软钎焊材料

阅读:129发布:2020-05-11

专利汇可以提供软钎焊材料专利检索,专利查询,专利分析的服务。并且提供热循环疲劳特性和 润湿性 优异的 软钎焊 材料。含有5.0 质量 %以上且8.0质量%以下的Sb和3.0质量%以上且5.0质量%以下的Ag、余量由Sn和不可避免的杂质组成的软钎焊材料、以及在 半导体 元件与 基板 电极 之间或在半导体元件与引线框之间具备软钎焊材料熔融而得到的接合层的半导体装置。,下面是软钎焊材料专利的具体信息内容。

1.一种软钎焊材料,其含有5.0质量%以上且8.0质量%以下的Sb、3.0质量%以上且
5.0质量%以下的Ag,余量由Sn和不可避免的杂质组成。
2.根据权利要求1所述的软钎焊材料,其还含有0.05质量%以上且0.3质量%以下的Ni。
3.根据权利要求2所述的软钎焊材料,其含有0.003质量%以上且0.01质量%以下的Ge。
4.根据权利要求2或3所述的软钎焊材料,其还含有0.003质量%以上且0.01质量%以下的P。
5.根据权利要求2~4中任一项所述的软钎焊材料,其用于接合Ni或Cu或它们的合金、或者用于接合用Ni或Cu或它们的合金进行了覆的构件。
6.一种软钎焊接合部,其包含选自Ni或Cu或它们的合金、或者用Ni或Cu或它们的合金进行了镀覆的构件中的被接合体、以及使权利要求2~4中任一项所述的软钎焊材料熔融而得到的接合层。
7.一种半导体装置,其在半导体元件与基板电极之间、或在半导体元件与引线框之间、或在基板电极与散热板之间具备使权利要求1~5中任一项所述的软钎焊材料熔融而得到的接合层。
8.根据权利要求7所述的半导体装置,其中,所述半导体元件为SiC半导体元件。

说明书全文

软钎焊材料

技术领域

[0001] 本发明涉及软钎焊材料。本发明尤其涉及半导体装置中的接合所使用的高可靠性的软钎焊材料。

背景技术

[0002] 近年来,由于环境问题,已逐渐采用不含铅成分的无Pb软钎料来代替Sn-Pb系软钎料。一直以来最常用的以Sn-Pb为主成分的含Pb软钎焊材料为固溶型的材料,且为在Sn63wt.%、Pb37wt.%具有共晶点(共晶温度)的材料。关于固溶型材料,由于固溶于主要材料,因此凝固组织稳定,据说不易受到工艺条件(加热、冷却)等的影响。作为用于IGBT模(功率模块)等半导体装置的软钎焊材料,现在已知的各种组成的无铅软钎料之中,大量使用尤其在接合性(软钎料润湿性)、机械特性、热阻等方面比较均衡、且在产品中也有实际业绩的Sn-Ag系的无Pb软钎料。
[0003] 以Sn-Ag为主成分的无铅软钎料呈现Ag几乎不固溶于Sn的析出/分散型的结构。因此,容易受到工艺条件的影响,存在大量产生Sn与SnAg共晶组织偏析凝固而得到的组织。另外,在高温环境下通过偏析凝固而析出的Sn的初晶发生热变形,往往成为破坏的原因。
[0004] 已知如下的软钎料合金,其通过以Sn为主成分,包含2.5~3.5重量%的Sb、1.0~3.5重量%的Ag、1.0重量%以下的量的Ni,从而提高了热疲劳特性及润湿性(例如,参照专利文献1)。
[0005] 已知如下的半导体芯片连接用长条复合软钎焊材料,其是将含有3~9重量%的Sb、0.1~1重量%的Ni、0.01~0.5重量%的Ag且余量除了不可避免的杂质之外由Sn组成的软钎焊材料作为基材,在其中混入0.01~5重量%的熔点比软钎焊材料基材高的粒状物而成的(例如,参照专利文献2)。
[0006] 已知如下的软钎料合金,其以Sn为主成分且包含3.0重量%以下的Sb、3.5重量%以下的Ag、1.0重量%以下的Cu、1.0重量%以下的Ni、0.1重量%以下的量的Ge,热疲劳强度和接合性良好(例如,参照专利文献3)。
[0007] 现有技术文献
[0008] 专利文献
[0009] 专利文献1:日本特开平10-286689号公报
[0010] 专利文献2:日本特开平8-174276号公报
[0011] 专利文献3:日本特开平11-58066号公报

发明内容

[0012] 发明要解决的问题
[0013] 被称为功率半导体的MOS型、IGBT型的元件在工作时自发热,达到高的温度。反复发热和冷却的元件用软钎料进行了接合,但因元件的反复发热而使软钎焊部反复负荷应变,发生劣化。近年来,大电流规格的功率半导体的需要高涨。通过大电流化,产品的放热温度也变高,施加于该产品的温度差ΔT、即自通常环境温度至放热温度的差变大,产品所暴露的温度也高,暴露于高温的时间也变长。由此,由于反复施加的温度差,施加于软钎焊材料与被接合体的异种材料边界的应变(热应)变大,成为问题。特别是温度差为80度以上时,热应力变大,因应变而在异种材料边界界面发生剥离等。为了模拟该应变,作为加速试验进行热循环疲劳特性的试验。在软钎焊材料的高温特性已经变得重要的现状下,要求改善该热循环疲劳特性。特别是,改善温度差为80度以上的热循环疲劳特性是重要的。
[0014] 用于解决问题的方案
[0015] 本发明人等进行了深入研究,结果发现通过在SnAgSb系软钎料中将Sb添加量设为规定的窄的组成%范围,能够制成高温下的延性和润湿性优异、热循环疲劳特性得到改善的软钎焊材料,从而完成了本发明。
[0016] 即,本发明的一实施方式为一种软钎焊材料,其含有5.0质量%以上且8.0质量%以下的Sb、3.0质量%以上且5.0质量%以下的Ag,余量由Sn和不可避免的杂质组成。
[0017] 上述包含Sb、Ag和Sn的软钎焊材料中,优选还含有0.05质量%以上且0.3质量%以下的Ni。
[0018] 上述包含Sb、Ag、Ni和Sn的软钎焊材料中,优选还含有0.003质量%以上且0.01质量%以下的Ge。
[0019] 上述包含Sb、Ag、Ni和Sn的软钎焊材料中,或者上述包含Sb、Ag、Ni、Ge和Sn的软钎焊材料中,优选还含有0.003质量%以上且0.01质量%以下的P。
[0020] 上述包含Sb、Ag、Ni和Sn的软钎焊材料、上述包含Sb、Ag、Ni、Ge和Sn的软钎焊材料、上述包含Sb、Ag、Ni、P和Sn的软钎焊材料、或者上述包含Sb、Ag、Ni、Ge、P和Sn的软钎焊材料优选用于接合Ni或Cu或它们的合金、或者接合用Ni或Cu或它们的合金进行了覆的构件的用途。
[0021] 本发明的另一实施方式为一种软钎焊接合部,其包含选自Ni或Cu或它们的合金、或者用Ni或Cu或它们的合金进行了镀覆的构件中的被接合体;以及,上述包含Sb、Ag、Ni和Sn的软钎焊材料、上述包含Sb、Ag、Ni、Ge和Sn的软钎焊材料、上述包含Sb、Ag、Ni、P和Sn的软钎焊材料、或者上述包含Sb、Ag、Ni、Ge、P和Sn的软钎焊材料熔融而得到的接合层。
[0022] 本发明的另一实施方式为一种半导体装置,其在半导体元件与基板电极之间、或在半导体元件与引线框之间、或在基板电极与散热板之间具备上述任一软钎焊材料熔融而得到的接合层。
[0023] 前述半导体装置中,半导体元件优选为SiC半导体元件。
[0024] 发明的效果
[0025] 本发明的软钎焊材料在100℃~200℃这样的高温下的延性特别优异,润湿性高,能够降低空隙率。另外,通过高温延性,即使在经历热循环后也能保持均匀的晶粒结构。因此,使用了本发明的软钎焊材料作为接合层的电子设备、特别是半导体装置的热循环疲劳特性优异,作为模块的可靠性提高。因此,也适合在搭载有自发热高的元件时、环境温度高时使用,并且装置的小型化、低成本化成为可能。另外,接合层中的空隙少,因此产品寿命提高。本发明的软钎焊材料能够适宜地用于需要日益高涨的大电流规格的电子设备,尤其能够广泛地适用于半导体装置中的芯片键合接合、端子间的接合、其它构件的接合等半导体装置用途。附图说明
[0026] 图1为示出利用了本发明的软钎焊材料的半导体装置的一例的概念图
[0027] 图2为示出利用本发明的软钎焊材料作为接合层的接合部的一例的概念图。
[0028] 图3为示出利用比较例的软钎焊材料作为接合层的接合部的一例的概念图。

具体实施方式

[0029] 以下,参照附图,说明本发明的实施方式。但是,本发明不因以下说明的实施方式而受到限定。
[0030] [第1实施方式:Sn-Sb-Ag三元系]
[0031] 根据本发明的第1实施方式,一种软钎焊材料,其是含有5.0质量%以上且8.0质量%以下的Sb、3.0质量%以上且5.0质量%以下的Ag,余量由Sn和不可避免的杂质组成的合金。不可避免的杂质主要是指Cu、Ni、Zn、Fe、Al、As、Cd、Au、In、P、Pb等,但不限定于它们。本发明的软钎焊材料为不含Pb的无铅软钎料合金。通过在以Sn为主成分的软钎焊材料中在上述组成范围内包含Ag和Sb,高温延性变高。另外,本实施方式的软钎焊材料能够确保相对较高的润湿性。Ag的添加量少于3.0质量%时,延性变大。这是因为,Ag3Sn与βSn的网状网络结构的组织的形成是局部性的,延性最高的βSn的区域变多,从而能够形成局部性的延性变高的部分、和由Ag3Sn与βSn的共晶组织形成析出强化组织结构的位置。因此,如热循环试验那样反复施加应力时,变得容易断裂。另一方面,Ag的添加量多于5.0质量%时,成为过共晶组成,Ag量过剩,Ag3Sn与βSn的共晶组织变得更致密,析出强化结构变得过剩。另外,基于Ag3Sn与βSn的网络结构的Ag3Sn与βSn的距离变近,因此Ag3Sn成为表观上较大的化合物的形态,硬且大的化合物散布。该Ag3Sn表观上形成块的化合物通过施加热处理、外力等而在Sn与Ag发生相互扩散,成为大的Ag3Sn化合物。由此,得不到稳定且均匀的凝固组织,不能兼顾强度和延性,不能提高接合强度。另外,Sb多于8质量%时,在通常的软钎焊接合的冷却速度下例如在20℃/秒以下进行接合的情况下,Sb3Sn2化合物在以Sb为核的SnSb包晶组织中发生析晶。该Sb3Sn2化合物的析晶会提高强度,但降低延性。另外,负荷伴随发热等的热变形和应变时,该化合物移动到晶粒边界,通过与Sn的相互扩散而使SbSn的化合物粗大化。该粗大的化合物会降低晶体的晶界强度,容易地促进晶界滑动等,从而在晶界生成空腔,导致无延性、强度降低。
[0032] 本发明中,高温延性是指,100℃以上、例如100℃~200℃附近的延性。另外,这种高温延性可以通过在规定的温度条件下测定的断裂伸长率(%)来评价。断裂伸长率(percentage elongation after fracture)是指,在JIS Z2241金属材料拉伸试验方法中定义的物性值,其是用相对于原标点距离L0的百分率表示断裂后的永久伸长率(Lu-L0)的值。此处,L为在试验片的平行部测定伸长率的部分的长度(标点距离),Lu表示在断裂后在室温下测定的试验片上标记的标点距离(最终标点距离),L0表示在试验前在室温下测定的试验片上标记的标点距离(原标点距离)。对于断裂伸长率的测定方法,在实施例中详细说明。第1实施方式的软钎焊材料在100℃下的断裂伸长率为52%~54.8%左右。该值相对于处于本发明的范围外的Sn-8.5Sb-2.5Ag软钎焊材料的断裂伸长率为102%以上、大致为102~108%。另外,175℃下的断裂伸长率为60%~62%左右。该值相对于处于本发明的范围外的Sn-8.5Sb-2.5Ag软钎焊材料的断裂伸长率为113%以上、大致为113~117%。如以上那样高温延性高时,能够得到高的接合强度而在施加热应力时不会造成龟裂或裂纹等破坏。
[0033] 更优选的方式中,含有6.0质量%以上且8.0质量%以下的Sb、3.6质量%以上且4.5质量%以下的Ag,余量由Sn和不可避免的杂质组成。通过将Sb设为该范围,接近共晶成分,因此Sb在Sn中固溶,抑制Sn的初晶生长,缺陷(空隙)进一步变少。另外,通过Sb固溶,可以期待均匀的Sn变形成为可能之类的作用。另外,通过将Ag设为该范围,在高温下变化少的Ag以Ag3Sn化合物的形式微细且均匀地分散在软钎料中,发挥使软钎料结构体分散强化的作用。另外,Ag如上所述以化合物的形式微细分散,从而可以期待即使暴露于高温也抑制热变形的效果。该组成的软钎焊材料中,根据Sb与Ag的组成而特性大不相同,如此通过制成能控制Ag行为的组成,能够提高接合强度。
[0034] 由此,通过将Sb和Ag设为本实施方式的规定的组成范围,能够维持强度、延性,在施加温度差为80度以上的热循环时热应力变大。对于这种热应力,也因软钎焊接合层的强度高而不发生剥离、龟裂等破坏,能够得到高的可靠性。
[0035] [第2实施方式:Sn-Sb-Ag-Ni四元系]
[0036] 根据本发明的第2实施方式,一种软钎焊材料,其为含有5.0质量%以上且8.0质量%以下的Sb、3.0质量%以上且5.0质量%以下的Ag、进而0.05质量%以上且0.3质量%以下的Ni,余量由Sn和不可避免的杂质组成的不含Pb的无铅软钎料合金。这是因为,作为在第1实施方式的组成中进一步以上述添加范围添加Ni的优点,能够进一步提高软钎焊材料的高温延性。这种Ni添加量的范围之中,特别优选0.1质量%以上且0.25质量%以下。这是因为在该范围内润湿性最优异。
[0037] 第2实施方式的软钎焊材料在100℃下的断裂伸长率为55%左右。该值相对于处于本发明的范围外的Sn-8.5Sb-2.5Ag软钎焊材料的断裂伸长率为108%以上、大致为108~109%。另外,175℃下的断裂伸长率为65%~65.5%左右。该值相对于处于本发明的范围外的Sn-8.5Sb-2.5Ag软钎焊材料的断裂伸长率为123%以上、大致为123~124%。如以上那样高温延性高时,如前所述能够得到高的接合强度而在施加热应力时不会造成龟裂、裂纹等破坏。
[0038] 进一步优选含有6.0质量%以上且8.0质量%以下的Sb,含有3.6质量%以上且4.5质量%以下的Ag,含有0.1质量%以上且0.25质量%以下的Ni,余量由Sn和不可避免的杂质组成。通过设为这种组成范围,除了上述之外,还可以期待抑制凝固时伴随各材料体积变化的凝固缺陷的效果。需要高温化的接合体中,缺陷(空气)的热传导明显较差,可以说发挥绝热材料那样的作用。在基于软钎焊材料的接合体的量产中,要求缺陷更少时,具有本实施方式的优选组成的软钎焊材料能够减少该缺陷。另外,由于呈现均匀的凝固组织,可以期待能抑制龟裂发展之类的作用。
[0039] 软钎焊材料可以用于电子设备中的任意的金属构件的接合。特别是将铜合金、镍或镍合金、或者用铜或铜合金、镍或镍合金进行了镀覆的构件作为被接合构件时,接合性特别良好。作为软钎料的成分的Sn、Sb与被接合材料的Cu等容易形成Cu3Sn等CuSn合金、CuSb合金。但是,这些合金从接合强度的观点出发不是很优选,包含规定量的Ni的第2实施方式的软钎焊材料具有抑制这些合金生成的效果,接合性提高。
[0040] [第3实施方式:Sn-Sb-Ag-Ni-Ge五元系]
[0041] 根据本发明的第3实施方式,一种软钎焊材料,其为含有5.0质量%以上且8.0质量%以下的Sb、3.0质量%以上且5.0质量%以下的Ag、0.05质量%以上且0.3质量%以下的Ni,进而含有0.003质量%以上且0.01质量%以下的Ge,余量由Sn和不可避免的杂质组成的不含Pb的无铅软钎料合金。这是因为,作为在第2实施方式的组成中进一步以上述范围添加Ge的优点,能够进一步提高合金的高温延性。另外,是因为抑制Sb的化,显著有助于提高软钎料的润湿性。含有多于0.01质量%、例如0.02质量%左右的Ge时,成为接合缺陷的空气的空隙变得容易形成。Ge的添加量更优选为0.003质量%以上且0.008质量%以下。通过以该范围添加,抑制过量的GeO的生成,生成适量的GeO,从而能够抑制难以还原、去除的Sn氧化物。另外,由此得到抑制空隙的效果。进一步优选的Ge的含量为0.003质量%以上且不超过0.005质量%的量。另外,GeO也会形成在软钎焊材料的表面,但只要为上述添加量的范围内,则GeO的膜厚非常薄。因此,在进行加热而与被接合材料接合时,润湿性不会变差,容易接合。
[0042] 需要说明的是,Sn氧化物会形成为软钎焊材料的表面覆膜,因此成为抑制与被接合材料的反应、降低接合性的原因。另外,也成为局部形成空隙的原因。特别是在功率半导体装置中,需要软钎焊接合部的空隙率优选低于10%,因此包含规定量的Ge的本实施方式的软钎焊材料的抑制Sn氧化物生成的效果是重要的。另外,在接合工序中,若Sn氧化物分散地形成在软钎焊接合层中,则在该位置处接合性降低,因此Sn氧化物的抑制也是重要的。另外,Ge具有难以与其它金属形成合金的特性。不形成多余的化合物、而以单质的形态固溶的Ge会抑制龟裂的扩展,因此强度提高。
[0043] 第3实施方式的软钎焊材料在100℃下的断裂伸长率为55%左右。该值相对于处于本发明的范围外的Sn-8.5Sb-2.5Ag软钎焊材料的断裂伸长率为108%以上、大致为108~109%。另外,175℃下的断裂伸长率为66%~67%左右。该值相对于处于本发明的范围外的Sn-8.5Sb-2.5Ag软钎焊材料的断裂伸长率为125%以上、大致为125~127%。使用如以上那样高温延性高的软钎焊材料时,能够得到高的接合强度而在施加热应力时不会造成龟裂、裂纹等破坏。
[0044] 进一步优选含有6.0质量%以上且8.0质量%以下的Sb、3.6质量%以上且4.5质量%以下的Ag,含有0.1质量%以上且0.25质量%以下的Ni,以上述任一范围含有Ge,余量由Sn和不可避免的杂质组成。通过设为这种组成范围,除了上述之外,还可以期待抑制凝固时伴随各材料体积变化的凝固缺陷的效果。需要高温化的接合体中,缺陷(空气)的热传导明显较差,可以说发挥绝热材料那样的作用。在基于软钎焊材料的接合体的量产中,要求缺陷更少时,具有本实施方式的优选组成的软钎焊材料能够减少该缺陷。另外,由于呈现均匀的凝固组织,可以期待能抑制龟裂发展之类的作用。
[0045] 第3实施方式的软钎焊材料也能用于电子设备中的任意的金属构件的接合。特别是由于软钎焊材料为以规定量包含Ni的组成,因此出于与第2实施方式中说明过的同样的理由,在将铜或铜合金、镍或镍合金、或者用铜或铜合金、镍或镍合金进行了镀覆的构件作为被接合构件时,接合性特别良好。除此之外,本实施方式中,通过包含Ge而具有如下的优点。被接合物为铜、镍等的情况下,使用包含Sn、Sb的软钎焊材料时,作为软钎料的成分的Sn、Sb与被接合构件的Cu等容易形成Cu3Sn等CuSn合金、CuSb合金、Ni3Sn4等。这些合金从接合强度的观点出发不是很优选。但是,除了Sn、Sb等之外还包含Ge的情况下,会抑制这些合金的生成,因此能够提高接合强度。被接合构件为通过镀覆等形成的NiP(镍-磷)的情况下,软钎料中的Sn与NiP层的Ni相互扩散而形成合金,因此在NiP层与软钎料的界面形成P富集层。该缺Ni的P富集层非常脆,成为接合强度降低的原因。但是,添加有Ge的第3实施方式的软钎焊材料的情况下,生成GeP的化合物,因此能够抑制接合强度的降低。NiP被接合构件的P浓度通常为3~12质量%,在应用于P富集层少的P浓度3~5质量%的NiP被接合构件时,本实施方式的软钎焊材料特别有效。
[0046] [第4实施方式:Sn-Sb-Ag-Ni-P五元系]
[0047] 根据本发明的第4实施方式,一种软钎焊材料,其为含有5.0质量%以上且8.0质量%以下的Sb、3.0质量%以上且5.0质量%以下的Ag、0.05质量%以上且0.3质量%以下的Ni,进而含有0.003质量%以上且0.01质量%以下的P,余量由Sn和不可避免的杂质组成的不含Pb的无铅软钎料合金。这是因为,作为在第2实施方式的组成中进一步以上述范围添加P的优点,能够进一步提高合金的高温延性。另外,是因为抑制Sb的氧化,显著有助于提高软钎料的润湿性。含有多于0.01质量%、例如0.02质量%左右的P时,成为接合缺陷的空气的空隙变得容易形成。P的添加量更优选为0.003质量%以上且0.008质量%以下。通过以该范围添加,抑制过剩的磷酸化物的生成,生成适量的磷酸化物,从而能抑制难以还原、去除的Sn氧化物。另外,由此得到抑制空隙的效果。进一步优选的P的含量为0.003质量%以上且不超过0.005质量%的量。本实施方式的通过规定量的P得到的抑制Sn氧化物的效果与Ge类似。P通常也是生成无机磷酸(phosphoric acid)而发生金属腐蚀的材料,P的添加量为0.003质量%以上且0.01质量%以下的第4实施方式的软钎焊材料在热循环疲劳试验等耐久试验中也不会发生腐蚀、裂纹等接合不良,能够得到良好的接合强度。
[0048] 另外,Ge难以与其它金属形成化合物,但P与软钎焊材料的Sn等形成化合物。特别是SnP化合物的硬度高,在包含Sn的软钎焊材料中以0.003质量%以上且0.01质量%以下的量含有P时,具有提高拉伸强度的效果。另外,如后所述,在与被接合体中的元素之间生成化合物,因此接合时的反应快,能够在短时间内接合。但是,含有多于0.01质量%时,脆性变大,不优选。即,局部变脆,发生龟裂等破坏,使接合强度降低。
[0049] 第4实施方式的软钎焊材料在100℃下的断裂伸长率为55%左右。该值相对于处于本发明的范围外的Sn-8.5Sb-2.5Ag软钎焊材料的断裂伸长率为108%以上、大致为108~109%。另外,175℃下的断裂伸长率为66%~67%左右。该值相对于处于本发明的范围外的Sn-8.5Sb-2.5Ag软钎焊材料的断裂伸长率为125%以上、大致为125~127%。如以上那样高温延性高时,能够得到高的接合强度而在施加热应力时不会造成龟裂、裂纹等破坏。
[0050] 进一步优选含有6.0质量%以上且8.0质量%以下的Sb,含有3.6质量%以上且4.5质量%以下的Ag,含有0.1质量%以上且0.25质量%以下的Ni,以上述任一范围含有P,余量由Sn和不可避免的杂质组成。通过设为这种组成范围,除了上述之外,还可以期待抑制凝固时伴随各材料体积变化的凝固缺陷的效果。需要高温化的接合体中,缺陷(空气)的热传导明显较差,可以说发挥绝热材料那样的作用。在基于软钎焊材料的接合体的量产中,要求缺陷更少时,具有本实施方式的优选组成的软钎焊材料能够减少该缺陷。另外,由于呈现均匀的凝固组织,可以期待能抑制龟裂发展之类的作用。
[0051] 另外,作为本实施方式的进一步变形方式,也可以为同时含有Ge和P两者的Sn-Sb-Ag-Ni-Ge-P六元系的软钎焊材料。此时,Ge和P的添加量可以分别独立地从在第3实施方式、第4实施方式中作为适宜的范围而例示出的添加量中选择。根据Sn-Sb-Ag-Ni-Ge-P六元系的软钎焊材料,除了通过规定量的P的添加而实现的强度提高之外,通过规定量的Ge与P形成化合物,从而抑制SnP化合物的形成,能够进一步提高接合强度。需要说明的是,在上述规定的范围外添加P和Ge时,会变脆,强度降低,因此不优选。
[0052] 第4实施方式或其变形方式的软钎焊材料也能用于电子设备中的任意的金属构件的接合。特别是由于软钎焊材料为以规定量包含Ni的组成,因此出于与第2、第3实施方式中说明过的同样的理由,在将铜或铜合金、镍或镍合金、或者用铜或铜合金、镍或镍合金进行了镀覆的构件作为被接合构件时,接合性特别良好。第4实施方式或其变形方式的软钎焊材料中,特别是由于包含P,因此对于各自的被接合构件,具有以下那样的进一步的优点。被接合材料为Cu、Ni的情况下,软钎焊材料中所含的P与Cu以快的反应速度生成CuP2等化合物,因此对Cu的润湿性变得良好。另外,通过源自规定量的P而生成的CuP2化合物均匀分散在软钎焊材料中,由于CuP2化合物硬,因此强度提高。但是,P的量超过上述规定量时,CuP2化合物大量生成,在局部堆积时该位置变脆,使强度降低,因此不优选。这一点,第4实施方式或其变形方式的软钎焊材料能够延迟脆的化合物的生长,能够有助于接合体的长寿命化。Ni被接合材料的情况下可以说也是同样的。即,利用第4实施方式或其变形方式的软钎焊材料,能够提高强度。另外,软钎焊材料中所含的P能够与Ni被接合材料中的Ni生成多种化合物,其反应速度比P与Cu的反应更快,因此润湿性变得非常好。被接合构件为镀层等的NiP的情况下,与在第3实施方式中说明过的同样,抑制Ni从NiP层的脱离,能够抑制接合强度的降低。该效果尤其在将第4实施方式或其变形方式的软钎焊材料用于P富集层少的P浓度3~5质量%的NiP被接合构件的情况下可以说是较大的。
[0053] 上述第1~第4实施方式的软钎焊材料均可通过通常的方法将选自Sn、Sb、Ag及任选的Ni和Ge中的各原料、或者包含各原料的母合金在电炉中熔解,从而制备。各原料优选使用纯度为99.99质量%以上的物质。
[0054] 另外,上述第1~第4实施方式的软钎焊材料可以加工以板状的预成型材料的形态、或制成粉末状并与助焊剂一起制成膏状软钎料的形态来进行加工。加工成粉末状并与助焊剂起制成膏状软钎料的情况下,作为软钎料粉末的粒径,粒径分布优选处于10~100μm的范围、进一步优选处于20~50μm的范围。这种软钎料粉末的平均粒径例如在使用通常的激光衍射/散射式粒度分布测定装置测定时可以设为25~50μm。作为助焊剂,可以使用任意的助焊剂,特别优选使用松香系助焊剂。
[0055] 接着,对于上述第1~第4实施方式的软钎焊材料的使用方法进行说明。上述第1~第3实施方式的软钎焊材料可以用于电子设备中的任意的金属构件的接合。特别是能够用于Cu、Ni、Ag、Au、Al等或它们的合金、或者用这些金属或合金进行了镀覆的构件的接合,不限定于特定的被接合体。但是,如上所述,如第2~第4实施方式那样,软钎焊材料包含Ni的情况下,被接合体的至少一个面、优选两面为Cu或Ni或它们的合金、或者用Cu或Ni或它们的合金进行了镀覆的构件时,能得到更好的接合性。
[0056] 接合所使用的软钎焊材料的厚度、形状等可以由本领域技术人员根据目的及用途来适当设定,没有特别限定。上述方式的软钎焊材料与现有技术相比润湿性良好,不易产生空隙,因此也能够减薄。若软钎焊材料薄则热阻也下降,因此有时在半导体装置中是优选的。另一方面,若半导体元件的芯片翘曲,则必须与翘曲量相应地加厚。此时,空隙容易生成,但若润湿性良好,则能防止由间隙造成的空隙。另外,若软钎焊材料厚,则有应力松弛效果,因此有时寿命也变长。因此,本发明的软钎焊材料通过该优异的特性而可以较薄也可以较厚,具有设计自由度高的优点。作为一例,接合后的软钎焊接合层的厚度可以设为约200~300μm左右,但不限定于该范围。
[0057] 使用软钎焊材料的金属构件的接合方法在使软钎焊材料与金属构件接触的状态下、将加热峰温度设为软钎焊材料的液相线温度(熔点)+30℃左右,从而使软钎焊材料熔融,形成软钎焊接合层。此时的加热时间优选保持至少60秒以上。虽然也取决于软钎焊材料的形态,但也可使用氢、甲酸有机酸的活性气氛来进行接合。
[0058] [第5实施方式:接合部、电子设备]
[0059] 根据本发明的第5实施方式,涉及电子设备。具体而言,涉及具备使第1~第4实施方式的软钎焊材料熔融而得到的软钎焊接合层的电子设备。包含软钎焊接合层和成为被接合体的金属构件的接合部成为本发明的一实施方式。被接合体为金属构件即可,没有特别限定,特别是使用第2~第4实施方式的包含Ni的软钎焊材料作为软钎焊接合层的情况下,被接合体优选选自Ni或Cu或它们的合金、或者用Ni或Cu或它们的合金进行了镀覆的构件。与软钎焊接合层接触的多个被接合体可以为相同材料,也可以为不同的材料,优选至少一方的被接合体为Ni或Cu或它们的合金、或者用Ni或Cu或它们的合金进行了镀覆的构件。这是从接合性的观点出发的。另外,电子设备的被接合体中,优选电阻低、热传导率高,因此Cu或Ag成为主成分。从耐腐蚀性的观点出发用Ni、Ni镀覆、Ni合金等对接合表面进行处理。与Cu相比Ni的软钎焊接合性差。作为耐腐蚀性和润湿性的改善,也可以用Ag、Au、Pt、Pd、Ag-Pd等贵金属再次对表面进行处理。使用了SiC等电阻低损耗元件的电源转换器等为了抑制哪怕一点点的损耗而往往在电极材料中使用Ag。软钎焊接合部构成电子设备的一部分,作为电子设备,可列举出逆变器、太阳能发电站、燃料电池电梯、冷却装置、车载用半导体装置等电气/电力设备,但不限定于这些。
[0060] 代表性地,电子设备为半导体装置。特别是在功率半导体装置中有效。近年来的大容量化的在150℃以上的高温下使用的半导体装置中,对于从元件发出的热进行高效散热是重要的。因此,减少接合层内的空隙是重要的。逆变器等装置中使用的软钎焊接合层中允许20%以上的空隙率。但是,功率半导体中允许的空隙率至多不足20%,优选为10%左右以下。通过使用第1~第4实施方式的软钎焊材料,能够抑制接合层中产生的空隙,因此使用了这些软钎焊材料的软钎焊接合层在功率半导体装置中特别有效。半导体装置中的接合部可以为芯片键合接合部、绝缘基板与散热板的接合部、端子与端子的接合部、端子与其它构件的接合部、或者其它的任意的接合部,但不限定于这些。以下,作为具备本实施方式的接合部的电子设备的一例,列举出半导体装置,参照附图进一步详细说明本发明。
[0061] 图1为作为半导体装置的一例的功率模块的概念性截面图。功率模块100主要呈在散热板13上用软钎焊接合层10接合半导体元件11及层叠基板12而成的层叠结构。在散热板13上连接内置有外部端子15的壳体16,半导体元件11的电极和层叠基板12的金属导电性
123与外部端子15用线等线14连接。模块内部填充有树脂密封材料17。半导体元件11可以为Si半导体元件、SiC半导体元件,但不限定于这些。例如IGBT模块上搭载的这些元件的情况下,与层叠基板12接合的背面电极通常由Au或Ag构成。层叠基板12例如由在Al2O3、SiN等形成的陶瓷绝缘基板122的正面和背面设有铜、铝的金属导电性板121、123。作为散热板13,使用导热性优异的铜、铝等金属。另外,为了防止腐蚀,也有时在金属导电性板121、123、散热板13上被覆Ni和Ni合金。
[0062] 另外,在图1中虽未示出,但软钎焊接合层10可以以不仅覆盖层叠基板12的金属导电性板121的下表面、而且覆盖至侧部为止的方式形成。如此软钎焊材料覆盖金属导电性板的侧面的形态具体示于图3。用软钎料覆盖至金属导电性板的侧部为止时,能够提高接合强度。
[0063] 本实施方式中图示的半导体装置为一例,本发明的半导体装置不限定于具备图示的装置构成。例如,也可以为本申请人等的日本特开2005-116702号公报中公开的具备引线框的半导体装置。具备引线框的半导体装置构成中,引线框与半导体元件的接合也可以使用本发明的软钎焊材料。或者,也可以为本申请人等的日本特开2012-191010号公报中公开的具备引脚结构的半导体装置。这种半导体装置中,铜块与半导体元件的接合、铜引脚与半导体元件的接合中也可以使用本发明的软钎焊材料。另外,除了这种芯片键合接合用途之外,绝缘基板与散热板的接合、端子与端子的接合、半导体元件与端子的接合等、半导体装置内的任意的软钎焊接合部中也可以使用本发明的软钎焊材料。使用了本发明的软钎焊材料的半导体装置提高了热循环疲劳特性,热循环寿命大幅延长。该热循环疲劳特性的提高是如下实现的:通过上述第1~第4实施方式的具备规定组成范围的软钎焊材料的高温延性优异的特长,降低接合部中的空隙,并且在接合部即使在经受热循环后也能保持均匀的晶粒结构,从而实现。特别是对于温度差为80度以上的热循环疲劳特性,是有效的。
[0064] 实施例
[0065] 以下参照本发明的实施例更详细地进行说明。然而,以下的实施例以及对其的考虑不限定本发明。
[0066] 制备实施例1~18及比较例1~5的软钎焊材料,进行软钎焊材料的高温特性、初始特性、及用软钎焊材料接合的模块的可靠性试验。
[0067] [软钎焊材料的高温特性评价]
[0068] 软钎焊材料的高温特性通过测定100℃下的软钎焊材料的拉伸强度、及常温(约25℃左右)、100℃、135℃、175℃下的高温断裂伸长率而评价。断裂伸长率基于JIS Z2241金属材料拉伸试验方法,使用与4号试验片同样的哑铃状试验片形状来进行试验。使用哑铃状等轴试验片的平行部 的平行部长度40mm的试验片,通过应变速度0.02%/秒的试验进行拉伸断裂试验。作为试验机,使用高精度微力试验机(instron japan company limited制、5848型)。测定的具体条件为:在拉伸试验方向上进行位移控制(10.000~-0.200),拉伸试验的速度设为0.005(mm/s)。应力的取样周期设为0.02秒,将标点间距离2400μm之中以截面积0.785mm2断裂的情况作为有效的试验来进行。
[0069] 将应力的最大值作为拉伸强度(Mpa),将应力达到0时的应变(%)作为断裂伸长率(%)。对于实施例1~18、比较例1~5,将100℃、175℃下的断裂伸长率(%)的测定值示于表1。
[0070] [软钎焊材料的初始特性评价]
[0071] 使用软钎焊材料接合金属构件时的初始特性的评价通过润湿性的测定来实施。接合部的润湿性评价通过使用实施例和比较例的软钎焊材料将在陶瓷上形成有Cu电极的DCB(直接覆铜;Direct Copper Bonding)基板与Cu散热板接合时的空隙率的测定来实施。接合条件为:使用在氢气气氛下将氧气浓度设为50ppm以下时在300℃下进行3分钟接合而得到的物体作为待测材料。此时的软钎焊材料的厚度以0.15mm作为基准。对该软钎焊接合部通过声波探伤(SAT:扫描声学层析成像;Scanning Acoustic Tomography)进行观察,根据SAT透射图像,将电极的面积设为100%,将存在空气的部位设为接合缺陷的空隙,算出空隙率。表1中示出空隙率的实测值(%)。从散热性的观点出发,空隙率为20%以上时可判定为不良,空隙率不足20%时可判定为良好。特别是空隙率表现出3%以下的情况,由于空隙尺寸也变小,因此作为空气层的空隙的影响变小,能够进一步减少功率元件的热损耗。另一方面,大于3%时,各空隙自身也变大,因局部发热而有可能成为产品预想外的温度,以一定数量发生在短时间内破坏的情况的可能性变高。另外,从接合强度的观点出发可以说是优选方式。
[0072] [用软钎焊材料接合的样品模块的可靠性评价]
[0073] 样品模块的可靠性通过热循环试验来评价。使用厚度为0.25mm的实施例1~18、比较例1~5的板软钎料,在与上述润湿性测定的样品制作同样的接合条件下将DCB基板与Cu散热板接合。热循环试验条件为:将在-45℃下保持10分钟后升温、在155℃下保持10分钟作为1个循环来计数。热循环试验的结果,每隔100个循环通过SAT观察软钎焊接合部,将发生龟裂的循环数记作观察到破坏的循环。
[0074] [表1]
[0075]
[0076] 将实施例和比较例的各试验结果示于表1。需要说明的是,表中,组成中的“-”表示除了不可避免的杂质之外实质上不含有该元素,测定值中的“-”表示未测定。可知本发明的实施例的软钎焊材料与比较例的软钎焊材料相比,100℃、175℃下的高温断裂伸长率高,以规定的组成%包含Sn-Sb-Ag的第1实施方式的软钎焊材料、在Sn-Sb-Ag中以规定的组成%添加有Ni的第2实施方式的软钎焊材料、在Sn-Sb-Ag中以规定的组成%添加有Ni、Ge的第3实施方式的软钎焊材料的高温断裂伸长率依次变大。虽未示出数值数据,但可知135℃下的断裂伸长率的测定值也显示出大致与100℃、175℃下的断裂伸长率同样的倾向。另外,可知高温断裂伸长率的大小与通过热循环试验测得的可靠性有很大的相关性。可知特别是第2实施方式、第3实施方式的软钎焊材料中,在400个循环中完全未发生龟裂,直至发生龟裂为止的热循环寿命提高了2倍以上。
[0077] 将热循环试验后的使用了实施例3的软钎焊材料的样品模块的断裂后的形貌示于图2。图2为半导体模块的截面的基于扫描电子显微镜照片的概念图,在构成DCB基板的绝缘基板122及Cu导电性板121与Cu散热板13之间形成有使实施例3的软钎焊材料熔融而得到的软钎焊接合层10。在软钎焊接合层10中,与软钎焊接合层10及Cu导电性板121、Cu散热板13大致垂直地形成有龟裂C,但龟裂C未贯穿软钎焊接合层10。另外,可知未形成伴随龟裂C的耗尽,在半导体模块的电特性方面是轻微的龟裂。图2中示出的实施例3的软钎焊材料中,接合初始的金属组织的粒径的大小为200~500μm左右的合金组织均匀地存在(图中未明示组织)。因此,即使产生龟裂也有不易扩展的倾向。
[0078] 将热循环试验后的使用了比较例2的软钎焊材料的样品模块的断裂的形貌示于图3。图3也为半导体模块的截面的基于扫描电子显微镜照片的概念图,在构成DCB基板的绝缘层122及Cu电极板121与Cu散热板13之间形成有使比较例2的软钎焊材料熔融而得到的接合层50。在接合层50中,形成有与软钎焊接合层10及Cu电极板121、Cu散热板13大致平行的大的龟裂C。该龟裂C完全形成耗尽,在半导体模块的电特性方面也是会导致电阻上升的重大故障。另外,可知软钎焊材料通过热历程而再结晶,主要的晶粒M局部过度地微细化至大致为10~50μm左右的粒径。微细化的晶粒M多见于龟裂部周边。对此认为,热应力沿剪切方向施加,结果产生龟裂,龟裂沿剪切方向、沿微细化的晶粒M的界面增大。对此推定,在实施例的组成中,可能通过Ni化合物、Ag化合物而不易发生SnSb的再结晶时的局部微细化。
[0079] 根据本发明的实施例和比较例的结果,在实施例的规定的组成范围内,软钎焊材料的高温延性高,由此能够提高热循环寿命。另外,可知在通过热循环而晶粒再结晶时,会抑制晶粒局部过度微细化的现象。即,通过使用呈现最适于凝固组织的均匀化、固溶强化和分散强化的凝固组织的成分,能够抑制由热变形造成的软钎料的劣化(龟裂),提高了热循环疲劳特性。
[0080] [考虑]
[0081] 对于实施例和比较例的软钎焊材料进行考虑。需要说明的是,以下的记载只不过是理论性的考虑,本发明应不局限于以下的理论。
[0082] 实施例1~6的组成中可包含的Sn-Sb-Ag的共晶相部(Sn-6.2Sb-3.6Ag、其中共晶组成具有一定的幅度)相对较柔软且在高温下也具有伸长率。即,断裂伸长率高。从共晶点起在规定的组成范围内具有共晶点下的稳定、且不易发生偏析的特性。但是,超出规定的范围时,高温延性降低,容易引起龟裂发生,作为模块的可靠性也降低。认为这是因为,通过前述的偏析、金属间化合物析晶,材料变硬,对于在负荷一定应力(应变)时施加于软钎料的力,无法实现均匀的力的分散,应变集中在力的平衡崩溃的位置,从而材料以被压缩的状态进行加工固化,在硬的位置与柔软的位置的边界发生破坏。相对于比较例的组成Sn5Sb,实施例3的组成Sn6.2Sb3.6Ag在龟裂产生量上有差异,因此认为妨碍龟裂发展的化合物的析晶有助于热循环寿命。
[0083] 实施例7~12的组成中,在Sn-Sb-Ag中Ni以规定的范围存在时,高温延性进一步提高。认为这可能是因为,通过Ni延迟晶体内的位错的恢复、NiSn化合物在软钎料中分散,从而松弛局部性应力集中,在强制性外力下发生整体变形,因此延性提高。另一方面,强度自身有些降低。对此,拉伸断裂试验的情况下,对于力集中的位置,局部地发生加工硬化,在加工硬化部分像被压缩的橡胶那样变硬、强度变高。Ni添加品中,如前述那样呈现使力分散的组织结构,因此不易发生偏析,力的集中部分散,试验部的组织整体变形,而不会发生加工硬化那样的高强度化,因此断裂强度有些降低。但是,作为模块可靠性,使至断裂为止的过程中由力的分散导致的劣化延迟是重要的,断裂时的强度与可靠性没有直接关系,因此可以说高温延性提高的添加有Ni的材料取得了平衡。
[0084] 实施例13~15的组成中,在Sn-Sb-Ag-Ni中进一步添加Ge时,延性有些提高。认为这可能是因为,Ge在Sn-Sb等的晶界扩散,使晶粒边界的晶界强度降低,对于因温度而对软钎焊接合体施加的力,通过发生晶界滑动而缓和力的集中,因此在负荷应变时作为合金的结构体的延性提高。这些组成中,通过俄歇电子能谱(AES)的映射而确认了Ge在Sn晶界附近偏析。具体而言,使用PHI公司制SAM670扫描俄歇电子能谱仪,在加速电压20kv、试样电流16nA、射束直径 以下、试样倾斜0度的试验条件下进行映射,结果在相邻的2个Sn晶粒的边界观察到Ge的偏析。由此认为,针对热应变,促进晶界滑动,能够抑制Sn的再结晶。但是,Ge的添加量过多时,例如存在超过0.01%时,形成牢固的GeO膜,软钎料的润湿性变差。
由此,包含空气的缺陷大量产生,从而存在模块可靠性降低的担心。
[0085] 实施例16~18的组成中,在Sn-Sb-Ag-Ni中进一步添加P时,拉伸强度有些提高。认为这可能是因为,通过P的添加,硬度高的Sn-P化合物在接合层中散布,在应力施加于接合层时抑制龟裂、位错(凝固组织的中的晶体内部的晶格缺陷移动)的扩大。
[0086] 产业上的可利用性
[0087] 本发明的软钎焊材料在大电流规格的电子设备整体中用于半导体芯片等的接合部。特别适合用于IC等封装部件。另外,适合用于发热大的部件、例如LED元件、功率二极管等功率半导体设备的芯片键合接合部、进而印刷电路板等中搭载的电子部件整体中的IC元件等的内部连接的芯片键合接合部。
[0088] 附图标记说明
[0089] 10  软钎焊接合层
[0090] 11  半导体元件
[0091] 12  层叠基板
[0092] 121 导电性板
[0093] 122 绝缘基板
[0094] 123 导电性板
[0095] 13  散热板
[0096] 14  线
[0097] 15  外部端子
[0098] 16  壳体
[0099] 17  树脂密封材料
[0100] 50  软钎焊接合层(比较例)
[0101] 100 功率模块
相关专利内容
标题 发布/更新时间 阅读量
软钎焊用焊剂 2020-05-16 8
软钎焊方法 2020-05-11 738
软钎焊设备 2020-05-12 1020
软钎焊装置、软钎焊方法以及软钎焊用程序 2020-05-14 543
自动软钎焊装置 2020-05-18 834
软钎焊装置 2020-05-13 840
软钎焊系统 2020-05-13 744
软钎焊材料 2020-05-11 129
无铅软钎焊料 2020-05-15 848
软钎焊结构及电子部件的软钎焊方法 2020-05-20 387
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈