首页 / 专利库 / 成型和铸造 / 中空吹塑成型 / 拉伸吹塑 / 拉伸吹塑方法及容器

拉伸吹塑方法及容器

阅读:752发布:2020-05-13

专利汇可以提供拉伸吹塑方法及容器专利检索,专利查询,专利分析的服务。并且本 发明 涉及吹塑聚乙烯容器的方法,所述方法包括以下步骤:a)提供由具有0.01至10.0g/10分钟的熔流指数的聚乙烯材料制成的固体预成型件,其中所述预成型件包括颈部区域、 侧壁 和基底区域,并且其中介于颈部区域和基底区域之间的侧壁具有基本上笔直且平行的外壁;b)再加热预成型件以便再加热过的预成型件的侧壁和基底区域的最热与最冷区域之间的最大温差小于4℃;c)将再加热过的预成型件转移到吹模中;d)以低于10巴的压 力 拉伸预成型件;并且e)增加再加热过的预成型件内的压力以便使得拉伸的预成型件的壁膨胀至吹模内的形状和尺寸。根据本发明制备的聚乙烯容器优选具有小于200微米的最小容器壁厚,以及小于50克/升的空容器重量与体积比。,下面是拉伸吹塑方法及容器专利的具体信息内容。

1.一种吹塑聚乙烯容器的方法,所述方法包括以下步骤:
a)提供由具有0.01至10.0g/10分钟的熔流指数的聚乙烯材料制成的固体预成型件,其中所述预成型件包括颈部区域、侧壁和基底区域,并且其中介于所述颈部区域和所述基底区域之间的侧壁具有基本上笔直且平行的外壁;
b)在120℃至140℃的温度下再加热所述预成型件以便所述再加热过的预成型件的侧壁和基底区域的最热与最冷区域之间的最大温差小于4℃;
c)将所述再加热过的预成型件转移至吹模模腔中;
d)以低于5巴的压借助拉伸杆以大于1m/s的速度拉伸所述预成型件;以及e)增加所述再加热过的预成型件内的压力以便使得所述拉伸的预成型件的壁膨胀至所述吹模模腔内的形状和尺寸。
2.如权利要求1所述的方法,其中所述聚乙烯材料为高密度聚乙烯。
3
3.如权利要求2所述的方法,其中所述高密度聚乙烯具有0.941至0.960g/cm 的密度。
4.如权利要求1所述的方法,其中所述预成型件以选自以下的方法在步骤a)中形成:
注塑、挤坯吹塑和压塑。
5.如权利要求1所述的方法,其中所述预成型件在步骤b)中被再加热,并且所述再加热过的预成型件的侧壁和基底区域的最热与最冷区域之间的最大温差小于2℃。
6.一种由如权利要求1至5中的任一项所述的方法制备的聚乙烯容器,其中所述容器的最小壁厚为200微米,并且其中所述空容器的重量与体积比小于50克/升。

说明书全文

拉伸吹塑方法及容器

发明领域

[0001] 注射拉伸吹模法为广泛实用的制造瓶子的方法,所述瓶子由聚酯制成,具体地讲由聚对苯二甲酸乙二酯制成。除了其它用途之外,此类瓶子常用于软饮料的包装
[0002] 发明背景
[0003] 聚对苯二甲酸乙二酯的物理特性使得该材料本身适于注射拉伸吹模法。
[0004] 相比之下,聚乙烯的物理特性被认为极不适于注射拉伸吹模法。2000年3月28日公布的JP-A-2000/086722公开了一种经历注射拉伸吹模法的高密度聚乙烯树脂。该聚乙3
烯树脂具有1-15g/10分钟的熔流指数、10-14.5的流量比、以及0.961-0.973g/cm的密度。
[0005] 塑性部件在处于拉伸应下及接触液体时由于化或润滑机理而断裂。该过程已知为环境应力断裂。氧化机理(即,聚合物分子的裂解)存在于包含氧化剂(例如次氯酸盐和过氧化氢)的液体中,而润滑机理存在于包含表面活性剂的液体中。对于任一种机理,接合分子(即,连接多个微晶的分子)的数密度及长度为抗环境应力断裂(ESCR)的控制参数。要注意的是,应力断裂仅仅在拉伸载荷下而非压缩载荷下发生。换句话讲,在瓶子中,应力断裂仅仅会在处于拉伸变形及接触液体的区域中发生。当聚乙烯材料在商业中或实验室中处于拉伸载荷下时,微晶处于应力下且它们随着接合分子被拉伸而开始彼此远离。在脆性失效模式中,接合分子完全扯开微晶,导致它们分离。在延性失效中,接合分子导致微晶断裂并产生原纤。液体中的氧化剂(例如漂白剂)使接合分子裂解,导致比材料暴露于或空气时更早地失效。此外,液体中的表面活性剂使接合分子的解开及其与微晶的分离顺利。就可测量的性质而言,抗环境应力断裂随平均分子量增加而增加(因为分子数随分子量增加),并且随着分子量分布宽度、结晶度及球晶尺寸的增加而降低。
[0006] 包括制造成本和制造速度以及抗环境应力断裂性能在内的局限已阻止了注射拉伸吹模的聚乙烯瓶实现商业成功。本发明旨在克服现有技术缺陷
[0007] 发明概述
[0008] 本发明公开了一种吹塑聚乙烯容器的方法,所述方法包括以下步骤:
[0009] a)提供由具有0.01-10.0g/10分钟的熔流指数的聚乙烯材料制成的固体预成型件,其中所述预成型件包括颈部区域、侧壁和基底区域,并且其中介于颈部区域和基底区域之间的侧壁具有基本上笔直且平行的外壁;
[0010] b)再加热预成型件以便再加热过的预成型件的侧壁和基底区域的最热与最冷区域之间的最大温差小于4℃;
[0011] c)将再加热过的预成型件转移到吹模中;
[0012] d)以低于10巴的压力拉伸预成型件;以及
[0013] e)增加再加热过的预成型件内的压力以便使得已拉伸的预成型件的壁膨胀至吹模内部的形状和尺寸。
[0014] 根据本发明制备的聚乙烯容器优选具有小于200微米的最小容器壁厚,以及小于50克/升的空容器重量与体积比。
[0015] 发明详述
[0016] 用于本发明方法中的预成型件包括颈部区域、侧壁和基底区域。介于颈部区域和基底区域之间的预成型件的侧壁具有基本上笔直且平行的外壁表面,从而在其外部尺寸上从靠近封闭端的点至靠近开口端的点形成基本上对称的管道。预成型件的内壁一般由于过渡区而成型。已发现,具有平行且笔直外壁的预成型件设计允许均匀地再热及均匀地拉伸聚乙烯,从而有助于吹制最终容器。平行笔直壁预成型件设计的另一个有益效果在于,其会最大化可包装在给定颈部设计中的材料量并最小化拉伸比。这在聚乙烯情况下是重要的,这是由于其密度比用于注射拉伸吹模法的更传统的材料如聚对苯二甲酸乙二酯更低,以及由于其非应变硬化特性需要较低的拉伸比。
[0017] 聚乙烯可为由乙烯单体单元组成的均聚物,或者可为包括与其他单体单元(优选C3-C20α-烯)共聚的乙烯单元的共聚物。
[0018] 适用于本发明中的聚乙烯的熔融温度通常为约180至约220℃。
[0019] 在一个实施方案中,聚乙烯为“生物源聚乙烯”,即,其来源于可再生资源而非油品。在实施方案中,甘蔗发酵以制备醇。使醇脱水以制备乙烯气体。该乙烯气体随后通过聚合反应器,其方式与来源于油品的任何乙烯气体可通过聚合反应器的方式相同。生物源聚乙烯可由其他植物制成,例如糖用甜菜/糖蜜/纤维素。生物源聚乙烯具有与油基聚乙烯相同的物理特性,前提条件是其已在与油源聚乙烯相同的反应器条件下聚合。
[0020] 熔流指数(MFI)根据ASTM D-1238测量。本文所指出的所有对于MFI的参考均是指按照用于高密度聚乙烯的此标准在190℃和2.16kg下测量。一般来讲,在给定温度下的材料越粘稠,则该材料的熔流指数值将越低。
[0021] 已发现选择具有以下溶流指数的聚乙烯树脂为实现所得容器的抗环境应力断裂(ESCR)的有效方式:介于0.01和10.0g/10分钟之间,优选介于0.01和5.0g/10分钟之间,更优选介于0.01和2.0g/10分钟之间,最优选为0.01至1.0g/10分钟。此外,聚乙烯树脂3
优选具有0.941-0.960g/cm的密度。还发现此类树脂使容器具有优良的抗环境应力断裂。
[0022] 调制式差示扫描量热法(MDSC)用于确定与Basell Stretchene 1685(聚丙烯)相比的Basell 5831D(高密度聚乙烯)的熔融范围和初始结晶度。Basell 5831D示出了在129.95℃具有峰值顶点的熔融吸热峰。峰值宽度(Tmax-Tonset)为7.89℃。Basell Stretchene 1685示出了在157.4℃具有峰值顶点的熔融吸热峰。峰值宽度(Tmax-Tonset)为17.49℃。由于吸热峰开始得更低且结束得更高,因此这两种材料的实际熔融范围更宽。起始点定义为最初切线与最终切线的交点而不是真正的吸热开始。就Basell 5831D而言,范围为约75℃至约138℃,就Basell Stretchene 1685而言,范围为约90-165℃。这些结果示出高密度聚乙烯的熔融峰/范围远远窄于聚丙烯。
[0023] 在第一工序(a)中提供聚乙烯预成型件。高气穴注塑法为目前广泛用于制备预成型件的方法。然而,用于聚乙烯的注射压力在大约500-800巴的峰值压力下,显著高于利用聚对苯二甲酸乙二酯的当前方法(大约200-300巴),这会阻碍所述方法应用于大的气穴模具(48个模腔和更高)。同样,有利的是可在较高温度下注入聚乙烯或者利用不同的用于聚乙烯预成型件的制备技术,例如注塑、挤坯吹塑或压塑。
[0024] 预成型件冷却对于预成型件制造过程的循环时间十分重要。对于常规的预成型件,即对于聚对苯二甲酸乙二酯预成型件,预成型件通常并不在模具中冷却,而是预成型件在其中预成型件在结构上足够强且无表面粘着的温度下由模具中取出,并且随后将预成型件放入冷却单元中。本发明的聚乙烯预成型件优选在由第一模具中倒出之前冷却。为了实现所需的制造循环时间,通常需要高的加工温度以由高粘度、低溶流指数的树脂形成预成型件。如果要避免预成型件随后变形,优选在预成型件由第一模具中倒出之前降低预成型件的温度。
[0025] 在另一个工序(b)中,预成型件被再加热,优选在红外烘箱中加热。典型的再热温度为约120℃至约140℃。再加热过的预成型件的侧壁和基底区域的最热与最冷区域之间的最大温差优选小于4℃,且更优选小于2℃。在实验室条件下,离开烘箱之前的预成型件侧壁和基底区域的温度均匀,精确至+/-1℃。
[0026] 将再加热过的预成型件转移至吹模中并在低于10巴,优选低于5巴,更优选低于2巴的压力下拉伸。该预成型件优选借助拉伸杆拉伸。预成型件优选以大于1m/s的速度拉伸。随后增加再加热过的预成型件内的压力,以便使得再加热过的预成型件的壁膨胀至吹模模腔内的形状和尺寸。
[0027] 对诸如高密度聚乙烯的聚烯烃进行拉伸吹塑难以实现,这是由于聚烯烃树脂的非应变硬化特性。由于此类树脂不会使得预成型件在膨胀期间发生的壁变薄进行自我校正(如同聚对苯二甲酸乙二酯那样),因此在再热及拉伸过程中必须进行所有的壁厚分布动态控制。
[0028] 两个过程控制参数对于最小化预成型件膨胀期间的壁厚分布变化是重要的:
[0029] 1.每个烘箱红外线灯前面的主轴旋转数以使得预成型件均匀暴露于红外线辐射;并且
[0030] 2.预吹压力优选保持较低,优选低于5巴,更优选低于2巴,最优选低于1巴以使拉伸杆执行大部分的初始壁厚分布(对于非应变硬化材料,拉伸为比吹塑更容易的控制壁变薄过程的方法)。
[0031] 在拉伸吹塑方法结束时,将成品容器由吹模模腔中倒出。
[0032] 根据本发明制备的聚乙烯容器具有以下属性:其对顶部载荷的耐受性是于制造后立即充分形成的。另一方面,通过类似的注射拉伸吹模法制备的聚丙烯容器通常仅仅在制造之后的72小时实现峰值顶部载荷耐受性,这是由于在吹塑容器材料中发生的复杂的重结晶过程。因此,通过本发明制备的聚乙烯容器在吹塑之后不需要仔细处理,并且可以每小时每个模具超过600个容器的高速制备。
[0033] 根据本发明制备的容器优选具有200微米的最小容器壁厚,并且空容器的重量与体积比小于50g/L,优选小于40g/L,并且更优选小于30g/L。
[0034] 与通过传统的挤坯吹塑方法制备的聚乙烯容器相比,通过本发明所述方法制备所得的聚乙烯容器表现出增强的机械特性。这使得材料挠曲模量改善能够转变成容器的机械特性改善。
[0035] 其他材料特性也通过注射拉伸吹模方法得到增强。根据本发明制备的容器具有总体改善的抗环境应力断裂、改善的水蒸气及气体阻挡性以及改善的接触透明性。实施例
[0036] 表I示出了诸多不同的可商购获得的聚乙烯树脂的密度、熔流指数及抗环境应力断裂。
[0037] 表I
[0038]供应商 等级 等级类型 密度 熔流指数 ESCR1
Basell 6541 注塑 0.954 1.45 >14天
Basell 6031 吹塑 0.960 0.3 >14天
Exxon HYA 800 吹塑 0.961 0.7 >14天
Chevron Phillips Marlex 9708 注塑 0.962 8 <6天
Chevron Phillips Marlex 9012 注塑 0.952 12 <6天
Chevron Phillips Marlex 9018 注塑 0.952 18 <6天
1
[0039] 对填充有液体洗涤剂的密封的ISBM瓶子进行抗环境应力断裂测试,并且测试是在49℃(120°F)下以4.5kgf(10lbf)的所施加顶部载荷进行。抗环境应力断裂测试根据国际标准化组织测试16770进行。
[0040] 表II示出了在获得性能增强的容器时预成型件设计的重要性。利用相同的加工条件将两个具有笔直且平行的壁但不同颈部直径的预成型件吹入相同的模具中。由于径向和纵向拉伸比位于推荐的容限内,因此由具有较大颈部直径的预成型件吹制成的容器具有较佳性能。
[0041] 表II
[0042]
[0043] 表III示出了在红外烘箱中再加热后的预成型件温度。如表所示,在实验室条件下,离开烘箱之前的预成型件温度均匀,精确至+/-1℃。此类密集范围在工业条件下可能不会实现,但是预成型件中的温度变化越小,则结果越好。
[0044] 表III
[0045]
[0046] *预成型件温度为对离开烘箱的预成型件测量的温度。
[0047] 表IV将用24.5g的预成型件通过再热注射拉伸吹塑方法制备的三个容器在4mm挠曲时的顶部载荷与相同设计但用30g的预成型件通过挤坯吹塑方法制备的容器进行比较。尽管ISBM容器重量减少20%,但顶部载荷值十分相似,表明再热拉伸吹塑方法已显著增强了材料的机械特性。这些优异的顶部载荷值是利用33mm口径的预成型件获得,此使高密度聚乙烯具有优良的可加工性,其中在吹塑容器内的任何地方不存在低于0.2mm的壁厚。
[0048] 表IV
[0049]
[0050] 表V提供了对于表IV中公开的较高顶部载荷值的机械学解释。如表所示,通过再热拉伸吹塑方法制备的瓶中树脂的挠曲模量与通过挤坯吹塑(EBM)方法制备的相同设计瓶相比已显著增加。同时,EBM瓶中塑料的挠曲模量低于样本薄片中所报导的,ISBM瓶中塑料的挠曲模量高于树脂样本薄片中所报导的,表明EBM与ISBM方法之间有60%至100%的净增加。
[0051] 表V
[0052]
[0053] 表VI提供了对于表V中公开的较高顶部载荷值的机械学解释。如表所示,通过再热拉伸吹塑方法制备的瓶中树脂的拉伸屈服强度值与通过挤坯吹塑(EBM)方法制备的相同设计瓶相比已显著增加。
[0054] 表VI
[0055]
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈