首页 / 专利库 / 成型和铸造 / 中空吹塑成型 / 拉伸吹塑 / 双轴拉伸吹塑成型容器及其生产方法

双轴拉伸吹塑成型容器及其生产方法

阅读:1022发布:2020-05-22

专利汇可以提供双轴拉伸吹塑成型容器及其生产方法专利检索,专利查询,专利分析的服务。并且一种双轴 拉伸吹塑 成型容器,其具有由 萘 二 甲酸 丙二酯型聚酯 树脂 制成的层,其中在至少所述容器主体部中的萘二甲酸丙二酯型聚酯树脂层满足以下之一或二者:(i)在DSC中,所述层具有热值Tc1为10J/g以下;和(ii)在动态粘弹性分析中,所述层具有tanδ最高 温度 为90℃以上和tanδ最大值为0.4以下。所述双轴拉伸吹塑成型容器能够有效地具有萘二甲酸丙二酯型聚酯树脂中固有的优良气体阻隔性。,下面是双轴拉伸吹塑成型容器及其生产方法专利的具体信息内容。

1.一种双轴拉伸吹塑成型容器,其具有甲酸丙二酯型 聚酯树脂层,其中在至少所述容器主体部中的所述萘二甲酸丙 二酯型聚酯树脂层满足以下之一或二者:
(i)在DSC测量中Tc1热值为不大于10J/g;和
(ii)在动态粘弹性测量中,
tanδ最高温度≥90℃和
tanδ最大值≤0.4。
2.根据权利要求1所述的双轴拉伸吹塑成型容器,其中所 述萘二甲酸丙二酯型聚酯树脂为均聚萘二甲酸丙二酯。
3.根据权利要求1所述的双轴拉伸吹塑成型容器,其具有 多层结构,所述多层结构包括所述萘二甲酸丙二酯型聚酯树脂 的中间层,和对苯二甲酸乙二酯型聚酯树脂的内层和外层。
4.根据权利要求3所述的双轴拉伸吹塑成型容器,其中在 加热处理所述对苯二甲酸乙二酯型聚酯树脂层时,所述对苯二 甲酸乙二酯型聚酯树脂具有固有粘度差为不小于0.25dL/g。
5.根据权利要求3所述的双轴拉伸吹塑成型容器,其中所 述萘二甲酸丙二酯型聚酯树脂层具有0.1至15%的相对于所述 容器主体部全部层厚度的厚度比。
6.根据权利要求1所述的双轴拉伸吹塑成型容器,其中所 述底部形状为耐压形状。
7.一种用于生产双轴拉伸吹塑成型容器的方法,所述双轴 拉伸吹塑成型容器通过将具有萘二甲酸丙二酯型聚酯树脂层的 预制品进行以下任一步骤来生产:(i)在拉伸温度为110至130℃ 下将所述预制品双轴拉伸吹塑成型,(ii)在于90至150℃下加热 的金属模具中将所述预制品双轴拉伸吹塑成型,接着热定形, 或(iii)在于90至150℃下加热的金属模具中在拉伸温度为110至 130℃下将所述预制品双轴拉伸吹塑成型,接着热定形。
8.根据权利要求7所述的用于生产双轴拉伸吹塑成型容器 的方法,其中所述预制品具有萘二甲酸丙二酯型聚酯树脂的中 间层,和对苯二甲酸乙二酯型聚酯树脂的内层和外层。
9.一种用于生产再生聚酯树脂的方法,所述再生聚酯树脂 通过以下生产:将通过粉碎根据权利要求4所述的双轴拉伸吹塑 成型多层容器获得的薄片熔融挤出,以再生具有雾度不高于 5%,厚度3mm的注塑成型板。

说明书全文

技术领域

发明涉及具有甲酸丙二酯(trimethylene naphthalate) 型聚酯树脂层的双轴拉伸吹塑成型容器及其生产方法。更具体 地,本发明涉及具有优良气体阻隔性(gas-barrier property)并能 够优良地再生的双轴拉伸吹塑成型容器及其生产方法。

背景技术

迄今为止,已将功能性树脂用于赋予双轴拉伸吹塑成型容 器以功能如气体阻隔性等。例如,已提出多种多层容器,其包 括聚酯树脂如聚对苯二甲酸乙二酯的内外层和树脂组合物的中 间层,所述树脂组合物包括气体阻隔树脂例如乙烯/乙烯基醇共 聚物或聚酰胺树脂、化性有机组分和过渡金属催化剂。
另一方面,关于包含聚酯树脂的容器,现代趋势是使该容 器再生。因此,从该观点,期望容器作为整体包括聚酯树脂, 因此,不使用除了聚酯树脂之外的树脂或树脂组合物。因此, 期望在多层容器中,形成中间层的功能性树脂或树脂组合物也 为聚酯树脂。
还已知聚萘二甲酸丙二酯作为具有优良耐热性、气体阻隔 性,特别是二氧化气体阻隔性的功能性聚酯树脂。此外,已 提出具有聚对苯二甲酸乙二酯树脂层和聚萘二甲酸丙二酯树脂 层的聚酯多层片(专利文献1、2)和包含对苯二甲酸乙二酯型聚 酯树脂、聚萘二甲酸丁二酯和聚萘二甲酸丙二酯的共混物的单 层瓶(专利文献3)。
即,聚萘二甲酸丙二酯型聚酯树脂为具有接近于聚对苯二 甲酸乙二酯热性质的热性质的聚酯树脂,此外,与迄今使用的 层压在聚对苯二甲酸乙二酯上的其它种类气体阻隔树脂相比, 聚萘二甲酸丙二酯型聚酯树脂具有提供更优良的热成型性的优 良气体阻隔性。此外,聚萘二甲酸丙二酯型聚酯树脂为与聚对 苯二甲酸乙二酯相同的聚酯树脂。因此,同样使用聚对苯二甲 酸乙二酯的其多层容器适合于优良地再生。
专利文献1:JP-A-2000-296593
专利文献2:JP-A-2001-038866
专利文献3:欧洲专利申请特开1650260

发明内容

发明要解决的问题
然而,已了解到:依赖于成型方法,具有聚萘二甲酸丙二 酯层的容器不能经常显示聚萘二甲酸丙二酯的优良气体阻隔 性。
用于评价再生树脂的材料评价基准包括:(i)组成材料从卫 生标准和安全(卫生性)观点没有问题,(ii)该材料通过用洗涤 不变色、变质或劣化(对再生处理的适应性),和(iii)该材料满足 评价再利用适应性的基准。包含聚萘二甲酸丙二酯和聚对苯二 甲酸乙二酯的多层容器能够满足上述(i)和(ii),但关于上述点 (iii)仍不令人满意。即,聚萘二甲酸丙二酯和聚对苯二甲酸乙 二酯彼此不相容。因此,即使通过简单地进行粉碎和熔融将它 们进行再生处理,其共混物也变为状,从其不能再生透明制 品。
为了解决上述问题,意欲提高在再生处理时共混物的热负 荷以促进聚萘二甲酸丙二酯和聚对苯二甲酸乙二酯的酯交换反 应,然而,导致分子量降低以及色调恶化。可进一步设计添加 酯交换反应催化剂,然而,从材料成本观点,这是不期望的。
因此,本发明的目的在于提供通过使用萘二甲酸丙二酯型 聚酯树脂的双轴拉伸吹塑成型容器及其生产方法,所述双轴拉 伸吹塑成型容器有效地显示萘二甲酸丙二酯型聚酯树脂的优良 气体阻隔性。
本发明的另一目的在于提供由具有萘二甲酸丙二酯型聚酯 树脂和对苯二甲酸乙二酯型聚酯树脂的层的多层容器生产具有 优良透明性的再生聚酯树脂的方法。
用于解决问题的方案
根据本发明,提供具有萘二甲酸丙二酯型聚酯树脂层的双 轴拉伸吹塑成型容器,其中在至少所述容器主体部中的萘二甲 酸丙二酯型聚酯树脂层满足以下之一或二者:
(i)在DSC测量中Tc1热值为不大于10J/g;和
(ii)在动态粘弹性测量中,
tanδ最高温度≥90℃和
tanδ最大值≤0.4。
此处,通过DSC测量的Tc1热值表示如通过使用差示扫描量 热计(DSC)测量的伴随结晶在放热峰处的热值。
在本发明的双轴拉伸吹塑成型容器中,期望以下:
1.萘二甲酸丙二酯型聚酯树脂为均聚萘二甲酸丙二酯;
2.双轴拉伸吹塑成型容器具有多层结构,所述多层结构 包括萘二甲酸丙二酯型聚酯树脂的中间层,和对苯二甲酸乙二 酯型聚酯树脂(下文通常称为PET)的内层和外层;
3.在热处理对苯二甲酸乙二酯型聚酯树脂层时,在多层 结构中的对苯二甲酸乙二酯型聚酯树脂具有固有粘度差为不小 于0.25dL/g;
4.在多层结构中的萘二甲酸丙二酯型聚酯树脂层具有0.1 至15%的相对于容器主体部的全部层厚度的厚度比;和
5.底部形状为耐压形状。
根据本发明,进一步提供用于生产双轴拉伸吹塑成型容器 的方法,所述双轴拉伸吹塑成型容器通过使具有萘二甲酸丙二 酯型聚酯树脂层的预制品进行以下任一步骤来生产:(i)在拉伸 温度为110至130℃下将所述预制品双轴拉伸吹塑成型,(ii)在于 90至150℃下加热的金属模具中将所述预制品双轴拉伸吹塑成 型,接着热定形,或(iii)在于90至150℃下加热的金属模具中在 拉伸温度为110至130℃下将所述预制品双轴拉伸吹塑成型,接 着热定形。
在用于生产本发明双轴拉伸吹塑成型容器的方法中,期望 预制品具有萘二甲酸丙二酯型聚酯树脂的中间层和对苯二甲酸 乙二酯型聚酯树脂的内层和外层。
根据本发明,进一步提供用于生产再生聚酯树脂的方法, 所述方法如下:将通过粉碎双轴拉伸吹塑成型多层容器获得的 薄片熔融挤出,从而再生具有雾度为不高于5%,厚度3mm的注 塑成型板。
发明的效果
具有本发明萘二甲酸丙二酯型聚酯树脂层的双轴拉伸吹塑 成型容器有效地显示萘二甲酸丙二酯型聚酯树脂中固有的优良 气体阻隔性。因此,即使通过形成具有小厚度的萘二甲酸丙二 酯型聚酯树脂层,也能够有效地显示气体阻隔性。
此外,萘二甲酸丙二酯型聚酯树脂具有特别优良的二氧化 碳气体阻隔性。因此,具有特别优良耐压性的容器能够通过以 由所谓花瓣形(petaloid shape)表示的耐压形状形成其底部来获 得。
在本发明的双轴拉伸吹塑成型容器中,由本发明双轴拉伸 吹塑成型容器具有的优良气体阻隔性通过使用两个参数,即, 通过在动态粘弹性(DMA)测量中的tanδ的最大值和tanδ的最高 温度或通过差示扫描量热计(DSC)的热值来定量规定。因此, 即使当难以选取均匀样品时,也能够容易地评价气体阻隔性。
此外,具有本发明的萘二甲酸丙二酯型聚酯树脂和对苯二 甲酸乙二酯型聚酯树脂的层的多层容器的特征在于优良的层间 粘合性,此外,其适合于再生。
此外,根据本发明的用于生产双轴拉伸吹塑成型容器的方 法,使得可以生产具有上述特征的双轴拉伸吹塑成型容器。
此外,根据本发明的用于生产再生聚酯树脂的方法,对苯 二甲酸乙二酯型聚酯树脂和萘二甲酸丙二酯型聚酯树脂的酯交 换反应能够通过有效利用在对苯二甲酸乙二酯型聚酯树脂中也 不丧失活性的催化剂来促进。因此,能够生产具有优良透明性 的再生聚酯树脂。
通过本发明的方法再生的再生树脂具有优良的透明性;即, 在温度300℃下注塑成型的3mm厚板具有雾度为不高于5%,还 包含萘二甲酸丙二酯型聚酯树脂,因此,显示优良的气体阻隔 性。
附图说明
[图1]为在实施例中制备的双轴拉伸吹塑成型容器的侧面 图。
[图2]为示出本发明双轴拉伸吹塑成型容器的多层结构的 截面图。
[图3]为示出本发明双轴拉伸吹塑成型容器的多层结构的 截面图。

具体实施方式

在具有本发明萘二甲酸丙二酯型聚酯树脂层的双轴拉伸吹 塑成型容器中,重要特征在于,在至少容器主体部中的萘二甲 酸丙二酯型聚酯树脂层满足:在DSC测量中Tc1热值为不大于 10J/g和/或在动态粘弹性测量中tanδ最高温度为不低于90℃和 tanδ最大值为不大于0.4。
发明人已发现以下事实:具有萘二甲酸丙二酯型聚酯树 脂层的容器的气体阻隔性依赖于容器中萘二甲酸丙二酯型聚酯 树脂的结晶度而变化,以及在DSC测量中的Tc1热值和在动态粘 弹性测量中的tanδ值与萘二甲酸丙二酯型聚酯树脂的气体阻隔 性具有相关性。
即,尽管要求不同方法来测量它们,但在DSC测量中的Tc1 热值和在动态粘弹性测量中的tanδ值为包括树脂结晶度数据的 参数。本发明基于以下发现:优良的气体阻隔性能够通过具有 萘二甲酸丙二酯型聚酯树脂层的容器来显示,所述萘二甲酸丙 二酯型聚酯树脂层满足以下之一或二者:在DSC测量中的Tc1 热值为不大于10J/g,或在容器主体部的动态粘弹性测量中的 tanδ最高温度为不低于90℃和tanδ最大值为不大于0.4。
此外,DSC测量和动态粘弹性测量在至少容器主体部中进 行。这是因为主体部在容器其它部位中拉伸最大,并且可以明 确地测量由于拉伸导致的影响。
此处,在动态粘弹性(DMA)测量中的tanδ值为通过将弹性 损耗模量E″除以贮存弹性模量E′获得的值,该值表示贡献损耗 组分的非晶部与贡献贮存组分的结晶部的比例。因此,其绝对 值越小,结晶度越高。此外,tanδ最高温度越高,在非晶部中 的拉伸和收缩(constraint)的比例越高。即,通过结晶诱导在非 晶部中聚合物链更多拉伸和收缩,由此玻璃化转变温度明显升 高,用作气体用传输通道(transmission passage)的所谓自由体积 (free volume)减少。因此,本发明的双轴拉伸吹塑成型容器显 示优良的气体阻隔性。
具有本发明萘二甲酸丙二酯型聚酯树脂层的双轴拉伸吹塑 成型容器可通过以下生产方法生产,所述方法为将具有萘二甲 酸丙二酯型聚酯树脂层的预制品进行以下任一步骤:(i)在拉伸 温度为110至130℃下将所述预制品双轴拉伸吹塑成型,(ii)在于 90至150℃下加热的金属模具中将所述预制品双轴拉伸吹塑成 型,接着热定形,或(iii)在于90至150℃下加热的金属模具中在 拉伸温度为110至130℃下将所述预制品双轴拉伸吹塑成型,接 着热定形。
本发明人已发现:萘二甲酸丙二酯型聚酯树脂在能够实现 拉伸的整个温度范围内显示大幅变化的气体阻隔性,以及通过 在低温下拉伸萘二甲酸丙二酯型聚酯树脂获得的制品显示差的 气体阻隔性。即,在具有萘二甲酸丙二酯型聚酯树脂层的双轴 拉伸吹塑成型容器的形成中,如果在用于成型包含常规聚酯树 脂的双轴拉伸吹塑成型容器的拉伸条件和热定形条件下进行成 型,则在DSC测量中的Tc1热值和在动态粘弹性测量中的tanδ值 均不在上述范围内。结果,获得的容器不能完全显示萘二甲酸 丙二酯型聚酯树脂具有的优良气体阻隔性。
从稍后描述的实施例的结果这将变得显而易见。当拉伸温 度位于上述范围内时(实施例1),当双轴拉伸吹塑成型通过使用 在上述温度范围内的金属模具来进行,接着热定形时(实施例 4),和当拉伸温度位于上述范围内,并且双轴拉伸吹塑成型通 过使用在上述温度范围内的金属模具来进行,接着热定形时(实 施例2、3、5和6),在DSC测量中的Tc1热值和/或在动态粘弹性 测量中的tanδ值全部在本发明的范围内,并获得优良的二氧化 碳气体阻隔性和氧阻隔性。然而,当拉伸温度不位于上述范围 内,双轴拉伸吹塑成型在上述温度范围之外的温度下进行,接 着热定形时(比较例1和3),在DSC测量中的Tc1热值和在动态粘 弹性测量中的tanδ值均不在本发明范围内,不能充分地显示萘 二甲酸丙二酯型聚酯树脂中固有的优良气体阻隔性。
在具有萘二甲酸丙二酯型聚酯树脂的中间层和对苯二甲酸 乙二酯型聚酯树脂的内外层的多层双轴拉伸吹塑成型容器中, 当对苯二甲酸乙二酯型聚酯树脂在加热处理时具有固有粘度差 为不小于0.25dL/g时,可将通过粉碎双轴拉伸吹塑成型容器获 得的薄片熔融挤出以再生具有雾度为不高于5%的3mm厚的注 塑成型板。
如上所述,萘二甲酸丙二酯型聚酯树脂和对苯二甲酸乙二 酯型聚酯树脂通常彼此不相容。因此,即使将具有萘二甲酸丙 二酯型聚酯树脂层和对苯二甲酸乙二酯型聚酯树脂层的多层容 器简单粉碎和熔融,其混合物也经历相分离并变成云状。
在本发明的用于生产再生聚酯树脂的方法中,重要特征在 于:将热处理前后具有固有粘度差为不小于0.25dL/g的对苯二 甲酸乙二酯型聚酯树脂用于具有萘二甲酸丙二酯型聚酯树脂层 和对苯二甲酸乙二酯型聚酯树脂层的多层容器。这使得可以生 产没有上述问题的再生聚酯树脂。
即,在热处理时产生固有粘度差为不小于0.25dL/g的对苯 二甲酸乙二酯型聚酯树脂意指在对苯二甲酸乙二酯型聚酯树脂 中的缩聚催化剂仍未丧失活性。结果,在对苯二甲酸乙二酯型 聚酯树脂中的缩聚催化剂起到酯交换反应催化剂的作用,所述 酯交换反应催化剂用于使萘二甲酸丙二酯型聚酯树脂和对苯二 甲酸乙二酯型聚酯树脂在再生处理中彼此相容。因此,萘二甲 酸丙二酯型聚酯树脂和对苯二甲酸乙二酯型聚酯树脂的共混物 不经历相分离并能够以透明形式获得。
用于测量固有粘度差的热处理条件如下所述。即,将热处 理在真空中在150℃下进行4小时,在真空中在210℃下又进行5 小时,以测量热处理前后对苯二甲酸乙二酯型聚酯树脂的固有 粘度差。
从稍后描述的实施例的结果,用于生产本发明再生聚酯方 法的上述作用和效果将变得显而易见。
即,当再生聚酯树脂通过使用在热处理前后具有固有粘度 差为不小于0.25dL/g的对苯二甲酸乙二酯型聚酯树脂生产的本 发明双轴拉伸吹塑成型多层容器来生产时,再生聚酯树脂显示 特征为优良透明性的不高于5%的雾度(实施例7和8)。然而,当 再生聚酯树脂通过使用在热处理前后具有固有粘度差为小于 0.25dL/g的对苯二甲酸乙二酯型聚酯树脂生产的本发明的双轴 拉伸吹塑成型多层容器来生产时,再生聚酯树脂具有超过5%的 雾度,从透明性的观点,不满足再利用适用性的评价基准。
(萘二甲酸丙二酯型聚酯树脂)
期望用于本发明的萘二甲酸丙二酯型聚酯树脂以不小于 50mol%,特别地不小于80mol%的量包含2,6-萘二甲酸作为二羧 酸组分,以不小于50mol%,特别地不小于80mol%的量包含1,3- 丙二醇作为二醇组分。从气体阻隔性的观点,特别期望萘二甲 酸丙二酯型聚酯树脂为均聚萘二甲酸丙二酯。
作为除2,6-萘二甲酸之外的二羧酸,可示例2,7-萘二甲酸、 1,5-萘二甲酸、1,4-萘二甲酸、对苯二甲酸、间苯二甲酸、丁二 酸、己二酸、癸二酸和邻苯二甲酸。
作为除1,3-丙二醇之外的二醇组分,可示例乙二醇、1,2- 丙二醇、1,4-丁二醇、四亚甲基二醇、六亚甲基二醇、新戊二 醇、八亚甲基二醇、1,6-己二醇、二甘醇、三甘醇、环己烷二 甲醇、双酚A的环氧乙烷加合物、甘油和三羟甲基丙烷。
此外,用于本发明的萘二甲酸丙二酯型聚酯树脂为通过常 规聚合方法生产的萘二甲酸丙二酯型聚酯树脂。
此外,萘二甲酸丙二酯型聚酯树脂可以以不大于50重量% 的量与其它聚酯树脂如聚对苯二甲酸乙二酯、聚对苯二甲酸丁 二酯或聚间苯二甲酸乙二酯共混。
期望萘二甲酸丙二酯型聚酯树脂具有通过使用重量比为 1∶1的苯酚/四氯乙烷混合溶剂在30℃下测量的在0.3至1.0dL/g范 围内的固有粘度。
(对苯二甲酸乙二酯型聚酯树脂)
作为形成本发明多层容器内外层的对苯二甲酸乙二酯型聚 酯树脂,可使用其中不小于80mol%,特别是不小于95mol%的 二羧酸组分为对苯二甲酸,和不小于80mol%,特别是不小于 95mol%的二醇组分为乙二醇的对苯二甲酸乙二酯型聚酯树脂。 特别地,从机械性质和热性质的观点,期望对苯二甲酸乙二酯 型聚酯树脂为均聚对苯二甲酸乙二酯。
作为除了对苯二甲酸之外的羧酸组分,可示例间苯二甲酸、 萘二甲酸、对-β-氧乙氧基苯甲酸、联苯基-4,4′-二羧酸、二苯氧 乙烷-4,4′-二甲酸、间苯二酸-5-磺酸钠(5-sodium sulfoisophthalic acid)、六氢对苯二甲酸、己二酸和癸二酸。
作为除了乙二醇之外的二醇组分,可示例1,4-丁二醇、丙 二醇、新戊二醇、1,6-己二醇、二甘醇、三甘醇、环己烷二甲 醇、双酚A的环氧乙烷加合物、甘油和三羟甲基丙烷。
此外,上述二羧酸组分和二醇组分可以包括三官能以上的 高官能多元酸和多元醇,例如,多元酸如偏苯三酸、均苯四酸、 1,2,3-苯三甲酸(hemimellitic acid)、1,1,2,2-乙烷四羧酸、1,1,2- 乙烷三羧酸、1,3,5-戊烷三羧酸、1,2,3,4-环戊烷四羧酸和联苯 基-3,4,3’,4’-四羧酸;多元醇如季戊四醇、甘油、三羟甲基丙烷、 1,2,6-己三醇、山梨醇和1,1,4,4-四(羟甲基)环己烷。
期望用于本发明多层容器的聚酯树脂具有通过使用重量比 为1∶1的苯酚/四氯乙烷混合溶剂在30℃下测量的在0.4至1.5dL/g 范围内的固有粘度。
此外,特别期望用于本发明多层容器的对苯二甲酸乙二酯 型聚酯树脂在热处理前后具有固有粘度差为不小于0.25dL/g, 特别是在0.25至0.5dL/g范围内,所述热处理如上所述在真空中 在150℃下进行4小时和在真空中在210℃下又进行5小时。作为 不丧失催化活性的对苯二甲酸乙二酯型聚酯树脂,期望使用除 了耐热级(grade)的那些之外的对苯二甲酸乙二酯型聚酯树脂, 例如,使用耐压级的对苯二甲酸乙二酯型聚酯树脂,这是因为 耐热级的对苯二甲酸乙二酯型聚酯树脂通常丧失催化活性。
形成本发明内外层的聚酯树脂可根据已知配方,在它们不 损害最终成型制品质量的范围内,与例如以下的本身是已知的 树脂用共混剂(blending agent)共混:着色剂、抗氧化剂、稳定 剂、各种抗静电剂、脱模剂(parting agent)、润滑剂和成核剂。
(双轴拉伸吹塑成型容器)
本发明的双轴拉伸吹塑成型容器可为萘二甲酸丙二酯型聚 酯树脂的单层容器,或可为具有萘二甲酸丙二酯型聚酯树脂层 以及其它树脂层,或优选对苯二甲酸乙二酯型聚酯树脂层的多 层容器,只要该容器具有萘二甲酸丙二酯型聚酯树脂层即可。
多层容器可采用多种层构成,只要其具有对苯二甲酸乙二 酯型聚酯树脂的内外层,和至少一层萘二甲酸丙二酯型聚酯树 脂的中间层即可。如图2所示,多层容器可以具有以下的层构成: 在对苯二甲酸乙二酯型聚酯树脂的内层1和外层2之间具有萘二 甲酸丙二酯型聚酯树脂的中间层3。或者,如图3所示,多层容 器可以具有包括以下的层构成:对苯二甲酸乙二酯型聚酯树脂 的内层1和外层2,以及在对苯二甲酸乙二酯型聚酯树脂的内层1 和对苯二甲酸乙二酯型聚酯树脂的中间层4之间及在对苯二甲 酸乙二酯型聚酯树脂的外层2和对苯二甲酸乙二酯型聚酯树脂 的中间层4之间的萘二甲酸丙二酯型聚酯树脂的两层中间层3a 和3b。
具有萘二甲酸丙二酯型聚酯树脂层的本发明容器的特征在 于优良的气体阻隔性,特别是二氧化碳气体阻隔性,并能够有 利地用作用于容纳碳酸饮料的耐压性容器。因此,期望双轴拉 伸吹塑成型容器,特别是本发明的瓶具有如图1所示的所谓花瓣 形底部,或具有已知耐压形的底部如具有在其中心形成的凹部 的原野形(champaign shape)。
此外,如上所述,与用于耐热性容器的对苯二甲酸乙二酯 型聚酯树脂不同,用于耐压性容器的对苯二甲酸乙二酯型聚酯 树脂包含仍不丧失其活性的缩聚催化剂。因此,热处理前后的 固有粘度差位于上述范围内。因此,本发明的耐压性多层容器 适合用于生产本发明的再生聚酯树脂。
在本发明的双轴拉伸吹塑成型容器中,在萘二甲酸丙二酯 型聚酯树脂单层容器的情况下,期望主体部厚度位于50至 5000μm范围内,虽然其可根据容器的体积(重量)和容器的用途 而变化。
此外,在多层容器的情况下,期望萘二甲酸丙二酯型聚酯 树脂层厚度为容器主体部中全部厚度的0.1至15%的范围内。如 果萘二甲酸丙二酯型聚酯树脂层厚度小于上述范围,则不能得 到充分的气体阻隔性。另一方面,如果萘二甲酸丙二酯型聚酯 树脂层厚度大于上述范围,导致在经济和在再生树脂方面的缺 点。
在生产多层容器中,尽管通常不需要,但可以在树脂层之 间插入粘结剂树脂。作为粘结剂树脂,可示例热塑性树脂,所 述热塑性树脂以1至700毫当量(meq)/100克树脂,特别是10至 500meq/100克树脂的浓度在其主链或侧链上含有基于羧酸、羧 酸酐、羧酸盐、羧酸酰胺或羧酸酯的羰基(-CO-)基团。粘结剂 树脂的优选实例包括乙烯/丙烯酸共聚物、离子交联的烯共聚 物、来酸酐接枝聚乙烯、马来酸酐接枝聚丙烯、丙烯酸接枝 聚烯烃、乙烯/醋酸乙烯酯共聚物和共聚合的聚酯。
(用于生产双轴拉伸吹塑成型容器的方法)
本发明的双轴拉伸吹塑成型容器能够通过使用萘二甲酸丙 二酯型聚酯树脂的单层预制品或通过使用上述多层预制品通过 常规双轴拉伸吹塑成型方法来形成。这里,在进行双轴拉伸吹 塑成型中,重要特征在于使用以下任一步骤:(i)在拉伸温度为 110至130℃,特别是110至120℃下双轴拉伸吹塑成型,(ii)在90 至150℃,特别是90至120℃下加热的金属模具中双轴拉伸吹塑 成型,接着热定形,或(iii)在90至150℃,特别是90至120℃下加 热的金属模具中在拉伸温度为110至130℃,特别是110至120℃ 下双轴拉伸吹塑成型,接着热定形。此处,预制品加热温度, 即,拉伸温度是即将在拉伸吹塑成型之前预制品表面上的温度, 其能够通过使用辐射温度计、热图像测量仪等来测量。
多层预制品能够通过例如以下的已知成型方法来生产:将 萘二甲酸丙二酯型聚酯树脂和对苯二甲酸乙二酯型聚酯树脂共 挤出的共挤出成型法;同时将萘二甲酸丙二酯型聚酯树脂和对 苯二甲酸乙二酯型聚酯树脂注塑入金属模具中的同时注塑成型 法;将对苯二甲酸乙二酯型聚酯树脂、萘二甲酸丙二酯型聚酯 树脂和对苯二甲酸乙二酯型聚酯树脂顺序注塑入金属模具中的 顺序注塑法;或通过使用芯模具(core mold)和腔模具(cavity mold)将萘二甲酸丙二酯型聚酯树脂和对苯二甲酸乙二酯型聚 酯树脂的共挤出产物压缩成型的压缩成型法。
当采用这些体系的任一种时,成型的预制品应保持在过冷 状态下,即,无定形状态下。此外,期望将萘二甲酸丙二酯型 聚酯树脂的中间层封入对苯二甲酸乙二酯型聚酯树脂的内层和 外层中。
期望通过冷型坯体系(cold parison system)进行成型多层预 制品和拉伸吹塑成型。然而,也允许采用热型坯体系,所述热 型坯体系进行拉伸吹塑成型而不完全冷却成型的多层预制品。
在进行拉伸吹塑成型之前,通过如热、红外线加热器或 高频(h-f)感应加热的方式将预制品预加热至拉伸温度。在如上 所述本发明中,重要的是通过在110至130℃、尤其是110至120℃ 的温度(所述温度高于在通常拉伸吹塑成型对苯二甲酸乙二酯 型聚酯树脂时的温度)下通过加热来拉伸成型预制品。
即,如果预制品的温度低于上述温度,则使得沿预制品厚 度方向存在低温部分,并且不能在全部层内充分地显示萘二甲 酸丙二酯型聚酯树脂的气体阻隔性。另一方面,如果预制品温 度高于上述范围,预制品软化,并且在拉伸吹塑成型时偏离预 制品中心,劣化成型性,导致所得的多层容器厚度变得不均匀, 导致预制品在拉伸吹塑成型之前结晶,使其难以进行成型。
在本发明中,在上述拉伸温度下预加热预制品以加热预制 品中,预制品也可以通过将在高温下加热的加热体插入预制品 中以从内部加热预制品来有效地加热。期望用于内部加热的加 热体温度在200至600℃范围内。通常,在预加热预制品时,进 行加热1至120秒。
将加热的预制品供给至已知拉伸吹塑成型机中,放置在金 属模具中,通过推入拉伸棒而沿轴向张拉伸 (tension-stretched),并通过吹动流体沿周向拉伸。此处,在本 发明中,重要的是金属模具温度在90至150℃,尤其是90至120℃ 范围内,预制品在与金属模具表面接触时热定形。即,如果金 属模具温度低于上述温度,则吹入大气的温度降低,在预制品 外表面附近出现低温部分,不能充分地显示萘二甲酸丙二酯型 聚酯树脂的气体阻隔性。另一方面,如果该温度高于上述范围, 则预制品在被拉伸吹塑成型前结晶,不能成型。进行热定形的 时间期望为0.5至5秒。
此外,为了防止吹入大气的温度降低,期望吹入在90至 200℃下加热的热风。
期望作为最终产品的双轴拉伸吹塑成型容器的拉伸比为作 为面积比为1.5至25倍,作为沿轴向的拉伸比为1.2至6倍,作为 沿周向的拉伸比为1.2至4.5倍。
用于生产本发明双轴拉伸吹塑成型容器的方法采用上述(i) 或(ii),或者采用包括(i)和(ii)两者的(iii),使得可以生产具有上 述特性的双轴拉伸吹塑成型容器。
(用于生产再生聚酯树脂的方法)
用于生产本发明再生聚酯树脂的方法可如下进行:如上所 述,根据常规方法,但使用具有萘二甲酸丙二酯型聚酯树脂层 和对苯二甲酸乙二酯型聚酯树脂层的本发明多层双轴拉伸吹塑 成型容器,所述对苯二甲酸乙二酯型聚酯树脂层热处理前后具 有固有粘度差为不小于0.25dL/g。
即,将洗净后的多层容器粉碎成最大直径为约5至约20mm 的薄片。此后,在以对苯二甲酸乙二酯型聚酯树脂的熔点(Tm) 作为基准的Tm+20至Tm+50℃范围内的温度下和在挤出机中滞 留时间为0.5至10分钟的条件下,将薄片熔融捏合 (melt-kneaded)。其后,将熔融树脂挤出为任何期望的形式如颗 粒(pellets)、纤维、片或膜。
在本发明的再生方法中,对苯二甲酸乙二酯型聚酯树脂包 含缩聚催化剂,所述缩聚催化剂仍不丧失其活性并能够起到促 进萘二甲酸丙二酯型聚酯树脂和对苯二甲酸乙二酯型聚酯树脂 之间的酯交换反应的作用。因此,虽然催化剂不必须特别添加, 但自然可使用少量酯交换反应催化剂,以有效地进行再生。
此外,在熔融捏合时,如果需要,可根据已知配方将上述 树脂用共混剂共混。
实施例
[测量]
1.测量Tc1热值。
将聚萘二甲酸丙二酯树脂层从瓶主体部切出,并通过使用 差示扫描量热计(EXSTAR6000DSC:Seiko Instruments Co.制造) 测量当温度以10℃/min的速率从20℃升至290℃时,在100℃附 近观察到的其在结晶峰处的热值(Tc1)。
2.动态粘弹性测量中的Tanδ。
将聚萘二甲酸丙二酯树脂层从瓶主体部切出。将尺寸为 10mm宽和30mm长的试验片切出,以使得长度方向为瓶的高度 方向,并通过使用粘弹性分光计(EXSTAR6000 DMS:Seiko Instruments Co.制造)在以下条件下测量。根据样品的尺寸和厚 度适当调整最小张力和标点间距离(gauge length)。Tanδ最大值 和tanδ最高温度从所得tanδ曲线导出。
测量模式:拉伸正弦模式
试验片的标点间距离:5至20mm
频率:1Hz
最小张力:50至100mN
升温曲线(profile):以2℃/min的速率从25℃升至210℃。
3.测量二氧化碳气体阻隔性。
将所需量的引入瓶中,以使初始内压为0.4MPa,将瓶 使用具有隔膜(septum)的盖密封。将该瓶在25℃50%RH条件 下贮存,每两周测量瓶中的内压直到经过12周。从每2周全部12 周绘制的内压曲线,压力下降直线的梯度通过最小二乘法得到, 并将其用作二氧化碳气体阻隔性的指标。
4.测量热处理前后对苯二甲酸乙二酯型树脂的固有粘度。
*热处理前样品的制备。
将聚对苯二甲酸乙二酯树脂从瓶口部切出,并测量其固有 粘度。
*热处理后样品的制备。
将聚对苯二甲酸乙二酯树脂从瓶口部切出,并通过使用冷 冻粉碎机(freeze pulverizer)(JFC-300,Nihon Bunseki Kogyo Co. 制造)粉碎。其后,其粗颗粒通过使用筛网(mesh)(孔尺寸710μm) 除去,将粉末薄薄地敷在由铝箔制成的实验盘(laboratory dish) 中。将实验盘放入程序真空烘箱(VOS-450VD,Tokyo Rika Kikai Co.制造)中,在真空(1托(Toll)以下)中在150℃下保持4小时后, 在真空中在210℃下热处理5小时。
*测量固有粘度。
通过使用乌氏毛细管粘度计,测量热测量处理前后样品的 固有粘度。测量条件如下:
溶剂组成:苯酚:1,1,2,2-四氯乙烷=1∶1(重量比)
测量温度:30℃
哈金斯(Huggins)常数:0.33
5.雾度。
将成型瓶通过使用塑料粉碎机(Horai Co.)粉碎成薄片。筛 网尺寸为直径8mm。通过使用排气式双螺杆挤出机[TEM35B, Toshiba Kikai Co.制造],将薄片熔融挤出(预设温度为290℃)成 链,通过使用包括冷却箱、冷却输送机和切割机的造粒设备 从所述链获得无定形再生聚酯树脂颗粒。接着,通过使用搅拌 式真空干燥机[型号45MV,Dalton Co.制造],将颗粒在150℃下 在真空中加热和干燥4小时,在真空中在210℃下结晶5小时。其 后,将颗粒进给至装配有片金属模具(sheet metal mold)的注塑 成型机(NN75JS,Niigata Tekkosho Co.制造)的料斗中,并在预 设温度为300℃和循环时间为45秒的条件下成型为厚度3mm的 片。为了进行注塑成型,将成型进行足够次数,直至使滞留时 间稳定化。其后,将样品取出,并测量其雾度。通过使用彩色 计算机[SM-4,Suga Shikenki Co.制造]测量厚度为3mm的注塑 成型板的雾度。测量值由在三点的平均值获得。
[成型和测量单层瓶]
(实施例1)
将干燥后的均聚萘二甲酸丙二酯树脂(固有粘度:0.72dL/g) 进给至注塑成型机(NN75JS,Niigata Tekkosho Co.制造)的料斗 中,并在机筒(barrel)预设温度为280℃和循环时间为30秒下注 塑成型,从而形成重量32g和口径28mm的瓶用单层预制品。
接着,将预制品通过使用红外线加热器从外侧以及通过使 用加热芯从内侧在拉伸温度为118℃下加热,并在主体部中的 拉伸比为纵向约3倍,横向约3倍和面积约9倍的条件下双轴拉伸 吹塑成型。吹塑金属模具的温度和吹入空气的温度均设定在室 温(25℃)下,并在脱模前在排出吹入空气时将室温(25℃)冷却空 气导入容器中,以获得如图1所示形状的单层拉伸吹塑成型瓶, 其在主体部中心附近具有厚度为0.35至0.4mm和满注内容量为 522ml。
测量该瓶的主体部的Tc1、动态粘弹性和瓶的二氧化碳气体 阻隔性。
(实施例2)
除了将金属模具温度设定在90℃并进行热定形约2.5秒之 外,以与实施例1相同的方式将瓶拉伸吹塑成型,并测量。
(实施例3)
除了将金属模具温度设定在120℃并进行热定形约2.5秒之 外,以与实施例1相同的方式将瓶拉伸吹塑成型,并测量。
(比较例1)
除了将拉伸预制品的温度设定在100℃之外,以与实施例1 相同的方式将瓶拉伸吹塑成型,并测量。
(比较例2)
除了成型聚对苯二甲酸乙二酯树脂(固有粘度: 0.83dL/g)(BK6180B,Nihon Unipet Co.制造)的单层预制品和在 拉伸吹塑成型时将拉伸预制品温度设定在100℃之外,以与实施 例1相同的方式将瓶拉伸吹塑成型,并测量。
[成型和测量多层瓶]
(实施例4)
在共注塑成型机中,将干燥后的聚对苯二甲酸乙二酯树脂 (固有粘度:0.83dL/g)(BK6180B,Nihon Unipet Co.制造)进给至 用于形成内外层的注塑机[A]和用于形成中间层的注塑机[B]的 料斗中。此外,将干燥后的均聚萘二甲酸丙二酯树脂(固有粘度: 0.72dL/g)进给至用于形成阻挡(barrier)层的注塑成型机[C]的料 斗中。在这些注塑机中,将机筒预设温度设定为280℃,热流道 (hot runner)预设温度设定为290℃,循环时间设定为30秒。将树 脂以注塑机[A]→[C]→[B]的顺序顺序注塑入注塑金属模具中, 以将两种五层瓶(two-kind-five-layer bottle)用多层预制品成型, 所述两种五层瓶具有聚对苯二甲酸乙二酯树脂的内层、中间层 和外层,以及在内层和中间层之间及在中间层和外层之间的聚 萘二甲酸丙二酯树脂层。
接着,将预制品通过使用红外线加热器从外侧以及通过使 用加热铁芯从内侧在拉伸温度为104℃下加热,并在主体部中的 拉伸比为纵向约3倍,横向约3倍和面积约9倍的条件下双轴拉伸 吹塑成型。吹塑金属模具的温度设定在150℃下,吹入空气的温 度设定在室温(25℃)下,进行热定形约2.5秒,从而获得如图1 所示形状的拉伸吹塑成型多层瓶,其在主体部中心附近具有总 厚度为0.35至0.4mm、具有主体部全部层厚度的厚度比为5%的 均聚萘二甲酸丙二酯树脂层(全部层)和具有满注内容量为 522ml。
测量该瓶的主体部的Tc1、动态粘弹性和瓶的二氧化碳气体 阻隔性。
(实施例5)
除了将拉伸预制品的温度设定在120℃之外,以与实施例4 相同的方式将瓶拉伸吹塑成型,并测量。
(实施例6)
除了将金属模具温度设定在120℃并将吹入空气的温度设 定在110至130℃之外,以与实施例4相同的方式将瓶拉伸吹塑成 型,并测量。
(比较例3)
除了将拉伸预制品的温度设定在104℃并将吹塑金属模具 的温度设定在室温(25℃)之外,以与实施例4相同的方式将瓶拉 伸吹塑成型,并测量。
上述实施例和比较例的测量结果示于表1。

[成型多层瓶,使用多层瓶作为原料制备再生聚酯树脂,和测量]
(实施例7)
除了仅在共注塑成型机中使用干燥的聚对苯二甲酸乙二酯 树脂(固有粘度:0.83dL/g)(5015W,Shinko Gosen Co.制造)并将 拉伸温度设定在118℃之外,以与实施例4相同的方式获得多层 拉伸吹塑成型瓶。
将聚对苯二甲酸乙二酯树脂从瓶口部切出,并测量对苯二 甲酸乙二酯型树脂的热处理前后的固有粘度。
此外,通过使用多层瓶作为原料,制备再生聚酯树脂颗粒 和厚度为3mm的注塑成型板。为了进行注塑成型,将成型进行 足够次数,直至使滞留时间稳定化。其后,将样品取出,并测 量其雾度。
(实施例8)
除了使用聚对苯二甲酸乙二酯树脂(固有粘度: 0.83dL/g)(BK6180B,Nihon Unipet Co.制造)作为内层、中间层 和外层的聚对苯二甲酸乙二酯树脂之外,以与实施例7相同的方 式将多层瓶拉伸吹塑成型,并测量。
(比较例4)
除了使用聚对苯二甲酸乙二酯树脂(固有粘度: 0.75dL/g)(TR8550F,Teijin Kasei Co.制造)作为内层、中间层和 外层的聚对苯二甲酸乙二酯树脂之外,以与实施例7相同的方式 将多层瓶拉伸吹塑成型,并测量。
(比较例5)
除了使用聚对苯二甲酸乙二酯树脂(固有粘度: 0.75dL/g)(RT543CTHP,Nihon Unipet Co.制造)作为内层、中间 层和外层的聚对苯二甲酸乙二酯树脂之外,以与实施例7相同的 方式将多层瓶拉伸吹塑成型,并测量。
上述实施例和比较例的固有粘度和雾度的测量结果示于表2。
表2
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈