首页 / 专利库 / 表面处理和涂层 / 刻蚀 / 干法刻蚀 / 制造半导体器件的方法

制造半导体器件的方法

阅读:952发布:2023-03-03

专利汇可以提供制造半导体器件的方法专利检索,专利查询,专利分析的服务。并且一种制造 半导体 器件的方法,包括在半导体衬底上顺序形成第一导电层、第一绝缘夹层、第二导电层和第二绝缘夹层。在第二绝缘夹层上形成掩模层,然后使用掩模层作为蚀刻掩模,选择性地除去第二绝缘夹层、第二导电层和第一绝缘夹层,以形成露出第一导电层的 接触 孔。然后选择性地蚀刻在接触孔的 侧壁 中露出的部分第二导电层,以在第一和第二绝缘夹层之间形成凹陷。接下来,在接触孔的底表面和侧壁上形成第三导电层,形成金属 硅 化物层以填充凹陷,并形成第四导电层,以填充金属硅化物层之上的接触孔。,下面是制造半导体器件的方法专利的具体信息内容。

1.一种制造半导体器件的方法,该方法包括:在半导体衬底上形成第一导电层;在第一导电层上形成第一绝缘夹层;在第一绝缘夹层上形成第二导电层;在第二导电层上形成第二绝缘夹层;在第二绝缘夹层上形成掩模层;使用掩模层作为蚀刻掩模,选择性地除去第二绝缘夹层、第二导电层和第一绝缘夹层,以形成露出第一导电层的接触孔;选择性地蚀刻在接触孔的侧壁中露出的部分第二导电层,以在第一和第二绝缘夹层之间形成凹陷;在接触孔的底表面和侧壁上形成第三导电层;形成填充凹陷的金属化物层;以及形成第四导电层,填充接触孔并在金属硅化物层之上。
2.如权利要求1的方法,其中通过使用湿法蚀刻工序除去在接触孔的侧壁上露出的部分第二导电层而形成凹陷。
3.如权利要求2的方法,其中使用包括以4∶1∶95的体积比混合的、过化氢和的溶液除去第二导电层。
4.如权利要求3的方法,其中第二导电层包括多晶硅,以及在80℃的温度下以大约0.5/秒的蚀刻速率,使用该溶液除去多晶硅。
5.如权利要求3的方法,其中混合溶液在多晶硅和硅氧化物层之间具有10∶1的蚀刻比。
6.如权利要求2的方法,其中当第二导电层具有大约800至1000的厚度时,凹陷具有大约150的深度。
7.如权利要求1的方法,其中第三导电层包括使用化学汽相淀积工序所形成的层。
8.如权利要求7的方法,其中与形成第三导电层同时,在高温下在第二导电层的露出表面上形成金属硅化物层。
9.如权利要求7的方法,其中使用包括氯化钛的反应气体形成钛层。
10.如权利要求1的方法,其中金属硅化物层具有反应物金属体积的大约2.2倍的体积,该反应物金属用于形成金属硅化物层。
11.如权利要求1的方法,其中第三导电层包括钛层并使用溅射方法所形成。
12.如权利要求11的方法,其中钛层从接触孔的底形成至其中形成凹陷的接触孔的侧壁的水平高度或更高。
13.如权利要求1的方法,其中第四导电层包括使用化学汽相淀积工序形成的钨层或层。
14.如权利要求1的方法,其中通过执行各向异性干法蚀刻方法形成接触孔。
15.如权利要求1的方法,其中第四导电层包括用于在静态随机存取存储器(SRAM)器件中,将上阳极金属氧化物半导体(PMOS)晶体管耦接到下阴极金属氧化物半导体(NMOS)晶体管的互连。
16.如权利要求1的方法,其中第一导电层用作第一晶体管的有源层,以及第二导电层用作第二晶体管的有源层。
17.如权利要求1的方法,其中第一导电层用作第一晶体管的栅电极,以及第二导电层用作第二晶体管的栅电极。
18.如权利要求1的方法,其中包含C4F6族化学化合物的反应气体用于蚀刻第二绝缘夹层,包含CF4族化学化合物的反应气体用于蚀刻第二导电层,或者包含C4F6族化学化合物的反应气体用于蚀刻第一绝缘夹层。

说明书全文

制造半导体器件的方法

技术领域

发明实施例通常涉及制造半导体器件的方法。更具体,本发明的实施例涉及制造使用金属化物层来形成连接在接触孔中露出的多个层叠的导电层的接触衬垫的半导体器件的方法。
要求2005年8月3日提交的韩国专利申请No.2005-0070854的优先权,将其全部公开在此引用作为参考。

背景技术

由于现代半导体器件中的集成程度增加,器件中的元件的尺寸和相对间隔趋于因此减小。例如,由于半导体器件中的集成度增加,晶体管的沟道长度、有源间隔、互连的宽度、互连之间的间隔、以及接触衬垫的尺寸,都趋于减小。
在半导体器件中形成互连的工序通常包括形成接触孔的步骤和在接触孔中形成互连的步骤。由于半导体器件变得更加集成,互连的宽度和平延展趋于减小,并且在接触孔中形成的互连的垂直延展趋于增加。因此,接触孔中的互连的高宽比也趋于增加。
为了增加半导体器件的操作速度并改进在其中形成的互连的可靠性,经常使用多层金属互连。为了形成多层互连,通常使用填充技术来填充接触孔,该金属孔穿透多个层叠的导电和绝缘层。然后使用平整化工序用来平整在层叠的导电和绝缘层上的绝缘夹层。当形成多层金属互连时,物理汽相淀积工序和/或化学汽相淀积通常用于填充技术。金属硅化物层通常用作金属衬垫以连接在限定区域内层叠的多层互连,由此形成低阻抗接触。
金属硅化物层用做欧姆层,以提供低硅衬底和在其上形成的金属层之间的阻抗界面。金属硅化物层还用作扩散阻挡层,以防止在多层金属系统中,不同的材料在相邻金属层之间扩散。
金属硅化物层典型地包括硅化(TiSi2)或族VIII元素的硅化物例如PtSi2、PdSi2、CoSi2、NiSi2。在具有0.25um或更小的尺寸的半导体器件中,通常使用硅化钛或硅化钴。
下面参照图1A至1G描述使用金属硅化物层制造传统半导体器件的方法。
参照图1A,在制造半导体器件的传统方法中,在半导体衬底10上形成具有预设厚度的第一导电层12。通过离子注入或将导电杂质扩散到半导体衬底10的表面,通常将第一导电层12形成作为半导体衬底10的有源层。替换地,第一导电层12可以形成为在半导体衬底10上形成的有源区上所形成的第一栅电极,并通过栅绝缘层与有源层绝缘。尽管未在图中示出,可以围绕第一导电层12形成隔离层或隔片,以将其从来自相邻组件的电干扰绝缘。
参照图1B,在第一导电层12上形成具有预设厚度的第一绝缘夹层14。第一绝缘夹层14用于将第一导电层12与随后形成的第二导电层16电绝缘,如图1C所示。此外,第一绝缘夹层14还用于协助在第一导电层16上执行的构图工序。
参照图1C,在第一绝缘夹层14上形成第二导电层16。第二导电层16,其通过绝缘夹层14从第一导电层12绝缘,典型地用作互连,或作为在第一绝缘夹层14上形成的第二晶体管的第二栅电极。第二导电层16典型地包括用导电杂质掺杂的多晶硅。尽管未在图1C中示出,第二晶体管典型地包括在第一绝缘夹层14的一侧上形成的具有预设厚度的第二有源层、在第二有源层或在第一绝缘夹层14上形成第二栅绝缘层、以及在第二栅绝缘层上形成的第二栅电极,其将被连接到第一导电层12的上部。
参照图1D,在第二导电层16上形成第二绝缘夹层18。将第二绝缘夹层18形成为具有预设厚度,以协助在第二导电层16上形成第三导电层并与其绝缘。
参照图1E,在第二绝缘夹层18上形成硬掩模层(未示出),留下部分第二绝缘夹层18,其中露出第二导电层16和第一导电层12层叠的位置。使用硬掩模层作为蚀刻掩模,顺序地除去部分第二绝缘夹层18、第二导电层16以及第一绝缘夹层14,以形成露出第一导电层12的接触孔20。
接触孔20穿透第二绝缘夹层18、第二导电层16以及第一绝缘夹层14,并露出第一导电层12的预设部分。通过使用干法蚀刻方法逐渐地形成接触孔20。优选地,干法蚀刻方法是在垂直方向中具有优异蚀刻特性的各向异性方法。通过流动反应气体来执行各向异性蚀刻方法,以沿着垂直于半导体衬底10的方向蚀刻第二绝缘夹层18、第二导电层16以及第一绝缘夹层14。相比于例如各向同性的蚀刻方法的湿法蚀刻方法,各向异性蚀刻方法允许相对好地形成接触孔20。
在形成接触孔20期间,用反应气体蚀刻硬掩模层。例如,接触孔20具有垂直部分,其中第二绝缘夹层18的开口和第二导电层16或者第一绝缘夹层14的开口形成为具有基本上相同的尺寸。通常,当第二导电层16或第一绝缘夹层14的开口形成为小于第二绝缘夹层18的开口时,接触孔20在其侧壁具有倾斜的表面。
参照图1F,在半导体衬底10和在接触孔20内,保形地形成包括例如钛的材料的第三导电层22。第三导电层22在由接触孔20所露出的第一导电层12和第二导电层16的界面上反应,以形成金属硅化物层24。通过具有优异导电性的导电金属和多晶硅在高温下的反应形成金属硅化物层24,并用于减小第二导电层16和随后形成的第四导电层26(如图1G所示)之间的阻抗。
由于金属硅化物层24的淀积体积显著地大于第三导电层22的,其中露出第二导电层16的接触孔20的内壁趋于朝着接触孔20的中心部分突起,由于金属硅化物层24。
参照图1G,在半导体衬底10上,在第三导电层22之上形成填充接触孔20的第四导电层26。第四导电层26电连接第一导电层12和第二导电层16。金属硅化物层24趋于减小第四导电层26和第一导电层12或第二导电层16之间的接触阻抗。
遗憾地,可在第一导电层12和金属硅化物层24之间,靠近于第二导电层16朝向接触孔20的中心部分突起的位置,可形成空腔28。由于空腔28没有填充有第四导电层26,恶化了半导体器件的电特性。

发明内容

一种制造半导体器件的方法,包括在半导体衬底上顺序形成第一导电层、第一绝缘夹层、第二导电层和第二绝缘夹层。该方法还包括在第二绝缘夹层上形成掩模层,并使用掩模层作为蚀刻掩模,选择性地除去第二绝缘夹层、第二导电层和第一绝缘夹层,以形成露出第一导电层的接触孔。该方法还进一步包括选择性地蚀刻在接触孔的侧壁中露出的部分第二导电层,以在第一和第二绝缘夹层之间形成凹陷;在接触孔的底表面和侧壁上形成第三导电层;形成金属硅化物层,填充凹陷;并形成第四导电层,填充接触孔并在金属硅化物层之上。
附图说明
下面参照在附图中说明的数个实施例描述本发明。在整个附图中相同参考标号指示相同元件、组件或步骤。在附图中:图1A至1G是说明制造半导体器件的传统方法的截面图;以及图2A至2H是说明制造半导体器件的方法的截面图。

具体实施方式

下面参照相应附图说明本发明的示例性实施例。这些实施例表示为教导实例。由下面的权利要求来限定本发明的实际范围。
图2A至2H是说明根据本发明的实施例的制造半导体器件的方法的截面图。
参照图2A,在半导体衬底110上形成具有预设厚度的第一导电层112。
典型地使用离子注入或扩散工序,通过将导电杂质注入半导体衬底110的表面来形成第一导电层112。例如,在半导体衬底110包含硅的地方,通过使用离子注入或热扩散工序注入受主或施主类型的导电杂质,可以在半导体衬底110的表面上将第一导电层112形成为第一有源表面。
第一有源层典型地形成为第一晶体管的源区、漏区或沟道区。尽管未在图2A中示出,在半导体衬底110上,在第一有源层之上形成第一硬掩模层,以覆盖将形成第一晶体管的区域。使用第一硬掩模层作为蚀刻掩模除去没有由第一硬掩模层所覆盖的部分半导体衬底110,以形成沟槽。在形成沟槽之后,除去第一硬掩模层。
在半导体衬底110的整个表面上形成硅化物层,以填充沟槽,然后平整化半导体衬底110以露出第一有源层。结果,基于由硅氧化物层所形成的隔离层,将第一有源层分为多个水平表面部分。
替换地,可以在第一有源层用作沟道区的部分之上,在第一有源层的顶上形成第一导电层112。在这种情况下,第一导电层112典型地通过第一栅绝缘层与有源区绝缘,并且用作第一栅电极,以基于外部施加的具有预设电压级的电压而在沟道区中形成电场
下面是描述形成第一栅电极的一个实例。首先,在第一有源层上形成第一栅绝缘层,使用快速热氧化(RTP)方法由隔离层将该第一有源层分为多个部分。第一栅绝缘层典型地由硅氧化物层形成。通常使用化学汽相淀积(CVD)工序,在第一栅绝缘层上形成第一导电层112,以及第一导电层112典型地包括用导电杂质掺杂的多晶硅。
在第一导电层112上淀积光刻胶,并构图该光刻胶以使用该光刻胶作为蚀刻掩模顺序地除去部分第一导电层112和第一栅绝缘层,由此形成栅层叠。在栅层叠之上,在半导体衬底110上形成硅氮化物层,并且各向同性地蚀刻硅氮化物层以露出第一导电层112。通常使用时间蚀刻方法来蚀刻硅氮化物层,使得在栅层叠的侧壁上形成第一隔片。结果,形成第一栅电极以由第一隔片选择性地露出。典型地在第一栅电极的两侧上露出第一有源层的源区和漏区。替换地,可以由第一导电层112形成源和漏。
接下来,在第一导电层112上形成蚀刻停止层,以防止在形成接触孔120期间第一导电层112的过蚀刻(如图2E所示)。蚀刻停止层典型地包括由CVD工序形成的硅氮化物层或硅氮氧化物层。
参照图2B,在第一导电层112上形成具有预设厚度的第一绝缘夹层114。第一绝缘夹层114典型地包括由CVD或热处理工序所形成的硅氧化物层。在第一导电层112上形成第一绝缘夹层114,以与将随后形成的第二导电层116电绝缘。使用化学机械抛光工序平整化第一绝缘夹层114,以协助将在第二导电层116上执行的构图工序。
参照图2C,在第一绝缘夹层114上形成具有预设厚度的第二导电层116。第二导电层116通常用作在第一绝缘夹层114上形成的第二晶体管的有源层或栅电极。第二导电层116典型地包括用导电杂质掺杂的多晶硅,以在随后的形成填充接触孔120的第三导电层122期间(如图2G所示),形成金属硅化物层124。
尽管未在图2C中示出,第二晶体管通常包括在第一绝缘夹层114的一侧上形成具有预设尺寸的第二有源层、在第二有源层或在第一绝缘夹层114上形成的第二栅绝缘层、以及在第二栅绝缘层上形成的第二栅电极,其电连接到第一导电层112的上部。因此,在半导体器件中形成包括在第一晶体管上层叠的第二晶体管的层叠结构。该层叠结构是垂直结构,能够替换例如在传统静态随机存储器(SRAM)器件中使用的平面结构。
例如,传统SRAM器件包括以平面结构形成的4个NMOS晶体管和2个PMOS晶体管。然而,将根据本发明的各种实施例形成的SRAM器件形成为具有在4个NMOS晶体管上形成的2个PMOS晶体管。典型地,NMOS的两个为存取晶体管,以及四个NMOS晶体管的两个为驱动晶体管。两个PMOS晶体管是具有负载阻抗的负载晶体管,并且连接到两个NMOS驱动晶体管以通过交叉耦合形成反相器结构。在反相器结构中,NMOS驱动晶体管的栅电极分别连接到PMOS晶体管的相应栅电极,具有其间设置的第一绝缘夹层114。
参照图2D,在第二导电层116之上,在半导体衬底110上形成第二绝缘夹层118。优选地将第二绝缘夹层118形成具有足以协助淀积或构图工序的厚度,该淀积或构图工序用于随后在第二导电层116上形成第三导电层122或第四导电层126(如图2H所示)。形成第二绝缘夹层118以覆盖包括第二有源层和第二栅电极的第二晶体管。优选地,第二绝缘夹层118由使用化学汽相淀积工序或热处理工序所形成的硅氧化物层所构成,以改进第二晶体管的阶梯覆盖。
接下来,使用化学机械抛光工序,平整化具有第二绝缘夹层118的半导体衬底110。
参照图2E,在第二绝缘夹层118上形成第二硬掩模层。第二硬掩模层露出部分第二绝缘夹层118,其中第一导电层112和第二导电层116重叠。
优选地通过在第二绝缘夹层118上形成具有预设厚度的硅氧化物层或硅氮化物层、在硅氧化物层或硅氮化物层上形成光刻胶、构图光刻胶以露出部分第二绝缘夹层119、使用所构图的光刻胶作为掩模层除去硅氧化物层或硅氮化物层以露出第二绝缘夹层118、并且除去所构图的光刻胶,来形成第二硬掩模层。硅氮化物层是用于吸收在曝光工序期间入射到光刻胶上的光的不透明层,并可用作硅氧化物层上的抗反射层。
通过使用第二硬体掩模层作为蚀刻掩模来执行干法蚀刻方法,顺序地除去第二绝缘夹层118、第二导电层116以及第一绝缘夹层114,以形成露出第一导电层112的接触孔120。一旦形成接触孔120,除去第二硬掩模层。
优选地干法蚀刻是各向异性蚀刻方法。通常通过流入反应气体执行各向异性蚀刻方法,以沿着垂直于半导体衬底110的方向,蚀刻第二绝缘夹层118、第二导电层116和第一绝缘夹层114。各向异性蚀刻方法允许与各向同性湿法蚀刻方法相比,相对好地形成接触孔120。可以通过使用高温等离子体反应,沿着垂直于半导体衬底110的表面流入未反应的反应气体,以防止供应到每个第二绝缘夹层118、第二导电层116和第一绝缘夹层114的反应气体沿着半导体衬底110的表面流动,来进一步改进干法蚀刻方法的蚀刻特性。
用于干法蚀刻方法中的反应气体优选地具有相对于第二绝缘夹层118、第二导电层116和第一绝缘夹层114的每一个的相同或相似的蚀刻速率。此外,在形成接触孔120期间使用的反应气体通常具有在蚀刻停止层112和第二绝缘夹层118,第二导电层116和第一绝缘夹层114之间的优异的蚀刻选择性。
作为一个实例,用于蚀刻第二硬掩模层的反应气体可以包括CF4族化学化合物,用于蚀刻第二绝缘夹层118的反应气体可以是C4F6族化学化合物、用于蚀刻第二导电层116的反应气体可以是CF4族化学化合物、用于蚀刻第一绝缘夹层114的反应气体可以是C4F6族化学化合物、以及用于除去蚀刻停止层的反应气体可以是CH3族化学化合物。这里,在形成接触孔120期间,可以沿着第二绝缘夹层118、第二导电层116或第一绝缘夹层114通过反应气体蚀刻第二硬掩模层。
如果接触孔120的侧壁形成为具有通过在垂直方向上具有优异蚀刻特性的干法蚀刻方法的垂直部分,第二绝缘夹层118的开口、第二导电层116的开口以及第一绝缘夹层114的开口形成为具有相同或相似的尺寸。此外,如果接触孔120的侧壁形成为具有倾斜的表面,第二绝缘夹层118的开口形成为比第二导电层116的开口或者第一绝缘夹层114的开口要宽。
如果第一绝缘夹层114和第二绝缘夹层118通过相似的工序,由相同的材料所构成,通常通过干法蚀刻方法将第一绝缘夹层114的开口不能形成为大于第二绝缘夹层118的开口。
另一方面,如果通过使用干法蚀刻方法,除去由不同材料构成的第二绝缘夹层118和第二导电层116而形成接触孔120,第二导电层116可以比第二绝缘夹层118蚀刻更多,使得第二导电层116的开口形成为大于绝缘夹层118的开口。
优选地,第二导电层116不形成为具有大于绝缘夹层118的开口,由于这可导致随后形成的第三导电层122(如图2G所示)和第四导电层126(如图2H所示)不连接到第二导电层116。
因此,在形成接触孔120期间,优选地将接触孔120形成为上层和下层具有垂直部分,该垂直部分具有相同尺寸的开口,或者上层具有倾斜的表面,该倾斜表面具有大于下层开口的开口。
为了增大通过接触孔120所露出的第一导电层112和第二导电层116的表面阻抗,部分接触孔120可朝向第二导电层116突起。然后,在朝向第二导电层116突起的部分接触孔120上设置将稍后形成的金属硅化物层124(如图2G所示)。如果金属硅化物层124形成为朝向接触孔120的中心部分突起,在接触孔120内,通常在金属硅化物层124上形成第四导电层126,具有空腔,因为由于金属硅化物层124的瓶颈效应,所供应以形成第四导电层126的淀积反应气体可能未流入接触孔120的底。
参照图2F,为了防止金属硅化物124朝向接触孔120的中心部分突起,选择性地除去在接触孔129内露出的部分第二导电层116,以在接触孔120的侧壁中形成凹陷128。典型地,在第一绝缘夹层114和第二绝缘夹层118之间的接触孔120内,形成凹陷128,其具有基本上等于金属硅化物层124的宽度的深度。
在一个实施例中,通过使用包括、过氧化氢和水的溶液作为蚀刻剂的湿法蚀刻方法,蚀刻第二导电层116,其中各个组分的体积比是4∶1∶95。可以使用混合溶液,以大约0.5/秒的蚀刻速率,在大约80℃的温度下蚀刻包括多晶硅的第二导电层116。
该溶液在多晶硅和硅氧化物层之间具有大约10∶1的蚀刻比。因此,该溶液可用于以与第二导电层116相比非常缓慢的速度蚀刻第一绝缘夹层114和第二绝缘夹层118。如果第一导电层112包括多晶硅,通常通过混合溶液以与第二导电层116相似的蚀刻速率来蚀刻。例如,可以使用湿法蚀刻方法,以相同的蚀刻速率蚀刻由接触孔120所露出的第一导电层112和第二导电层116,但是可以以低于第一导电层112的蚀刻速率蚀刻在接触孔120内的插入第一绝缘夹层114和第二绝缘夹层118之间的第二导电层116,该第一导电层112沿着垂直于半导体衬底110的方向形成并在接触孔120的底部露出。
湿法蚀刻方法与混合溶液的流速和与混合溶液接触的多晶硅的面积大小成比例地除去多晶硅。因此,通常比第二导电层116更快地除去第一导电层112。因此,第一导电层112通常形成为具有使得凹陷128的深度远小于第一导电层112的厚度的厚度。
例如,如果第二导电层形成为具有大约800至1000的厚度,在通过混合溶液所露出的第二导电层116中,凹陷128通常形成为具有大约150的深度约300秒。
参照图2G,在接触孔120的侧壁中形成凹陷128之后,在半导体衬底110上形成第三导电层122。为了改进将稍后形成的第四导电层126(如图2H所示)和第一或第二导电层112或116的电特性(例如,欧姆接触阻抗),在第二导电层116的表面上形成金属硅化物层124。
第三导电层122典型地包括例如钛或钨的金属。因此,金属硅化物层124通常包括硅化钛,其中在高温下键合钛和多晶硅。
优选地使用CVD工序与形成钛同时地就地形成硅化钛,或者在形成钛之后,使用溅射方法通过执行单独的热处理工序形成硅化钛。
优选地使用例如氯化钛(TiCl4)的反应气体形成钛层。如果TiCl4反应气体流入凹陷128,在接触孔120的整个内表面上以基本一致的厚度形成钛。高温加热用于形成钛的处理室,以及在第一导电层112或第二导电层116上形成的钛选择性地与多晶硅反应以形成硅化钛层。
硅化钛具有大约反应物钛的两倍或更多的体积,并填充接触孔120内的凹陷128。通常,硅化钛的体积是反应物钛的大约2.22倍。作为一个实例,如果将硅化钛形成为大约100的厚度以填充在接触孔120内的形成为大约150的深度的凹陷128,在接触孔120的侧壁,在部分第一绝缘夹层114和第二绝缘夹层118上将钛形成为具有大约70的厚度。因此,金属硅化物层124与在接触孔120的侧壁上形成的第三导电层122对准。
简言之,使用化学汽相淀积工序,第三导电层122形成为进入在接触孔120的侧壁上形成的凹陷128,并在高温下与第二导电层116反应,以形成在接触孔120内沿着第二导电层116的方向延伸的金属硅化物层124。
替换地,在用于形成钛层的溅射方法中,允许等离子体状态的惰性气体与钛靶(target)相撞击,并且从钛靶分离出的钛原子通过接触孔120落在半导体衬底110上,并在其内淀积。这里,通常钛层从接触孔120的底形成至第二导电层116的水平高度或更高,使得通过物理撞击从钛靶分离的钛原子落入接触孔120,进入凹陷128。
溅射方法可用于沿着平行于半导体衬底110的方向形成金属层,但是当填充接触孔120时,与CVD工序相比具有差的台阶覆盖特性。因此,当在第一导电层112和第二导电层116之间形成的第一绝缘夹层114小于预设厚度时,通常将通过溅射方法形成的钛层形成为填充凹陷128。
通过允许填充凹陷128的钛层在高温下与多晶硅反应,形成硅化钛层。硅化钛层改进例如第二导电层116和钛层之间的欧姆接触特性的电特性。由于钛层通常具有高电阻,其可以用钨层来替换。例如,可以在溅射方法中使用钨靶,以形成钨层。
使用CVD工序而不是溅射方法形成第三导电层122以填充凹陷128,以限制至绝缘夹层114以及第三导电层122的需要厚度。允许包括多晶硅材料的第二导电层116彼此反应以形成金属硅化物层124,由此防止金属硅化物层124从接触孔120的侧壁突起。
参照图2H,在半导体衬底110上形成第四导电层126,以填充接触孔120。第四导电层126电连接第一导电层112和第二导电层116。在第一导电层112和第二导电层116之间的电界面形成的金属硅化物层124改进电特性,例如第一导电层112和第四导电层126之间的欧姆接触特性。
第四导电层126通常包括在第二绝缘夹层118,或第三晶体管的第三有源层或第三栅电极上形成的互连。第四导电层126典型地包括钨或,并使用CVD工序形成。
使用CVD工序形成的第四导电层126可以填充接触孔120,而不在接触孔120的底和金属硅化物层124之间的接触孔120内生成空腔,由于金属硅化物层124不从接触孔120的侧壁突起。例如,执行化学汽相淀积工序,使得将用于形成第四导电层126的反应气体循环地供应到接触孔120。当反应气体流入接触孔120的底或内壁时,生成沉淀物以形成第四导电层126。
由于金属硅化物层124不朝向接触孔120的中心突起,反应气体可以流入接触孔120的底,同时沿着接触孔120的内壁流动。通过反应气体,从接触孔120的底或内壁逐渐将第四导电层126形成为相同或相似的厚度,以填充接触孔120。
在SRAM器件中,由交叉耦连通过填充接触孔120的第四导电层126和金属硅化物层124,将用作负载二极管的多个PMOS晶体管电连接到用作驱动晶体管的多个NMOS晶体管。
因此,在根据本发明的所选择实施例制造的半导体器件的方法中,通过选择性地蚀刻在接触孔120的侧壁上露出的第二导电层116,形成凹陷128,并且金属硅化物层124形成为填充凹陷128。防止金属硅化物层124朝向接触孔120的中心部分突起,以避免在用第四导电层126掩埋接触孔120时,在第一导电层112和第二导电层116之间的第四导电层126中生成空腔。通过防止形成空腔,可以避免器件中的电特性的恶化,并且可以增加或者最大化产量。
在上面参照在附图中示出的多个示例性实施例描述了本发明。然而,本领域技术人员将理解,可以做出这些实施例中的细节上的各种改变,而不背离本发明的范围。例如,除了在接触孔129内露出的第一导电层112或第二导电层116,可以形成另一导电层。此外,除了第三导电层122或第四导电层126之外,可以使另一用导电层来填充接触孔120。
如上所述,可以选择性地蚀刻在接触孔的侧壁上露出的第二导电层,以形成凹陷,并可将金属硅化物层形成为具有预设深度以填充凹陷。由于金属硅化物层不从接触孔的侧壁朝向其中心部分突起,可以形成第四导电层以掩埋接触孔,而没有空腔,因此,可以避免半导体器件中的电特性的恶化,由此增加或者最大化产量。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈