和结构的方法
[0066] 本发明的复合材料可使用不同工艺来制造。一般来说,将导电复合粒子并入复合材料制造中的方法可包括:
[0067] (a)将至少一种导电材料分散于聚合材料中以形成复合掺合物;
[0068] (b)任选地热处理所述复合掺合物;
[0069] (c)由所述复合掺合物形成微米级导电复合粒子;
[0070] (d)任选地热处理所述微米级导电复合粒子;以及
[0071] (e)形成复合材料堆叠,由此将所述导电复合粒子并入相邻强化纤维层之间的至少一个层间区域中,其中每一复合材料包括至少一个纤维增强聚合物层,其中纤维增强聚合物层由用可固化树脂基质浸渍的强化纤维构成。
[0072] 在一个实施例中,使导电复合粒子沉积于预浸物层片的表面上,之后将多个预浸物层片层压在一起以形成准备固化的层压堆叠。复合粒子可经由以下任何常规技术沉积,如:喷撒、静电沉积、分散涂布、喷雾分布以及熟习此项技术的人士已知的任何其它技术。由于树脂的粘性,故分布的复合粒子粘着于预浸物的表面。当预浸物层片堆叠在一起形成层压板时,粒子仍保留于层压板的层间区域中。
[0073] 在另一个实施例中,在预浸物制造之前使特定量的导电复合粒子与可固化/未固化树脂基质混合。在所述实施例中,首先通过将含粒子的树脂混合物涂布于剥离型纸上来制造树脂膜。接着,借助于热和压力将所得树脂膜层压于纤维层上以浸渍纤维,从而形成具有特定纤维面重量和树脂含量的预浸物层片。在层压工艺中,过滤导电复合粒子且由于粒子的尺寸大于纤维之间的间隔故保留在纤维层以外。随后,当两个含有导电复合粒子的预浸物层彼此上下层压时,导电复合粒子被置放于两个相邻预浸物层片之间的层间区域中。导电复合粒子的聚合组分在正常预浸条件下具有可忽略的溶解性或无溶解性。
[0074] 在一个替代实施例中,将无导电复合粒子的可固化树脂组合物涂布于剥离型纸上以形成树脂膜,接着使其与纤维层的一个或两个相对表面接触。树脂浸渍纤维并且纤维层的外表面上剩余少量树脂或无树脂剩余。随后,使含有导电复合粒子的第二可固化树脂膜与经树脂浸渍的纤维层的外表面接触。可使另一个含有导电复合粒子的可固化树脂膜与经树脂浸渍的纤维层的相对外表面接触而形成夹层结构。因此,富含导电粒子的树脂层保留在经浸渍纤维层外并且不会进一步浸渍纤维。将多种所述结构层压在一起形成层间区域中具有导电复合粒子的复合结构。
[0075] 在另一个实施例中,使两个无导电复合粒子的可固化树脂组合物膜与纤维层的两个相对表面接触。树脂浸渍纤维并且纤维层的外表面上剩余少量树脂或无树脂剩余。随后,使两个含有导电复合粒子的可固化树脂膜与预浸渍的纤维层的相对表面接触。将多种所述结构层压在一起形成层间区域中具有导电复合粒子的复合结构。所述方法因趋向于提供由粒子产生的良序层压物并不破坏纤维铺放而为优选的。
[0076] 通过上述方法形成的复合材料、结构或预浸物可为长度连续或经短切的条带、丝束预浸物或网形式。
[0077] 替代实施例
[0078] 根据本发明的另一个方面,如上所述用于形成导电复合粒子的聚合材料与导电材料的导电掺合物可用于制造导电聚合物纤维、非编织材料以及结构(例如稀松布、席垫、棉网、薄纱、绒头织物、织物、纤维预成形物等)。
[0079] 导电聚合物纤维可通过制造合成纤维的技术中已知的技术产生。导电聚合物纤维优选地通过将聚合物/导电掺合物挤压于卷轴上,之后在加热下机械拉伸获得。更优选地将熔融形式的聚合物/导电掺合物拉制成基本形状,冷却,接着经受加热和机械拉伸方案,由此可使聚合物链定向且使复合导电成分具有弹性并且易于溶解。拉伸可包括在空气中牵拉经挤压成分达所需距离,例如50到500mm。在一个实施例中,将丸粒或其它可挤压形式的聚合物/导电掺合物馈入具有螺模头(或其类似物)的挤压机中,所述螺模头具有所需数量的孔或狭槽。
[0080] 纤维可制成至多20个长丝的复丝,其由熔融聚合物/导电掺合物拉制,冷却并且任选地视需要加捻,接着进行加热和拉伸。
[0081] 导电聚合物纤维可为具有纺纱股线、挤压股线、浇铸股线、连续股线、连续纤维、两组分或多组分纤维、无规纤维、切段纤维、不连续纤维、短切纤维、须晶、空心纤维以及长丝以及其组合的单丝的纱形式。纤维可为由多个单丝或单个和多个单丝组成的纱。此外,纤维可具有更复杂的结构,如鞘/核、侧面/侧面、具有扇形配置或海岛配置的横截面,且其可由不同聚合物或其掺合物制成。导电聚合物纤维可含有其它有机或无机填充剂或调节剂。纤维或纱优选地包含每一直径不超过约100μm的纤维长丝。
[0082] 由导电聚合物纤维形成的导电非编织材料可呈非编织席垫、棉网、绒头织物以及薄纱形式,其可使用如以下的常规制造技术产生:湿式布涂、梳理、空气布涂、纺粘、熔喷、瞬纺、静电纺纱、喷水钻孔以及针刺钻孔技术。
[0083] 在纺粘法中,将导体/聚合物掺合物的丸粒馈入挤压机中并且使熔融产物穿过多个纺丝头而形成连续长丝。在吹制区域中借助于空气流冷却长丝,通过空气动力拉制并且接着传输到下游排出通道。将长丝以无规纤维的非编织棉网形式沉积于线网输送机上。将这一棉网转移到粘合压延机中,在所述粘合压延机中施加热和压力以使最终产物固化。冷却之后,可将棉网缠绕。
[0084] 在熔喷工艺中,经由含有数百个小孔的冲模挤压熔融物形式的导体/聚合物掺合物。从冲模左侧和右侧离开的热空气流使经挤压的聚合物流快速变细以形成极细长丝。接着通过高速空气将长丝吹于收集器筛网上,由此形成自粘式非编织棉网。或者,可将经挤压连续长丝短切成段,接着分散于加热心轴上以形成非编织棉网,之后冷却。
[0085] 用于复合材料的非编织薄纱可在不需要任何纺织品编织技术的情况下通过上述非编织制造工艺产生。这一薄纱可呈由随机布置的连续或短切纤维构成的席垫或棉网形式。如在上述导电复合粒子的情况下,纤维的组合物包括聚合组分与导电组分。因此,导电聚合纤维的特性类似于导电复合粒子。非编织薄纱特别适用于插在适合于液体树脂浸泡的干燥纤维预成形物中的相邻干燥结构强化纤维(如碳纤维)层片之间并且与所述层片接触,或适用作预浸物铺迭期间两个相邻预浸物层片之间的插入层。
[0086] 在树脂浸泡中,向干燥纤维预成形物(无树脂)中注入可固化液体树脂组合物。当由导电聚合纤维构成的非编织薄纱并入所述干燥纤维预成形物中时,在树脂浸泡期间薄纱中导电聚合纤维的聚合组分维持固相。接着,在经树脂浸泡的纤维预成形物固化期间,聚合组分通过溶解于树脂中而进行相转变成为流体相。
[0087] 如上关于层间导电复合粒子所述,当由导电聚合纤维构成的非编织薄纱用于预浸时,在预浸物铺迭期间薄纱中导电聚合纤维的聚合组分维持固相,接着在固化期间,通过溶解于预浸物层片的树脂基质中进行相转变成为流体相。
[0088] 在另一个实施例中,导电聚合物纤维为适合于树脂浸泡的结构纤维预成形物的一部分,其中结构预成形物由强化纤维与导电聚合物纤维的组合构成。此外,结构预成形物可根据将要制造的最终复合结构的形状而以三维配置成形。纤维是以使其物理结合的方式组合。组合以提供物理结合可通过如纺织品技术中已知的方法实现,例如通过缝合、针织、卷曲、钻孔、编织、编结、过卷、啮合、混合、对准、加捻、缠绕、打结、穿线、置于相同纤维层、置于不同但相邻纤维层等。导电聚合物纤维可以对准或不对准或缝合方式或以由多个导电复合纤维和强化纤维构成的复丝纱形式布置于强化纤维之中。在本文中,强化纤维为由碳、玻璃、无机氧化物、芳香族聚酰胺、碳化物、硼、陶瓷、金属、经金属涂布纤维或其组合制成的纤维。接着向结构纤维预成形物中注入可固化液体树脂组合物,之后固化以形成具有导电特性的复合结构。如上关于导电复合粒子所述,在固化期间,导电聚合物纤维的聚合组分进行相同液相转变。
[0089] 本文中也涵盖由强化纤维与导电聚合物纤维的组合构成的非卷曲织物。“非卷曲”是指多个纤维层彼此上下铺迭且通过缝合或通过施用粘合剂转变成织物以使纤维保持笔直且无实质卷曲的织物。导电聚合物纤维可存在于一或多个非卷曲织物层中。此外,导电聚合物纤维可相对于强化纤维非均匀地存在以在局部给予如z向导电性和韧化的特性。可将所述非卷曲织物并入适合于树脂浸泡的结构纤维预成形物中。
[0090] 应用
[0091] 本发明的复合材料适用于需要赋予复合材料/结构改良电导率的任何领域。根据本发明的一个实施例,本发明复合材料的z向电导率比对于常规第三代碳纤维增强材料所测量的值大至少一个数量级。
[0092] 本发明的复合材料适用于制造用于运输应用(例如航天、航空、海上以及陆地运载工具)的组件,且包括例如主要和次要飞行器结构(机身、机翼、舱壁等)、空间以及弹道结构。本发明的复合材料也适用于建筑/建设应用。此外,本发明的复合材料,特别是预浸物和预浸物迭层特别适用于制造载荷或抗冲击结构。
[0093] 实例
[0094] 以下实例用以说明本发明的一些优选实施例和其测试结果,但其不应视为以任何方式限制本发明的范围。
[0095] 测量方法
[0096] 在以下实例中,使用以下测量方法:
[0097] z向DC电导率
[0098] 固化复合材料的电导率借助于布瑞斯特-瑞斯玛特2316(Burster-Resistomat 2316)毫欧计在电桥法中将电阻值记为所施加的电压与电流之间的比率来测量。使用开尔文测试探头(Kelvin test probe)在两个样品表面之间建立接触。所有测量均在室温(RT)下在标准湿度条件下根据4线测量方法进行。
[0099] 测量在由根据EN 2565方法B制备的无缺陷板取出的试片上进行。表征约2mm厚度准各向同性正方形样品(边长=40mm±0.1mm)。
[0100] 通过去除顶部富含树脂的层以暴露底层碳纤维而确保与电极直接接触来制备复合物样品表面。接着使用市售银浆料在相对试片表面上产生两个电极。测试每种材料和迭层的至少5个样品。
[0101] 根据以下方程序计算DC电导率([S/m]):
[0102]
[0103] 其中:R为测量的电阻[Ohm];
[0104] l为样品厚度[m];
[0105] S为样品表面积[m2]。
[0106] 粒度分布
[0107] 使用在0.02μm到2000μm范围内操作的尔文马斯特赛2000(Malvern Mastersizer2000)来测量粒度分布。
[0108] 实例1
[0109] 制备基于镍的导电复合粒子
[0110] 在双螺杆挤压机(来自住友(Sumitomo)的Sumikaexel 5003P)中经由熔融混合工艺将足以获得70重量%最终浓度的量的长丝状镍(Ni)薄片(购自诺瓦曼特的525镍粉)分散于官能化聚醚砜(PES)聚合物中。使用相同PES聚合物的纯样品作为对照组。使用使分散水平达最佳的高剪切力螺杆概况。所述概况包括与无规混合单元结合的常规混合区段以在挤压机桶中产生剪切力与压力之间的最佳平衡。所用温度概况和工艺条件报导于表1中。
[0111] 表1.复合镍/PES掺合物分散条件
[0112]
[0113] 使用装备有不同旋转研磨介质的阿尔派低温研磨系统使所得Ni/PES掺合物进行低温研磨,产生平均粒度小于60μm的微米级粒子(即“微粒”)。特定来说,需要使用螺柱搅拌器、摇摆式搅拌器以及板式搅拌器的多次操作来获得目标粒度分布。图4展示由低温研磨产生的微米级复合Ni/PES粒子的SEM图像。
[0114] 实例2
[0115] 基于镍的导电微粒对复合结构的电性能的作用
[0116] 经由喷撒工艺将实例1的复合镍/PES微粒分散于英国氰特工程材料公司(Cytec Engineered Materials Ltd,UK)所提供的 977-2-34%-194-IMS24K单向条带(用基于环氧树脂的基质浸渍的单向碳纤维)的表面上。粒子负载以条带中的总树脂体积计为
10体积%。将多个所述条带彼此上下铺迭,其中将微粒置放于相邻条带之间,形成1.5mm厚的准各向同性测试板。接着根据2小时固化周期在高压釜中在180℃下固化所述板。将这一测试板标记为“2A”。
[0117] 在固化过程期间,将粒子置放于界定层间区域的相邻碳纤维层之间的富含树脂的区域中。在固化周期期间复合微粒的热塑性组分溶解于条带的基于环氧树脂的基质中,从而在多层板的层间区域中释放金属组分(作为导电粒子)。以这一方式在相邻碳纤维层之间产生局部导电架构或桥。
[0118] 出于比较的目的,通过相同方法制造标记为“参考1”的类似测试板,但用非导电交联热塑性(TP)粒子替换复合PES/镍微粒。两个测试板的z向电导率值展示于表2中。
[0119] 表2.插入粒子的复合物和相应z向电导率值
[0120]
[0121] 经测定与参考1板相比将复合Ni/PES微粒受控地引入板2A的层间区域中所产生的z向电导率改良一个以上数量级。相信复合物体电阻率降低是由于经由复合Ni/PES微粒的受控的溶解机制产生的电桥数增加。
[0122] 实例3
[0123] 导电层间粒子负载对复合结构的机械性能的作用
[0124] 将两种不同负载(10体积%和20体积%)的实例2中所用相同复合Ni/PES微粒分别分散于来自英国氰特工程材料公司的 977-2-34%-194-IMS24K单向条带的表面上。通过铺迭上面分散有微粒的条带形成具有不同粒子负载的两个测试板。评估所得测试板以确定复合微粒对热机械特性的作用。将含有10%微粒的测试板标记为“3B”且将含有
20%微粒的测试板标记为“3C”。出于比较的目的,制造不含复合Ni/PES微粒的类似测试板且标记为“参考2”。
[0125] 测试板的机械性能展示于表3中。
[0126] 表3.插入粒子的复合物和相应机械性能
[0127]
[0128] 经测定与参考2板相比将10体积%和20体积%的复合Ni/PES粒子分别引入板3B和3C中分别使模式I抗分层生长性产生60%和73%改良。还观察到模式II抗分层生长性同时提高10%-15%。另外,引入10%复合Ni/PES微粒使30J冲击后的抗压强度提高25%,同时显著减小受损面积。
[0129] 实例4
[0130] 基于银的导电微粒对复合结构的电性能的作用
[0131] 在双螺杆挤压机中经由熔融混合工艺将足量银(Ag)粉末CAP9(来自英国庄信万丰公司)分散于市售官能化聚醚砜聚合物(来自住友的SUMIKAEXEL 5003P)中,使得以复合掺合物(聚合组分+导电组分)的重量计最终Ag浓度为70%。使用高剪切力螺杆概况。所用温度概况和工艺条件展示于表1中。
[0132] 随后在低温研磨装置中研磨由挤压机产生的丸粒,产生平均粒度小于60μm的复合Ag/PES微粒。
[0133] 如实例2中所述,将复合微粒喷撒于 977-2-34%-194-IMS5131-24K单向条带表面上,且将多个所得条带铺迭以形成准各向同性板。接着在高压釜中在180℃下固化所述板3小时。这一实例选择以板中的总树脂含量计10体积%的粒子负载。所得板标记为“4A”。
[0134] 根据上述方法测量4A板的z向电导率。表4展示4A板与实例2中所述的参考1板之间的z向电导率的比较。
[0135] 表4.插入粒子的复合物和相应电性能
[0136]
[0137] 发现与参考1板相比引入复合Ag/PES微粒使所产生的z向电导率改良半个以上数量级。
[0138] 实例5
[0139] 导电复合微粒的聚合组分对复合结构的电性能的作用
[0140] 通过在如实例1中所述的双螺杆挤压机将市售粒化铜(Cu)(来自GGP金属粉股份公司的CH-L7)分散于市售官能化聚醚砜(PES)聚合物(来自英国住友的SUMIKAEXEL5003P)中产生替代导电复合掺合物“5A”。获得以复合掺合物的总重量计65重量%的铜浓度。
[0141] 出于比较的目的,通过使用实例1中所述的双螺杆挤压机将相同含量(65重量%)的相同铜材料混配于市售聚酰胺(沃斯特辛特2159(VESTOSINT 2159),购自英国赢创(Evonik,UK))中产生导电复合掺合物“5B”。工艺条件展示于表5中。
[0142] 表5.复合PES/铜和聚酰胺/铜掺合物的分散条件
[0143]
[0144] 在两种情况下,在低温研磨装置中研磨由挤压机产生的丸粒,产生(d50)平均尺寸小于50μm的导电复合微粒。接着在铺迭之前使微粒按以条带中总树脂含量计10体积%的粒子负载分散于977-2-34%-194-IMS24K单向条带的表面上。如实例2中所述,将多个所述条带按插入堆叠次序铺迭以形成板。接着在高压釜中在180℃下固化所述板3小时。
[0145] 如先前所述记录z向电导率值且结果展示于表6中。此处使用如实例2中所公开的“参考1”板进行比较。
[0146] 表6.插入粒子的复合物和相应电性能
[0147]
[0148] 图5A表示层间区域中含Cu/聚酰胺复合粒子的固化板(5B)的横截面,并且图5B为层间区域的一部分的分解图(暗视野)。从图5A和5B可见,在固化周期期间基于聚酰胺的粒子不会有效溶解于环氧树脂基质中,由此限制在碳纤维层之间形成电桥。因此,在层压板的层间区域中引入复合粒子与标准非导电热塑性插入板(参考1)相比不会使z向电导率产生任何明显改良。
[0149] 相反,在固化周期期间板5A中的基于PES的粒子实质上溶解于环氧树脂基质中,从而将铜粒子释放到复合板的层间区域中。以这一方式在相邻碳纤维层之间产生导电架构或桥。图6展示含有10体积%的Cu/PES复合粒子的固化板5A的横截面图。发现由于受控的溶解机制,与非导电热塑性粒子相比Cu/PES复合粒子的z向电导率改良约一个数量级。
[0150] 上述结果进一步展现选择导电复合粒子的适当聚合组分对获得上述溶解机制很关键,其又为复合结构提供z向电导率改良。
[0151] 实例6
[0152] 导电粒子:非导电粒子比率对复合物的电性能的作用
[0153] 如实例2中所述,使用实例5中所述的导电复合Cu/PES粒子和非导电热塑性(TP)粒子以表7中所示的不同导电粒子:非导电粒子比率制造且固化4个不同板(7A到7D)。测量固化板的z向电导率且结果展示于表7中。此处使用如实例2中所公开的“参考1”板进行比较。
[0154] 表7.不同导电:非导电层间粒子比率对复合物电性能的作用
[0155]
[0156] 如表7所示,z向电导率随Cu/PES复合粒子的负载增加而呈明显改良趋势。
[0157] 本文所公开的范围包括端点在内且可独立地组合(例如“至多约25体积%,或更特别是约5体积%到约20体积%”的范围包括端点和所述范围的所有中间值)。
[0158] 尽管本文已描述各种实施例,但由书面描述应了解,所属领域的技术人员可对其中的要素、变化或改良进行各种组合且所述组合属于本发明的范围。另外,在不悖离本发明教示的基本范围的情况下,可进行许多修改以使特定情形或材料适应本发明教示。因此,预期本发明并不限于作为执行本发明的预期最佳模式公开的特定实施例,而是本发明将包括属于所附权利要求书的范围的所有实施例。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈