首页 / 专利库 / 食品及食品 / 乳清 / 红细胞结合性治疗剂

红细胞结合性治疗

阅读:1023发布:2020-08-08

专利汇可以提供红细胞结合性治疗专利检索,专利查询,专利分析的服务。并且描述了特异性结合红细胞的肽。这些以具有特异性结合红细胞的序列的肽配体,或者以提供对红细胞的特异性结合的 抗体 或其 片段 提供。所述肽可以作为与 治疗 剂、耐受化 抗原 、或靶向肽的分子融合物制备。可以通过使用融合物及选择物质上期望得到耐受性的抗原来创建免疫耐受性。与靶向肽的融合物将融合物引导至靶物,例如 肿瘤 ,在那里红细胞结合性配体通过将红细胞募集至靶物来降低或完全消除对肿瘤的血流。,下面是红细胞结合性治疗专利的具体信息内容。

1.一种分离的肽,其包含选自下组的序列的至少5个连续的基酸残基:SEQ ID NO:
11,SEQ ID NO:13,SEQ ID NO:14,SEQ ID NO:15,SEQ ID NO:16,SEQ ID NO:17,SEQ ID NO:1及它们的保守取代,其中所述序列特异性结合红细胞。
2.权利要求1的肽,其中所述序列在选自下组的序列中具有一个或多个具有D-L取代的残基或者具有至少一个且不超过两个氨基酸的保守取代:SEQ ID NO:11,SEQ ID NO:13,SEQ ID NO:14,SEQ ID NO:15,SEQ ID NO:16,SEQ ID NO:17,和SEQ ID NO:1。
3.权利要求1的肽,其基本上由选自下组的序列组成:SEQ ID NO:11,SEQ ID NO:13,SEQ ID NO:14,SEQ ID NO:15,SEQ ID NO:16,SEQ ID NO:17,和SEQ ID NO:1。
4.权利要求1的肽,其进一步还包含下述的至少一组:
选自下组的序列的至少5个连续的氨基酸残基:SEQ ID NO:11,SEQ ID NO:13,SEQ ID NO:14,SEQ ID NO:15,SEQ ID NO:16,SEQ ID NO:17,SEQ ID NO:1及它们的保守取代,其中所述序列特异性结合红细胞。
5.权利要求1的肽,其残基数目为约10-约80个。
6.权利要求1的肽,其进一步包含治疗剂。
7.权利要求6的肽,其中所述治疗剂选自下组:胰岛素、醋酸普兰林肽(pramlintide acetate)、生长激素、胰岛素样生长因子-1、红细胞生成素、1型α干扰素、干扰素α2a、干扰素α2b、干扰素β1a、干扰素β1b、干扰素γ1b、β-葡糖脑苷脂酶、腺苷脱氨酶、粒细胞集落刺激因子、粒细胞巨噬细胞集落刺激因子、白介素1、白介素2、白介素11、因子VIIa、因子VIII、因子IX、塞那肽(exenatide)、L-天冬酰胺酶、拉布立酶(rasburicase)、肿瘤坏死因子受体、和恩夫韦地(enfuvirtide)。
8.权利要求1的肽,其进一步包含下组的成员:抗体、抗体片段、和单链抗原结合域(ScFv)。
9.权利要求1的肽,其进一步包含致耐受性抗原。
10.权利要求9的肽,其中所述致耐受性抗原选自下组:因遗传疾病缺陷蛋白质、具有非人糖基化的蛋白质、非人蛋白质、不天然存在于人中的合成蛋白质、人食物抗原、人移植抗原、和人自身免疫抗原。
11.权利要求10的肽,其包含多个特异性结合红细胞的序列。
12.一种产生免疫耐受的方法,该方法包括施用包含分子融合物的组合物,所述分子融合物包含致耐受性抗原和红细胞结合性模,该红细胞结合性模块特异性结合所述患者中的红细胞并由此连接所述抗原与所述红细胞,其中以对包含所述致耐受性抗原的物质有效产生免疫耐受的量施用所述分子融合物。
13.权利要求12的方法,其中所述分子融合物由至少一个与所述抗原直接共价键合的红细胞结合性模块组成。
14.权利要求12的方法,其中所述分子融合物包含至少一个附接于颗粒的红细胞结合性模块,所述颗粒附接于所述抗原或含有所述抗原。
15.权利要求14的方法,其中所述颗粒选自下组:微粒、纳米颗粒、脂质体、聚合物囊泡、和胶束。
16.权利要求12的方法,其中所述致耐受性抗原包含治疗性蛋白质的一部分。
17.权利要求16的方法,其中所述蛋白质包括因子VIII或因子IX。
18.权利要求12的方法,其中所述患者是人,且所述致耐受性抗原包含非人蛋白质的一部分。
19.权利要求18的方法,其中所述蛋白质包括腺苷脱氨酶、L-天冬酰胺酶、拉布立酶、抗胸腺细胞球蛋白、L-精氨酸酶、和L-甲硫氨酸酶。
20.权利要求12的方法,其中所述患者是人,且所述致耐受性抗原包含不存在于自然界的蛋白质的一部分。
21.权利要求12的方法,其中所述患者是人,且所述致耐受性抗原包含含有非人糖基化的蛋白质的聚糖。
22.权利要求12的方法,其中所述致耐受性抗原包含人移植抗原的至少一部分。
23.权利要求12的方法,其中所述致耐受性抗原包含人自身免疫性疾病蛋白质的一部分。
24.权利要求23的方法,其中所述人自身免疫性疾病蛋白质选自下组:前胰岛素原、胰岛素原、胰岛素、GAD65、GAD67、IA-2、IA-2β、甲状腺球蛋白、甲状腺过化物酶、促甲状腺激素受体、髓鞘性蛋白、髓鞘少突胶质细胞糖蛋白、蛋白脂质蛋白、胶原II、胶原IV、乙酰胆碱受体、基质金属蛋白质1和3、分子伴侣热休克蛋白47、微纤维蛋白-1、PDGF受体α、PDGF受体β、和核蛋白SS-A。
25.权利要求12的方法,其中所述致耐受性抗原包含人食物的一部分。
26.权利要求25的方法,其中所述人食物的一部分选自下组:伴花生球蛋白(Ara h 1)、变应原II(Ara h 2)、花生凝集素(Ara h 6)、α-乳清蛋白(ALA)、乳转蛋白、谷蛋白、低分子量谷蛋白、α-和γ-麦醇溶蛋白、大麦醇溶蛋白、裸麦醇溶蛋白、和燕麦蛋白。
27.权利要求12的方法,其中所述红细胞结合性模块选自下组:肽配体、抗体、抗体片段、和单链抗原结合域(ScFv)。
28.权利要求27的方法,其中所述红细胞结合性模块包含scFv。
29.权利要求28的方法,其中所述scFv包含10F7的轻链或10F7轻链的更高亲和变体。
30.权利要求12的方法,其中所述红细胞结合性模块包含肽配体,该肽配体包含选自下组的序列的至少5个连续的氨基酸残基:SEQ ID NO:11,SEQ ID NO:13,SEQ ID NO:14,SEQ ID NO:15,SEQ ID NO:16,SEQ ID NO:17,SEQ ID NO:1及它们的保守取代,其中所述序列特异性结合红细胞。
31.一种组合物,其包含:
分子融合物,该分子融合物包含致耐受性抗原和红细胞结合性模块,所述红细胞结合性模块特异性结合所述患者中的红细胞,并且由此连接所述抗原与所述红细胞。
32.权利要求31的组合物,其中所述红细胞结合性模块与所述抗原共价键合。
33.权利要求31的组合物,其中所述分子融合物包含附接于颗粒的所述红细胞结合性模块,所述颗粒附接于所述抗原。
34.权利要求33的组合物,其中所述颗粒包含微粒、纳米颗粒、脂质体、聚合物囊泡、或胶束。
35.权利要求31的组合物,其中所述致耐受性抗原包含治疗性蛋白质的一部分。
36.权利要求31的组合物,其中所述患者是人,且所述致耐受性抗原包含非人蛋白质的一部分。
37.权利要求31的组合物,其中所述患者是人,且所述致耐受性抗原包含不存在于人的蛋白质的一部分。
38.权利要求31的组合物,其中所述患者是人,且所述致耐受性抗原包含含有非人糖基化的蛋白质的聚糖。
39.权利要求31的组合物,其中所述致耐受性抗原包含人自身免疫抗原的一部分。
40.权利要求31的组合物,其中所述致耐受性抗原包含人食物的一部分。
41.权利要求31的组合物,其中所述红细胞结合性模块选自下组:肽配体、抗体、抗体片段、和单链抗原结合域(ScFv)。
42.权利要求41的组合物,其中所述红细胞结合性模块包含scFv。
43.权利要求42的组合物,其中所述scFv包含10F7的轻链或10F7轻链的更高亲和力变体。
44.权利要求31的组合物,其中所述红细胞结合性模块包含肽配体,该肽配体包含选自下组的序列的至少5个连续的氨基酸残基:SEQ ID NO:11,SEQ ID NO:13,SEQ ID NO:14,SEQ ID NO:15,SEQ ID NO:16,SEQ ID NO:17,SEQ ID NO:1及它们的保守取代,其中所述序列特异性结合红细胞。
45.权利要求31的组合物,其中所述红细胞结合性模块包含具有约10μM-0.1nM的解离常数的肽配体,如通过所述肽和红细胞之间的平衡结合测量所测定的。
46.一种组合物,其包含:
红细胞结合性模块,该红细胞结合性模块特异性结合与选自下组的实体连接的红细胞:合成聚合物、分支的合成聚合物、和颗粒。
47.权利要求46的组合物,其中所述颗粒选自下组:微粒、纳米颗粒、脂质体、聚合物囊泡、和胶束。
48.权利要求46的组合物,其进一步包含致耐受性抗原。
49.权利要求46的组合物,其中所述红细胞结合性模块包含肽配体,该肽配体包含选自下组的序列的至少5个连续的氨基酸残基:SEQ ID NO:11,SEQ ID NO:13,SEQ ID NO:14,SEQ ID NO:15,SEQ ID NO:16,SEQ ID NO:17,SEQ ID NO:1及它们的保守取代,其中所述序列特异性结合红细胞。
50.权利要求46的组合物,其进一步包含治疗剂。
51.权利要求50的组合物,其中所述治疗剂选自下组:抗体、抗体片段、单链抗原结合域(ScFv)、小分子药物、和肽。
52.权利要求46的组合物,其进一步包含与所述实体连接的肿瘤归巢性配体。
53.一种在患者中栓塞肿瘤的方法,包括:
对患者施用包含红细胞结合性模块和肿瘤归巢性配体的分子融合物的组合物,
其中所述肿瘤归巢性配体是目标为特异性结合选自肿瘤和肿瘤血管系统的靶物的抗体、抗体片段、单链抗原结合域(ScFv),或肽配体,且
其中所述红细胞结合性模块包括特异性结合红细胞的肽配体、抗体、抗体片段、scFv、或适体。
54.权利要求53的方法,其中所述肿瘤归巢性配体选自下组:氨肽酶-A、氨肽酶-N、内皮唾液酸蛋白、细胞表面核仁蛋白、细胞表面膜联蛋白-1、细胞表面p32/gC1q受体、细胞表面网蛋白-1、纤连蛋白EDA、纤连蛋白EDB、白介素11受体α、生蛋白-C、内皮糖蛋白/CD105、BST-2、半乳凝素-1、VCAM-1、纤维蛋白和组织因子受体。
55.权利要求53的方法,其中所述红细胞结合性模块包含肽配体,该肽配体包含选自下组的序列的至少5个连续的氨基酸残基:SEQ ID NO:11,SEQ ID NO:13,SEQ ID NO:14,SEQ ID NO:15,SEQ ID NO:16,SEQ ID NO:17,SEQ ID NO:1及它们的保守取代,其中所述序列特异性结合红细胞。
56.权利要求53的方法,其中所述红细胞结合性模块包含scFv。
57.权利要求53的方法,其中所述红细胞结合性模块包含抗体或抗体片段。
58.权利要求53的方法,包括将所述组合物注射入所述患者的血管系统中。
59.权利要求53的方法,其中所述分子融合物包含选自下组的实体:颗粒、肽、和合成聚合物,其中所述实体连接所述红细胞结合性模块和所述肿瘤归巢性配体。
60.一种用于在患者中栓塞肿瘤的药物,其包含:
包含红细胞结合性模块和肿瘤归巢性配体的分子融合物的组合物,
其中所述肿瘤归巢性配体是目标为特异性结合选自肿瘤和肿瘤微血管系统的靶物的抗体、抗体片段、单链抗原结合域(ScFv)、或肽配体,且
其中所述红细胞结合性模块包含特异性结合红细胞的肽配体、抗体、抗体片段、ScFv、或适体。
61.权利要求60的药物,其中所述肿瘤归巢性配体选自下组:氨肽酶-A、氨肽酶-N、内皮唾液酸蛋白、细胞表面核仁蛋白、细胞表面膜联蛋白-1、细胞表面p32/gC1q受体、细胞表面网蛋白-1、纤连蛋白EDA、纤连蛋白EDB、白介素11受体α、生腱蛋白-C、内皮糖蛋白/CD105、BST-2、半乳凝素-1、VCAM-1、纤维蛋白和组织因子受体。
62.权利要求60的药物,其中所述红细胞结合性模块包含肽配体,该肽配体包含选自下组的序列的至少5个连续的氨基酸残基:SEQ ID NO:11,SEQ ID NO:13,SEQ ID NO:14,SEQ ID NO:15,SEQ ID NO:16,SEQ ID NO:17,SEQ ID NO:1及它们的保守取代,其中所述序列特异性结合红细胞。
63.权利要求60的药物,其中所述红细胞结合性模块包含scFv。
64.权利要求60的药物,其中所述红细胞结合性模块包含抗体或抗体片段。
65.权利要求60的药物,其中所述分子融合物包含选自下组的实体:颗粒、肽、和合成聚合物,其中所述实体连接所述红细胞结合性模块与所述肿瘤归巢性配体。
66.一种单链抗原结合域(scFv),其包含特异性结合红细胞的肽配体。
67.权利要求66的scFv,其中所述肽配体布置在所述scFv的接头部分中。
68.权利要求66的scFv,其包含多个特异性结合红细胞的肽配体。

说明书全文

红细胞结合性治疗

[0001] 本申请是申请日为2011年8月9日,优先权日为2010年8月10日,申请号为201180048989.8的中国发明专利申请“红细胞结合性治疗剂”的分案申请。
[0002] 对相关申请的交叉引用
[0003] 本申请要求2010年8月10提交的美国临时申请No.61/372,181的优先权,在此通过提及并入本文。

技术领域

[0004] 技术领域涉及结合红细胞的配体或抗体的医用组合物和用途。具体的用途包括免疫耐受化(immunotolerization)、药物递送、和癌症疗法。
[0005] 发明背景
[0006] 治疗性药物的临床成功与否可以通过其影响靶组织和器官的效,以及其可行的递送模型来预测。最佳的药物递送平台是以最佳的作用浓度递送并维持治疗剂有效负载,并且将其递送至最佳的作用细胞靶物,同时使患者和专业看护者干预最小化的平台。
[0007] 发明概述
[0008] 已经发现了特异性结合红细胞(又称为红血球)的肽。这些肽配体即使在存在血液中存在的其它因子的情况下仍特异性结合红细胞。这些配体可以以多种方式使用。一个实施方案牵涉形成配体与治疗剂的分子融合物。配体结合体内的红细胞,由此治疗剂附接于红细胞并随其循环。红细胞在血流中循环很长的一段时间,在人体内约90至120天,并且它们接近许多与疾病(诸如肿瘤血管床)和生理(诸如肝和脾)有关的身体区室。可以利用这些特征使红细胞可用于治疗剂递送,例如用于+延长治疗剂在血液中的循环。
[0009] 此外,出乎意料地且令人惊讶地,已经发现了可以使用这些红细胞亲和配体,或近似的(comparable)抗体来产生免疫耐受。在此实施方案中,生成分子融合物,其包含致耐受性抗原和红细胞亲和配体。以足够的量注射或以其它方式施用该融合物,直至观察到耐受性。与之对照的是,先前的报告称将抗原附接于红细胞表面产生了免疫排斥。
[0010] 实施方案还涉及通过栓塞(embolizing)肿瘤来治疗癌症。肿瘤和/或肿瘤微血管系统的许多抗原是已知的。可以容易地生成特异性结合这些抗原的抗体。将此类肿瘤结合配体与结合红细胞的配体,即抗体(或其片段)或肽配体分子融合。这些融合物在肿瘤部位处结合,并且还结合红细胞,导致向肿瘤的血供阻断。本文中描述了这些实施方案及其它。
[0011] 附图简述
[0012] 图1是对ERY1噬菌体的红细胞结合的流式细胞术分析的散点图。
[0013] 图2是用可溶性生物素化ERY1肽的亲和力下拉(affinity pull-down)的照片拼合:在图2A中:使用ERY1和错配肽的洗脱样品的链霉亲合素-HRP Western印迹;在图2B中;与红细胞全溶胞物相比使用ERY1肽的洗脱样品的抗小鼠GYPA Western印迹。
[0014] 图3是细胞结合组的图。
[0015] 图4是ERY1-MBP的静脉内推注的半对数图,其显示了与MBP相比ERY1-MBP的静脉内施用后的血浆MBP浓度和浓度对时间。
[0016] 图5是ERY1-MBP的皮下推注的半对数图,其显示了皮下施用后的血浆MBP浓度;以及MBP与ERY1-MBP的浓度-时间的比较。
[0017] 图6是scFv工程化设计的示意图;在图6A中:从N至C端的各scFv域的线性表示;在图6B中:经折叠的scFv的构造;在图6C中:具有化学缀合的ERY1肽的经折叠scFv的构造。图6包括重复四次的接头序列GGGGS(SEQ ID NO:18)。
[0018] 图7是柱状图的拼合,其显示了通过流式细胞术测定的结合有细菌的细胞的百分比;在图7A中,除了ERY50外,细菌表面上的肽结合红细胞,但不结合上皮293T或内皮HUVEC;在图7B中,肽结合多种人样品,但不结合小鼠血液。
[0019] 图8显示了ERY 1和卵清蛋白(OVA)的分子融合物的实验方案和结果,其中ERY1-OVA融合物以高亲和力结合小鼠红细胞的赤道外周;图8A:ERY1肽与卵清蛋白(OVA)缀合的示意图,导致结合红细胞表面血型糖蛋白-A;小图8B:每种OVA缀合物与中间体的结合,通过流式细胞术表征;黑色实心直方图,ERY1-OVA;空心直方图,SMCC-OVA;虚线直方图,MIS-OVA;ERY1=红细胞结合性肽WMVLPWLPGTLD(SEQ ID NO:1),MIS=错配肽PLLTVGMDLWPW(SEQ ID NO:2),SMCC=琥珀酰亚胺基-4-(N-来酰亚胺甲基)环己烷-1-羧酸,其用于缀合ERY1与OVA;图8C:ERY1-OVA对红细胞的平衡结合,其展示通过流式细胞术测定的ERY1-OVA的低2
解离常数(R=0.97,单一位点结合)。
[0020] 图9显示了缀合有ERY1的抗原的分子融合物的结合和循环的实验方案和结果:该融合物在静脉内施用后生物特异性地结合循环中的健康红细胞及红细胞凋亡的(eryptotic)红细胞,诱导被特定抗原呈递细胞亚群摄取;图9A根据流式细胞术测定的OVA (灰色实心直方图)和ERY1-OVA(黑色实心直方图)与未注射的小鼠(空心直方图)相比在体内对红细胞(CD45-)群体结合而对白细胞(CD45+)群体不结合;图9B:根据流式细胞术测定,ERY1-OVA结合而OVA不结合循环中的红细胞凋亡的(膜联蛋白-V+)红细胞和健康的(膜联蛋白-V-)红细胞;图9C:与循环红细胞结合的ERY1-OVA的细胞表面半衰期,其通过流式细胞术测量的几何均值荧光强度测定(n=2,R2=0.98,单相指数衰减);图9D:通过ELISA测定,在施用剂量150μg(n=2)下的时间依赖性ERY1-OVA细胞表面浓度。
[0021] 图10是若干图的拼合,显示红细胞结合不改变血液学行为;图10A血细胞比容;图10B均值血球体积,和图10C在施用10μg OVA(空心圆)或ERY1-OVA(实心圆)后的不同时间点时测得的红细胞血红蛋白含量。
[0022] 图11是结果的柱形图,其中缀合有ERY1的抗原生物特异性地诱导特定抗原呈递细胞亚群的摄取:图11A,与MIS-别藻蓝蛋白相比注射后12和36小时时MHCII+CD11b-CD11c+和MHCII+CD8α+CD11c+CD205+脾树突细胞(DCs)对ERY1-别藻蓝蛋白的细胞摄取增加;图11B,与MIS-别藻蓝蛋白相比在静脉内施用后36小时肝细胞(CD45-MHCII-CD1d-)和肝星形细胞- + + + + + + +(CD45MHCIICD1d),而非肝DC(CD45CD11c)或肝巨噬细胞(CD45MHCII F4/80)对肝中的ERY1-别藻蓝蛋白细胞摄取增加。(n=2,*P≤0.05,**P≤0.01,***P≤0.001)。数据代表均值±SE。
[0023] 图12是结果的拼合,其显示了ERY1-OVA分子融合物增强抗原特异性OTI CD8+T细胞在体内的交叉初始化(cross priming)和凋亡命运删除增殖(apoptotic-fate deletional proliferation):图12A在静脉内施用10μg ERY1-谷胱甘肽-S-转移酶(ERY1-GST,左侧小图)、10μg OVA(中间小图)、或10μg ERY1-OVA(右侧小图)之后5天时经羧基荧光素琥珀酰亚胺酯(CFSE)标记的脾OTI CD8+T细胞(CD3ε+CD8α+CD45.2+)的增殖;图12B来自A的OTI CD8+T细胞增殖的剂量依赖性定量的增殖群体,及相同的1μg剂量给药研究,数据代表中值±最小值至最大值(n=5,**P≤0.01,##P<0.01);图12C OTI CD8+T细胞增殖世代,与OVA(中间小图)或ERY1-GST(左侧小图)相比,其在施用ERY1-OVA(右侧小图)后展现出更大的膜联蛋白-V+群体;图12D经定量的膜联蛋白-V+OTI CD8+T细胞增殖世代,其展示ERY1-OVA诱导的OTI CD8+T细胞凋亡,数据代表均值±SE(n=5,***P<0.0001)。所有数据通过多参数流式细胞术测定。
[0024] 图13是以柱形图呈现的结果的拼合,其显示了ERY1-OVA分子融合物将OTI CD8+T细胞增殖诱导成有抗原经历的表型(antigen-experienced phenotype);图13A施用1μg OVA或1μg ERY1-OVA之后5天时脾中CD44+OTI CD8+T细胞(CD3ε+CD8α+CD45.2+CD44+)的定量,(***P<0.0001);图13B施用1μg OVA或1μg ERY1-OVA之后5天时脾中CD62L-OTI CD8+T细胞+ + + -(CD3εCD8αCD45.2CD62L)的定量,(*P<0.05);图13C施用10μg OVA或10μg ERY1-OVA之后
5天时脾中CD44+OTI CD8+T细胞(CD3ε+CD8α+CD45.2+CD44+)的定量,(***P=0.0005);图13D施用10μg OVA或10μg ERY1-OVA之后5天时脾中CD62L-OTI CD8+T细胞(CD3ε+CD8α+CD45.2+CD62L-)的定量,(***P<0.0001)。数据代表均值±SE,n=5。
[0025] 图14是结果的拼合,其显示了红细胞结合诱导对抗原攻击的耐受:图14A,OTI CD8+T细胞过继转移耐受模型,其展示用于实验及攻击和幼稚的对照组(n=5)的实验方案;图14B OTI CD8+T细胞群体(CD3ε+CD8α+CD45.2+)的流式细胞术检测;图14C CD45.1+小鼠中抗原攻击后第4天时引流淋巴结(腹股沟和腿弯部)中OTI CD8+T细胞群体的定量(**P<0.01);
图14D表达IFNγ的OTI CD8+T细胞的流式细胞术检测;图14E用SIINFEKL肽(SEQ ID NO:3)抗原攻击和再刺激后第4天时引流淋巴结中表达IFNγ的OTI CD8+T细胞(**P<0.01);图14F根据ELISA测定,在用SIINFEKL肽(SEQ ID NO:3)再刺激后第4天时在淋巴结细胞培养基中的IFNγ浓度(**P<0.01);图14G根据ELISA测定,在用OVA再刺激后第4天时在淋巴结细胞培养基中的IL-10浓度(*P<0.05)。数据代表均值±最小值至最大值;图14H在第19天时的OVA特异性血清IgG效价,(*P<0.05),数据代表均值±SE;图14I表达组合OTI与OVA的EL4胸腺瘤(E.G7-OVA)肿瘤耐受模型,其展示用于实验组及对照组(n分别=4,3)的实验方案;图14J过继转移后第5天时在血液中循环的非增殖(第0代)OTI CD8+T细胞的定量;数据代表中值±最小值至最大值(**P<0.01);图14K,OTI过继转移后9天皮下注射的E.G7-OVA肿瘤的生长概况,数据代表均值±SE(*P<0.05)。
[0026] 图15是显示红细胞结合如何减弱C57BL/6小鼠中的抗原特异性体液应答的柱形图。C57BL/6小鼠中相隔6天两次施用1μg OVA或1μg ERY1-OVA后19天时在血清中的OVA特异性IgG检测(*P≤0.05)。
[0027] 图16呈现了实验结果,其中8臂PEG-ERY1在体外及在体内结合红细胞;图16A 8臂PEG-ERY1(黑色实心直方图)在体外温育后结合小鼠红细胞,而8臂PEG-MIS(灰色实心直方图)或8臂PEG-吡啶基二硫化物则不然;图16B 8臂PEG-ERY1(黑色实心直方图)在静脉内注射后结合循环的红细胞,而8臂PEG-MIS(灰色实心直方图)则不然。
[0028] 图17呈现了实验结果,其描绘了通过流式细胞术测定的8臂PEG-ERY1(实心环)和8臂PEG-MIS(空心框)的红细胞细胞表面半衰期。
[0029] 发明详述
[0030] 本文中描述了特异性结合红细胞的肽。这些以具有特异性结合红细胞的序列的肽配体,或者以提供对红细胞的特异性结合的抗体或其片段提供。所述肽可以制备为与治疗剂、致耐受化抗原、或靶向肽的分子融合物。有利地,所述治疗剂当作为所述融合物的一部分时,可以具有延长的体内循环半衰期。通过使用所述融合物并选择期望获得耐受的物质上的抗原,可以产生免疫耐受。与靶向性肽形成的融合物将融合物引导至靶物,例如肿瘤,在那里红细胞结合性配体通过将红细胞募集至靶物来减少或完全消除对肿瘤的血流。
[0031] 如此,教导了涉及红细胞结合的分子设计,来延长药物,包括蛋白质药物的循环半衰期。药物作为与红细胞结合性配体的缀合物,又称为分子融合物,例如重组融合物或化学缀合物来形成。还教导了用于形成耐受的分子设计。将寻求耐受的蛋白质抗原形成为与红细胞结合性配体的缀合物,例如重组融合物或化学缀合物,包括聚合物或聚合物胶束或聚合物纳米颗粒缀合物。还教导了用于肿瘤栓塞的分子设计。将红细胞结合性配体形成为与肿瘤血管系统的配体的缀合物;靶向肿瘤血管系统,如此靶向肿瘤血管系统内的红细胞结合。
[0032] 特异性结合红细胞的肽序列
[0033] 已经发现了特异性结合红细胞的肽。实施例1描述了一种用于特异性结合红细胞的肽(ERY1)的发现。实施例8描述了特异性结合人红细胞的6种肽(ERY19,ERY59,ERY64,ERY123,ERY141和ERY162)的发现。本发明的一个实施方案是包含ERY1、或人红细胞结合性肽之一的基酸序列、或其保守取代的基本上纯的多肽,或其编码核酸。此类多肽特异性结合红细胞,并且是红细胞的配体。配体是指对靶分子具有特异性结合的化学模的术语。靶(物)是指使用者意图与配体结合的预定的分子、组织、或位置。如此,对组织的靶向递送,是指将分子或其它材料(诸如细胞)递送到意图的靶组织。因而,实施方案包括这样的分子或组合物,其包含本文中所公开的用于结合红细胞的至少一种配体。多肽对红细胞的结合活性只需遵循如本文中描述的实验规程即可测定。使用此类方法,可以测定给定生理学条件下多肽变体相对于ERY1或人红细胞结合性肽的结合强度,例如利用保守取代、添加或去除侧翼基团,或者用于调节在溶液中序列溶解度的变化或添加而生成的序列。
[0034] 如实施例2中详述的,这些肽配体结合红细胞细胞表面,而不改变细胞形态学且没有胞质移位。配体的分布遍及细胞表面,并且没有群集。可以鉴定作为配体靶物的特定蛋白质,如实施例3中鉴定出血型糖蛋白-A(GYPA)作为ERY-1的靶物。ERY-1仅与小鼠和大鼠物种有反应性(实施例4)。特异性结合人红细胞的肽配体对于人红细胞而非其它物种是特异性的(实施例9)。
[0035] 筛选包含全部红细胞的幼稚肽文库以发现亲和配偶,而不是针对纯化的红细胞细胞表面蛋白质进行筛选。经由使用密度梯度离心和大量清洗,细心注意使逃脱逐轮淘汰(round elimination)的未结合噬菌体的数目最小化。此外,在筛选过程中早期停止选择并分析克隆,以防止高度感染性噬菌体克隆在群体中占主导地位。整个筛选过程在存在高浓度的血清白蛋白(50mg/mL)及37℃的条件下实施以降低非特异性结合事件,而且可能更重要的是,遴选在血清中具有有利结合特征的肽。在第一组实验(实施例1)中,克隆分析揭示了一个针对小鼠红细胞细胞表面展示高亲和力的肽WMVLPWLPGTLD(SEQ ID NO:1,本文中称作ERY1)的噬菌体克隆(图1)。在使用UniProt中的BLAST算法搜索相似性时,针对完整的肽没有鉴定出相关的蛋白质序列同源性。其它实验(实施例8)鉴定出人红细胞的结合配体,如表1-2中显示的。6种序列特异性结合了人红细胞。第七种序列(称作ERY50)结合人红细胞,而且还结合表皮/内皮细胞。
[0036] 表1:结合人红细胞的肽配体
[0037]肽名称 人红细胞结合性肽序列 序列标识符
ERY19 GQSGQPNSRWIYMTPLSPGIYRGSSGGS SEQ ID NO:4
ERY50 GQSGQSWSRAILPLFKIQPVGSSGGS SEQ ID NO:5
ERY59 GQSGQYICTSAGFGEYCFIDGSSGGS SEQ ID NO:6
ERY64 GQSGQTYFCTPTLLGQYCSVGSSGGS SEQ ID NO:7
ERY123 GQSGHWHCQGPFANWVGSSGGS SEQ ID NO:8
ERY141 GQSGQFCTVIYNTYTCVPSSGSSGGS SEQ ID NO:9
ERY162 GQSGQSVWYSSRGNPLRCTGGSSGGS SEQ ID NO:10
[0038] 加下划线的序列部分指示接头序列。
[0039] 表2:结合小鼠或人红细胞的肽配体
[0040]肽   序列标识符
ERY19’ PNSRWIYMTPLSPGIYR SEQ ID NO:11
ERY50’* SWSRAILPLFKIQPV SEQ ID NO:12
ERY59’ YICTSAGFGEYCFID SEQ ID NO:13
ERY64’ TYFCTPTLLGQYCSV SEQ ID NO:14
ERY123’ HWHCQGPFANWV SEQ ID NO:15
ERY141’ FCTVIYNTYTCVPSS SEQ ID NO:16
ERY162’ SVWYSSRGNPLRCTG SEQ ID NO:17
ERY1** WMVLPWLPGTLD SEQ ID NO:1
[0041] *对红细胞不是特异性的
[0042] **针对小鼠
[0043] 本发明的实施方案包括特异性结合红细胞表面的肽。没有为了最小长度而优化这些序列。此类优化是本领域技术内的,并且可以使用本文中所描述的技术实施。例如,Kenrick等(Protein Eng.Des.Sel.(2010)23(1):9-17)从15个残基的文库筛选,然后鉴定长度7个残基的最小结合序列。Getz(ACS Chem.Biol.,2011年5月26日)鉴定出了长度小到5个残基的最小结合域。红细胞结合性肽可以存在于相同序列的重复中,例如2-20个重复;技术人员容易领会,明确记载的范围之内的所有范围和数值都是被考虑到的。此外,肽可以存在于组合中,其中两个或更多个不同的序列处于同一个肽中或者构成单个分子融合物的一部分。
[0044] 提供特异性结合的连续残基的数目预期为约4-12个残基。因而,存在于表2中所有长度为4个连续残基的肽,以及例如所有5、6、7、或8个连续残基的肽均已被公开。此数目基于其它肽性蛋白质-结合配体的残基数目。本发明的实施方案包括本文中(包括表1)的红细胞结合SEQ ID组之一的最小长度序列。因而,某些实施方案涉及一种包含肽,或分离的(或纯化的)肽的组合物,所述肽或分离的(或纯化的)肽包含选自下组的序列的4-12个连续氨基酸残基的若干个连续氨基酸序列:SEQ ID NO:11,SEQ ID NO:13,SEQ ID NO:14,SEQ ID NO:15,SEQ ID NO:16,SEQ ID NO:17,SEQ ID NO:1及它们的保守取代,其中所述序列特异性结合红细胞。或者,连续残基的数目可以选择为约5-约18;技术人员会容易想到明确记载的范围内的所有范围和数值均已被考虑到,例如7、8、9、10,或者8至18。红细胞结合序列可以具有例如序列的至少一个且不超过两个氨基酸的保守取代,或1、2、或3处取代、或1-5处取代。此外,通常可以实现用D-氨基酸替换发现的序列中的L-氨基酸,如Giordano中的。在一些实施方案中,肽或组合物可以基本上由选自下组的序列组成:SEQ ID NO:11,SEQ ID NO:13,SEQ ID NO:14,SEQ ID NO:15,SEQ ID NO:16,SEQ ID NO:17,SEQ ID NO:1。肽可以是长度有限的,例如,具有约10-约100的残基数目;技术人员容易想到,明确记载的范围内的所有范围和数值均已被考虑到,例如,约10至约50或约15至约80。可以提供这样的肽红细胞结合性模块,其包含具有约10μM-0.1nM的解离常数的肽配体,如通过所述肽和红细胞之间的平衡结合测量测定的;技术人员容易想到,明确记载的范围内的所有范围和数值均已被考虑到,例如,约1μM至约1nM。肽可以进一步包含治疗剂。例如,治疗剂可以是蛋白质、生物制剂、抗体片段、ScFv、或肽。肽可以进一步包含致耐受性抗原,例如,用于缺乏某种蛋白质的人中的该人蛋白质(例如,血液因子诸如因子VIII或因子IX)、具有非人糖基化的蛋白质、不天然存在于人中的合成蛋白质、人食物变应原、或人自身免疫抗原。
[0045] 其它人已经搜寻了特异性结合红细胞表面的肽配体。一项先前的研究尝试通过使用一种新颖的细菌表面展示的肽文库筛选方法来发现红细胞结合性肽(Hall,Mitragotri等,2007)。他们的研究焦点是建立其新颖的细菌肽展示系统以对幼稚文库筛选对红细胞具有亲和力的肽,以及使用肽来将0.22μm颗粒附接于红细胞。虽然他们报告了几种可实现此任务的肽的鉴定,但是他们没有对该结合现象进行就可实际应用的考虑而言足够程度的表征。他们没有报告肽的细胞结合特异性;没有着手解决所述肽结合其它哪些细胞类型的问题。他们也没有报告肽的细胞表面配体。对用肽官能化的0.22μm颗粒标记的红细胞拍摄的电子显微照片描绘了每个细胞具有单一颗粒簇的红细胞。预期大多数潜在的结合位点会广泛分布在细胞表面上,因此测试的所有配体均定位于小的细胞区域这一事实表明这些结果是实验假象。此类假象可能是进行标记时的摩尔过量或其它因素的结果。最重要的是,没有进行肽-颗粒红细胞结合或药动学的体内表征。总的来说,由Hall及同事描述的结果没有提示红细胞的肽配体可以作为工具用来改善治疗剂的药动学或者以其他医学或治疗上的方式使用。
[0046] 对于具体的应用而言,可以适宜使用不同长度的多肽。一般而言,对于含有多肽配体序列的多肽而言,若该多肽有机会(is available for)与红细胞体内相互作用,则它将展现特异性结合。可以使用本文中所描述的方法来测试具有折叠潜力的肽。因而,某些实施方案涉及具有多肽配体但是不存在于自然界中的多肽,并且某些其它实施方案涉及具有特定长度,例如6至3000个残基,或12-1000个,或12-100个,或10-50个残基的多肽;技术人员容易想到,明确记载的限度内的每个数值和范围均已被考虑到。
[0047] 某些实施方案提供了多种多肽序列和/或纯化的或分离的多肽。多肽是指氨基酸残基链的术语,与翻译后修饰(例如磷酸化或糖基化)和/或与其它多肽的复合,合成为多亚基复合物、与核酸和/或水化合物、或其它分子无关。因此,蛋白聚糖在本文中也称为多肽。如本文中所使用的,“功能性多肽”是能够促进说明的功能的多肽。可以通过许多方法生成多肽,其中许多是本领域中公知的。例如,可以通过提取(例如,自分离的细胞),通过表达编码多肽的重组核酸,或者通过化学合成获得多肽。例如可以通过重组技术,并将编码多肽的表达载体导入宿主细胞中(例如,通过转化或转染)以表达编码的多肽,来生成多肽。
[0048] 存在着多种保守性的变化,可以对氨基酸序列进行这样的变化而不改变活性。这些变化称作保守取代或突变;也就是说,可以用属于具有特定大小或特征的氨基酸群组的氨基酸替换另一氨基酸。氨基酸序列的取代者可以选自氨基酸所属的类别的其它成员。例如,非极性(疏水性)氨基酸包括丙氨酸、亮氨酸、异亮氨酸、缬氨酸、脯氨酸、苯丙氨酸、色氨酸、甲硫氨酸、和酪氨酸。极性中性氨基酸包括甘氨酸、丝氨酸、苏氨酸、半胱氨酸、酪氨酸、天冬酰胺和谷氨酰胺。带正电荷的(性)氨基酸包括精氨酸、赖氨酸和组氨酸。带负电荷的(酸性)氨基酸包括天冬氨酸和谷氨酸。此类变化预期不会实质性影响通过聚丙烯酰胺凝胶电泳测定的表观分子量或等电点。保守取代还包括用序列的光学异构体替换其它光学异构体,具体地,对于序列的一个或多个残基用D氨基酸替换L氨基酸。此外,序列中的所有氨基酸可以经历D-L(D to L)异构体取代。例示性的保守取代包括但不限于用Lys取代Arg及相反,以维持正电荷;用Glu取代Asp及相反,以维持负电荷;用Ser取代Thr,以维持游离的OH;以及用Gln取代Asn以维持游离的NH2。此外,在一些情况中,可以进行多肽序列或相应的核酸序列的点突变、缺失、和插入而不丧失多肽或核酸片段的功能。取代可以包括例如1、2、3、或更多个残基。本文中所描述的氨基酸残基采用单字母氨基酸标志符或三字母缩写。本文中所使用的缩写与标准多肽命名,J.Biol.Chem.,(1969),243,3552-3559一致。所有氨基酸残基序列在本文中以左右朝向的表达式按照常规的氨基端至羧基端方向呈现。
[0049] 在一些情况中,可能需要测定肽与本文中所列的序列的百分比同一性。在此类情况中,百分比同一性以肽或肽的一部分的残基数目来量度。具有例如90%同一性的多肽也可以是某个较大肽的一部分。
[0050] 术语“纯化的”在本文中用来指多肽时,是指已经过化学合成并且因此基本上不被其它多肽污染,或者已经自与其天然伴随的其它大多数细胞组分(例如,其它细胞蛋白质、多核苷酸、或细胞组分)分离开来或纯化出来的多肽。纯化的多肽的一个例子是不含至少70%(按干重计)的与其天然关联的蛋白质和天然存在的有机分子的多肽。因此,纯化的多肽的制备物可以是例如至少80%、至少90%、或至少99%(按干重计)的该多肽。多肽也可以工程化改造从而含有标签序列(例如,多组氨酸标签、myc标签、或 标签),其使得多肽易于纯化或标记(例如,捕获到亲和基质上,在显微镜下显现)。因此,包含多肽的纯化的组合物,除非另有指示,是指纯化的多肽。术语“分离的”表明本发明的多肽或核酸不处于其天然环境中。因此,本发明的分离的产物可以包含在培养上清液中,经过部分富集,自异源来源产生,克隆在载体中,或者与媒介物配制在一起,等等。
[0051] 多肽可以包含化学修饰:该术语在此语境中指氨基酸的天然化学结构中的变化。此类修饰可以对单链或末端进行,例如改变氨基端或羧基端。在一些实施方案中,修饰可用于创建这样的化学基团:其可以方便地用于连接多肽与其它材料,或者附接治疗剂。
[0052] 所谓特异性结合,如同在该术语通常在生物学技术领域中使用时一样,是指与非靶物组织相比以相对较高的亲和力结合靶物的分子,并且一般牵涉多种非共价相互作用,诸如静电相互作用、范德华相互作用、氢键键合,等等。特异性结合相互作用是抗体-抗原结合、酶-底物结合、以及特异结合性蛋白质-受体相互作用等的特征;虽然此类分子有时可能结合其靶物以外的组织,但是将此类结合称为缺乏特异性,不是特异性结合。在一些情况中,肽ERY1及其衍生物和人红细胞结合性肽及其衍生物可能结合非红细胞,但是已经观察到此类结合是非特异性的,证据是这些肽对红细胞的结合比对其他细胞或蛋白质的结合强得多。
[0053] 如此,实施方案包括这样的配体,其特异性结合红细胞,并且不特异性结合其它血液组分,例如下列的一种或多种:血液蛋白质、白蛋白、纤连蛋白、血小板、白细胞、基本上所有从典型的人采集的血液样品中找到的组分。在血液样品的上下文中,术语“基本上所有”指通常存在,但是排除非常低浓度的偶然组分,使得它们从效果上说不减少原本为生物可用的配体的效价。
[0054] 抗体肽
[0055] 除了结合红细胞的肽之外,本文中还提供蛋白质,具体是抗体,且特别是单链抗体。用于生成针对抗原的抗体的技术是公知的。在此上下文中,术语“抗原”指由响应抗原的宿主免疫系统识别的位点。抗原选择在抗体生成技术领域等领域中是已知的。实施方案包括这些肽在本文中提供的分子融合物和其它方法中的应用。阅读此公开内容的技术人员将能够创建特异性结合红细胞的抗体。实施例15-17涉及生成抗体或其片段。
[0056] 术语“肽”在本文中与术语“多肽”互换使用。抗体和抗体片段是肽。术语“抗体片段”指抗体中保留抗体的抗原结合功能的部分。片段可以顾名思义从较大抗体的一部分生成,或者可以从头合成。抗体片段包括例如单链可变片段(scFv)。scFv是免疫球蛋白的重链(VH)和轻链(VL)的可变区用接头肽(例如约10至约50个氨基酸)连接而成的融合蛋白。接头可以连接VH的N端与VL的C端,或者相反。术语“scFv”包括二价scFv、双抗体、三抗体(triabody)、四抗体(tetrabody)和抗体片段的其它组合。抗体具有称作互补位的抗原结合部分。术语”肽配体”指这样的肽,其不是互补位的一部分。
[0057] 用于特异性结合红细胞的适体
[0058] 除了结合红细胞的肽配体之外,还教导了红细胞表面组分的核苷酸适体配体。因而,要生成并使用适体,如本文中对其它红细胞结合性模块描述的。可以使用DNA和RNA适体来提供非共价红细胞结合。由于它们仅由核苷酸构成,适体是有希望的生物分子靶向模块,因为:筛选方法学建立完善,它们容易化学合成,并且由于在体内快速清除所以导致的副作用毒性和/或免疫原性有限(Keefe,Pai等,2010)。此外,由于核苷酸-靶蛋白相互作用的非规范性质,在体内靶物结合后几乎不可能发生任何有效的激动性信号传导,从而促成低免疫原性和毒性。因而,许多基于适体的分子目前在许多临床适应症(包括白血病、黄斑变性、血栓形成、和2型糖尿病)的人临床试验中(Keefe,Pai等,2010)。也已经在诸如癌症化学疗法和荧光或放射线学肿瘤检测技术等应用中使用适体作为靶向剂来将药物载荷递送到体内的特定组织(Rockey,Huang等,2011;Savla,Taratula等,2011)。
[0059] 适体是结合特定靶分子的寡核酸或肽。通常通过从大的随机序列集合遴选适体,来创建适体以结合感兴趣的靶物。适体可以分类为DNA适体、RNA适体、或肽适体。核酸适体是已经经由重复轮次的体外遴选或指数富集的配体系统进化(Systematic Evolution of Ligands by Exponential Enrichment,SELEX)方法(Archemix,Cambridge,MA,USA)(Sampson,2003)工程化改造以特异性结合靶物诸如小分子、蛋白质、核酸、细胞、组织和生物体的核酸种类。肽适体通常具有在两个末端附接于蛋白质支架的短的肽可变域。肽适体是设计为干扰细胞内部的其它蛋白质相互作用的蛋白质。它们由在两个末端附接于蛋白质支架的可变肽环构成。此双重结构约束大大提高肽适体的结合亲和力,乃至与抗体相当。可变环长度通常由约10至约20个氨基酸构成,而支架是具有良好溶解性且致密的蛋白质。例如,细菌蛋白质硫还蛋白-A是一种支架蛋白质,其中可变环插入还原性活性位点(其在野生蛋白质中是-Cys-Gly-Pro-Cys-环)内,两个半胱氨酸侧链能够形成二硫化物桥。
[0060] 一些用于生成适体的技术详述于Lu等,Chem Rev 2009:109(5):1948-1998,以及还有US 7,892,734,US 7,811,809,US 2010/0129820,US 2009/0149656,US 2006/0127929,和US 2007/0111222。实施例19进一步详述了制作和使用供用于本文中所公开的实施方案的适体的材料和方法。
[0061] 分子融合物
[0062] 可以在第一肽红细胞结合性配体和第二肽之间形成分子融合物。融合物包含彼此直接或间接缀合的肽。肽可以彼此直接缀合或者经由接头间接缀合。接头可以是肽、聚合物、适体、核酸、或颗粒。例如,颗粒可以是微粒、纳米颗粒、聚合物囊泡(polymersome)、脂质体、或胶束。例如,聚合物可以是天然的、合成的、线性的、或分支的。包含第一肽和第二肽的融合蛋白是肽的分子融合物的例子,其中融合蛋白包含彼此直接连接的肽或者具有居间接头序列和/或在一个或两个末端的其它序列。与接头的缀合可以经由共价键进行。其它键包括离子键。方法包括制备分子融合物或包含分子融合物的组合物,其中分子融合物包含特异性结合红细胞的肽和治疗剂、耐受化抗原、或其它物质。
[0063] 术语“分子融合物”,或术语“缀合的”,指通过化学键(包括共价的、静电离子、电荷-电荷)的直接或间接结合。缀合形成通过化学键合维持的单元。直接缀合指与作用剂的化学键合,其中用或不用中间接头或化学基团。间接缀合指与担载体的化学连接。担载体可以大部分包囊作用剂,例如聚合物囊泡、脂质体或胶束或某些类型的纳米颗粒,或者在其表面上具有作用剂,例如,金属纳米颗粒或珠,或者两者兼有,例如包含一部分作用剂在其内部且包含一部分作用剂在其外部上。载体还可以包囊用于免疫耐受的抗原。例如,可以制作包囊抗原的聚合物囊泡、脂质体、或颗粒。术语“包囊”意指完全覆盖,实质上没有任何部分暴露,例如,可以制作包囊抗原或药剂的聚合物囊泡。治疗剂的例子是单链可变片段(scFv)、抗体片段、小分子药物、生物活性肽、生物活性蛋白、和生物活性生物分子。
[0064] 可以通过用或不用接头共价键合肽与另一种分子来实现缀合。此类缀合物的形成在技术人员的技术范围内,并且用于实现缀合的多种技术是已知的,具体技术的选择依照要缀合的材料而定。对多肽(C或N端)添加的、含有可离子化侧链(即天冬氨酸、谷氨酸、赖氨酸、精氨酸、半胱氨酸、组氨酸、或酪氨酸),并且不包含在多肽序列的活性部分中的氨基酸以其未质子化状态作为强亲核体与附接于聚合物(即同或异双功能性PEG)的反应性基团进行各种生物缀合反应(例如,Lutolf和Hubbell,Biomacromolecules 2003;4:713-22,Hermanson,Bioconjugate Techniques,London.Academic Press Ltd;1996)。在一些实施方案中,使用可溶性聚合物接头,并且可以以药学可接受形式对患者施用。或者,药物可以在聚合物囊泡或媒介物中包囊或者共价附接于肽配体。
[0065] 一个实施方案是非蛋白质治疗剂和特异性红细胞的肽配体、抗体、抗体片段、或适体的缀合物。红细胞结合性肽方法学的应用不限于多肽治疗剂;可以将它转化成其它药物配制剂,诸如小分子和聚合颗粒。在小分子及其在药物中应用的长期历史中,循环半衰期短和生物利用度差一直影响其体内效力。聚合胶束和纳米颗粒代表相对更新一代的药物类型,但是其药动学行为仍然差强人意,原因包括经由网状内皮系统作用的高清除速率(Moghimi和Szebeni,2003)。红细胞结合设计可以延伸到这些以及其它药物类型以提高其循环半衰期和临床效力。
[0066] 缀合物可以包含颗粒。可以将红细胞结合性肽附接于颗粒。抗原、作用剂、或其它物质可以在颗粒之中或之上。纳米颗粒、胶束、和其它颗粒的例子可参见例如US 2008/0031899,US 2010/0055189,US 2010/0003338,在此通过提及将所述申请并入本文用于所有目的,所述目的包括组合将其与如本文中所列的配体组合;然而,在冲突的情况中,以本说明书为准。实施例11和12详细描述了某些颗粒的创建。
[0067] 根据通过制备方法产生的多分散性,纳米颗粒可以制备为直径约10nm-约200nm(包括明确限定的边界之间的所有范围和数值,例如约20至约200,以及约20至约40,至约70,或至约100nm)的颗粒的集合的形式。可以利用各种纳米颗粒系统,诸如那些自聚(乙二醇)和聚(乳酸)的共聚物形成的、那些自聚(环氧乙烷)和聚(β-氨基酯)的共聚物形成的、和那些自蛋白质诸如血清白蛋白形成的。其它纳米颗粒系统是这些领域中的技术人员已知的。还可见Devalapally等,Cancer Chemother Pharmacol.,07-25-06;Langer等,International Journal of Pharmaceutics,257:169-180(2003);及Tobío等,
Pharmaceutical Research,15(2):270-275(1998)。
[0068] 也可以制备纳入有软骨组织结合配体的超过约200nm平均直径的较大颗粒,这些颗粒在本文中称作微粒,因为它们开始接近微米尺度,并且接近落入光学分辨率的界限内。例如,用于生成微粒的某些技术在美国专利Nos.5,227,165,6,022,564,6,090,925,及6,
224,794中列出。
[0069] 为了利用靶向能力而功能化纳米颗粒,需要将靶向性多肽与颗粒缔合,例如使用生物缀合技术通过共价结合来进行缔合,其中具体技术的选择依照多肽要连接的颗粒或纳米颗粒或其它构建体而定。一般地,用于将肽附接于其它材料的许多生物缀合技术是公知的,并且可以针对具体材料选择最合适的技术。例如,可以将其它氨基酸附接于多肽序列,诸如在将多肽附接于硫醇反应性分子的情况中为半胱氨酸。
[0070] 实施例18详述了创建包含红细胞特异性结合模块的多聚分支聚合物。为了创建能够展示多个不同生物反应性分子的多聚分子,将商品化8-臂PEG树枝状聚合物(dendrimer)化学修饰以包含反应基团以便于缀合反应。8-臂PEG-吡啶基二硫化物含有吡啶基二硫化物基团,其容易与来自小分子和/或含有半胱氨酸的肽或蛋白质的硫醇盐或酯起反应,在附接的生物活性模块和8臂PEG支架之间产生二硫键。8臂PEG的多聚构造容许不同肽或分子与支架的缀合,如此创建依靠其附接的模块而具有多种活性的异官能化生物分子。创建了能够在体外(图16A)及在体内(图16B)结合红细胞的异官能化荧光8臂PEG构建体。此结合是对ERY1肽序列特异性的,因为含有非特异性MIS肽的缀合物对红细胞显示极少的结合或无结合。体内结合是长时间存在的,因为荧光8臂PEG-ERY1-ALEXAFLUOR647在静脉内施用后5小时在循环的红细胞上检出,并且展示2.2小时的细胞表面半衰期(图17)。为了在自身免疫性糖尿病小鼠模型中证明耐受性诱导,创建了与ERY1和糖尿病抗原嗜铬粒蛋白-A(CrA)两者缀合的8臂PEG。8臂PEG-吡啶基二硫化物支架的模块性质使得有可能通过顺序添加化学计量上限定量的分子来共缀合不同的含有硫醇的分子。
[0071] 分子融合物可以包含聚合物。聚合物可以是分支的或线性的。分子融合物可以包含树枝状聚合物。一般地,可以使用可溶性亲水性生物相容性聚合物,使得缀合物可溶,并且在导入患者中后可为生物利用。可溶性聚合物的例子是具有至少100、400、或100-400,000的分子量的聚乙烯醇、聚乙烯亚胺、和聚乙二醇(该术语包括聚氧化乙烯)(涵盖这些明确数值间的所有范围和数值)。在此上下文中的溶解度指在水或生理盐水中每升至少1克的溶解度。也可以使用生物可降解聚合物的域,例如,聚乳酸、聚乙醇酸、聚乳酸和聚乙醇酸的共聚物、聚己酸内酯、多羟基丁酸、聚原酸酯、聚缩、聚二氢吡喃、和聚腈基丙烯酸酯。
[0072] 在一些实施方案中,制备多肽-聚合物缔合物(例如聚合物),并将其以药学可接受状态的纯化的组合物的形式,或者与药用赋形剂一起导入身体中。例如,导入的部位可以是全身性的,或者在组织或移植部位处。
[0073] 技术人员可以使用这些领域中已知的技术来制备融合蛋白。实施方案包括制备融合蛋白,分离它们,并以药学可接受形式与或不与其它作用剂一起,例如,与TGF-β的白介素组合施用它们。实施方案包括用于转染细胞,由此工程化改造细胞以使之在体内生成融合蛋白的载体及方法,其中细胞在体外、离体、或在体内转染,且细胞是组织移植物的成员或区别于组织移植物。在此出于所有目的通过提及将下列美国专利申请并入本文,所述目的包括生成融合蛋白的目的,在冲突的情况中以本说明书为准:5227293,5358857,5885808,5948639,5994104,6512103,6562347,6905688,7175988,7704943,US 2002/0004037,US 
2005/0053579,US 2005/0203022,US 2005/0250936,US 2009/0324538。
[0074] 例如,分子融合物的实施方案包括包含致耐受性抗原和红细胞结合性模块的分子融合物,所述红细胞结合性模块特异性结合患者中的红细胞,由此连接抗原与红细胞,其中以对包含致耐受性抗原的物质有效产生免疫耐受性的量施用分子融合物。例如,实施方案包括这样的组合物,其包含与选自下组的担载体连接的、特异性结合红细胞的红细胞结合性模块:聚合物、分支的聚合物、和颗粒,其中所述担载体与治疗剂连接。例如,颗粒可以是微粒、纳米颗粒、聚合物囊泡、脂质体、或胶束。红细胞结合性模块可以包含含有选自下组的序列的至少5个连续的氨基酸残基的肽:SEQ ID NO:11,SEQ ID NO:13,SEQ ID NO:14,SEQ ID NO:15,SEQ ID NO:16,SEQ ID NO:17,SEQ ID NO:1及它们的保守取代,其中所述序列特异性结合红细胞。红细胞结合性模块可以包含抗体、抗体片段、适体、scFv或肽配体。分子融合物的实施方案包括红细胞结合性模块和致耐受性抗原、抗体、抗体片段、ScFv、小分子药物、颗粒、蛋白质、肽、或适体。
[0075] 用于改善药动学的红细胞结合性配体
[0076] 由于许多药物是全身性地递送到血液循环系统的,对有效药物递送问题的解答经常聚焦于在血液中将药物维持更长时期。因此,在血液中长期保持生物可用性的长期循环(长半衰期)治疗剂的开发,将会代表为了效力、安全性、和经济可行性等目的而工程化改造的新一代药物。
[0077] 本发明的实施方案包括红细胞结合性肽与治疗剂的分子融合物。特异性结合红细胞的肽和治疗剂或其它物质之间的分子融合物为作用剂/物质提供延长的循环时间(体内血液循环半衰期)。实施例5和6提供了其工作实例。例如,延长可以是血清半衰期延长约1.5倍至20倍,技术人员容易想到,明确规定的范围内的所有范围和数值均已被考虑到,例如约3倍或约6倍或约3倍-约6倍。
[0078] 例如,可以通过将肽重组添加、或通过化学缀合将肽添加到治疗剂或相关分子或颗粒上的反应性位点,来实现分子融合物。由于可以使用固相肽合成来合成高产量的具有不同末端反应基团的纯肽,有多种用于将肽附接于治疗剂上的缀合策略。虽然此功能化方法因蛋白质使用的重组方法而异,但据信效果(红细胞结合,其导致循环半衰期延长)是相同的。
[0079] 本发明的一个实施方案涉及利用特异性结合红细胞的短肽配体作为用于改善治疗剂的药动学参数的工具来功能化治疗剂。此半衰期延长方法学考虑治疗性药物设计中的关键参数,即制造简单性、模块性(modularity)、以及延长效果的调节能力。使用标准重组DNA技术,容易在氨基酸水平上改变蛋白质以使其含有新的或改变的功能性。一般地,依靠使用较短的肽域来发挥功能相对于使用较大的多肽域是优选的,原因包括容易制造、正确折叠成功能性治疗性蛋白质、以及对原始治疗剂自身的生物物理改变最小。多肽,例如ERY1(一种人红细胞结合性配体),或抗体或其片段可以工程化改造为特异性结合红细胞,并且可以与治疗剂缀合以延展生物利用度(例如以作用剂的循环半衰期来量度的)。
[0080] 本文中报告的结果提供了生成分子融合物以改善治疗剂的药动学参数的机会,所述治疗剂诸如胰岛素、醋酸普兰林肽(pramlintide acetate)、生长激素、胰岛素样生长因子-1、红细胞生成素、1型α干扰素、干扰素α2a、干扰素α2b、干扰素β1a、干扰素β1b、干扰素γ1b、β-葡糖脑苷脂酶、腺苷脱氨酶、粒细胞集落刺激因子、粒细胞巨噬细胞集落刺激因子、白介素1、白介素2、白介素11、因子VIIa、因子VIII、因子IX、塞那肽(exenatide)、L-天冬酰胺酶、拉布立酶(rasburicase)、肿瘤坏死因子受体、和恩夫韦地(enfuvirtide)。
[0081] 其他人实现被动(passive)半衰期改善方法的尝试聚焦于增加药物的表观流体动力学半径。肾的肾小球过滤装置是身体中过滤血液组分的主要部位。过滤的主要决定因素是血液中分子的流体动力学半径;较小的分子(<80kDa)以比较大的分子高的程度被滤出血液。研究者已经利用此一般化的规则来修饰药物以展现出较大的流体动力学半径以及因此较长的半衰期,修饰主要是藉由与大分子量水溶性聚合物,诸如聚乙二醇(PEG)的化学缀合来进行。此方法在目前在临床中供应的许多PEG化蛋白质和小分子治疗剂中取得了明显的成功(Pasut和Veronese,2009;Fishburn,2008)。虽然在许多情况中在延长循环半衰期方面是有效的,尤其在嫁接物或融合物的流体动力学半径增加时(Gao,Liu等,2009),但是这些方法在制造和维持生物学效应物功能方面却提出了难题。缀合反应中的不均一性可能导致具有不同生物学活性的复杂产品混合物,这主要是由于利用位点非特异性化学所致。往往在精确的纯化方法后进行大量的生物化学表征以保留均一的治疗产品(Huang,Gough等,2009;Bailon,Palleroni等,2001;Dhalluin,Ross等,2005)。此外,对蛋白质的反应性区附接大的模块(诸如分支的PEG)可导致受体亲和力的降低(Fishburn,2008)。
[0082] 其他人的其它工作已经提供了治疗性蛋白质结合白蛋白以实现药物循环延长(Dennis,2002;Walker,Dunlevy等,2010)。考虑到上述关于肾过滤的相同一般原则,Dennis及同事提出了通过工程化改造治疗剂以结合血液中的另一种蛋白质(诸如血清白蛋白)来增加其表观大小会降低药物清除速率的假说。以此方式,药物只有在施用到血流后才会获得较大的分子尺寸。对抗体片段添加亲和力成熟的血清白蛋白结合肽在小鼠中将其循环时间延长24倍(Dennis,2002)。此方法虽然有效,但由于新生儿Fc受体(FcRn)的白蛋白再循环的动力学及使用半胱氨酸约束性环肽实现功能性而变得复杂。Walker及同事确证了Dennis在2002年贡献的结果,即对蛋白质赋予血清白蛋白亲和力可延长其半衰期。由Walker及同事描述的方法涉及对蛋白质药物重组添加大的抗体片段,这可以引起结构及制造上的复杂情况。Dennis和Walker的方法虽然巧妙且有效,但由于使用复杂的环域或大型域来实现功能性而变得复杂。Dennis及同事发现的肽虽然对白蛋白展示高亲和力,但是它们在使用之前需要正确形成环形结构的物理约束。Walker的融合较大抗体片段的方法是一种更繁琐的办法,可能不适用于本来已具有复杂的折叠结构的或表达产量低的蛋白质。
[0083] 单链抗体
[0084] 本发明的一个实施方案是scFv与特异性结合红细胞的肽的分子融合物。scFv可以用作治疗剂,并且其与红细胞结合性肽的组合可以用于延长其循环半衰期,并且使其能进入身体区室。重组抗体和重组抗体片段在生物制品业中具有作为治疗剂的潜力(Sheridan,2010)。
[0085] 单链可变片段(scFv)抗体片段包含全长IgG的整个抗原结合域,但是缺乏铰链和恒定片段区(Maynard和Georgiou,2000)。scFv的重组构建牵涉用短的多肽结构融合可变重链(VH)域与可变轻链(VL)域,所述短的多肽接头由甘氨酸和丝氨酸的串联重复组成(例如(GGGGS)4)(SEQ ID NO:18)。虽然scFv的简单性对于治疗性应用是有吸引力的,但是其主要的缺点是由于其相对较小的26-28kDa的分子量致使它们展现的短循环半衰期(Weisser和Hall,2009)。
[0086] 由于scFv设计中通常使用的甘氨酸-丝氨酸接头本质上是非功能性的,而是作为物理桥存在以确保正确的VH-VL折叠,因此在本文中测试了展现出结合血液中红细胞的功能的接头域。如此,工程化scFv可以是多功能性且双特异性的,通过VH-VL域展示对其天然抗原的亲和力,并且在其接头域中展示对红细胞的亲和力。在对红细胞的结合中,工程化scFv会展现出较长的循环半衰期,如已经对具有此相同功能性的另一种模型蛋白质证明的。scFv抗体片段可以具有如本文中所描述的接头,或者可以提供如这些领域中的技术人员已知的其它接头。一个备选的实施方案准备在scFv的接头区中工程构建游离的半胱氨酸基团,并且使用此半胱氨酸硫醇通过化学缀合连接红细胞结合性配体。
[0087] 如实施例7中详述的,工程化改造scFv抗体。工程化scFv抗体的设计聚焦于接头域长度,及红细胞结合性肽的安排(spacing)的重要性。由于野生型变体设计为具有(GGGGS)4接头(SEQ ID NO:18)并验证了抗原结合,随后的突变体设计为具有20个氨基酸的最小接头长度的接头(图6A)。由于接头域可以调节scFv正确折叠成其正确的三级结构(图6B),设计了两个含有ERY1的突变体。REP突变体含有在接头域中居中的ERY1肽,其侧翼有正确数目的Gly和Ser残基以维持亲本20个氨基酸的接头长度。在可能的情况下,ERY1肽的疏水性质不是线性排列的,而是群集成较短的装配域,此时REP的接头长度会更短,并且由此可能阻碍正确折叠。出于该原因,INS突变体设计为含有添加到亲本接头域中心的ERY1肽,并将接头延长到32个氨基酸。由于被发现的ERY1肽具有游离的N端,其在受约束的多肽构象中的存在是否会实现红细胞结合是不得而知的。为了应对此潜在的行为,通过与合成的ERY1肽化学缀合创建了这样的scFv变体,使得此肽的N端是游离的,而C端与scFv缀合(图6C)。
[0088] 以此方式,红细胞结合性肽的数目,以及相应地scFv的红细胞结合能力可以在整个缀合反应期间以化学计量的方式加以调整。因而,ScFv可以工程化改造成包含如本文中教导的红细胞结合性肽。实施方案包括包含范围为1至20的配体数目的scFv;技术人员容易想到明确规定的范围内的所有范围和数值都已被考虑到,例如2-6。
[0089] 实施方案包括scFv与致耐受性抗原缀合以生成诱导耐受性的分子融合物,例如如实施例17中的,实施例17描述了用于产生耐受性的详情,以产生针对附接于scFv的OVA的耐受性为例。实施例17还详述了用于生成与抗原的免疫识别表位重组融合的scFv蛋白构建体的材料和方法。该scFv以红细胞识别为目的。所述抗原是如本文中所描述的抗原,例如致耐受性抗原。本文中报告的工作例描述了使用鼠模型的结果,在构建体中使用鼠TER119scFv作为抗体域。TER119是一种结合小鼠红细胞的抗体。TER119抗体域可以替换为其它抗体域,例如针对人或其它动物中的红细胞的域。例如,可以使用10F7抗体域来创建能够结合人红细胞的抗体-抗原构建体。用三种不同抗原(如实施例17中报告的),包括OVA的MHC-I免疫优势表位、嗜铬粒蛋白-A模拟表位(mimetope)1040-p31、和胰岛素原制备了来自Ter-119的scFv的其它融合物。
[0090] 实施方案包括结合肿瘤标志物并阻断对肿瘤的血流的scFv,如实施例10和13中所述的。例如,scFv可以结合肿瘤标志物,并且进一步是与红细胞结合性肽的分子融合物的一部分。这些缀合物也可以用于通过阻断对肿瘤的血流来治疗癌症。
[0091] 红细胞对特定部位,诸如肿瘤血管系统的结合
[0092] 除了延长药物的半衰期之外,工程化治疗剂结合红细胞的能力对于将红细胞选择性结合并定位至身体中的特定部位的目的也是有用的。在实体瘤治疗中,可以使用经动脉化学栓塞(TACE)来限制对肿瘤的血供,由此阻碍其获得生长需要的营养物。TACE治疗牵涉在肿瘤血供上游手术插入聚合固体微粒。当微粒到达肿瘤血管床时,它们被物理捕捉于血管网络中,由此产生对肿瘤血供的阻塞(Vogl,Naguib等,2009)。
[0093] 按照TACE主题,本文中的一个实施方案是使用血液中循环的自体红细胞作为肿瘤栓塞的天然微粒,其通过将肿瘤归巢性(tumor-homing)治疗剂工程化改造为含有红细胞结合性肽来实现。以此方式,治疗剂定位于肿瘤血管床,并且募集通过的红细胞以结合血管,由此限制并阻断对肿瘤块的血流。此类治疗与经典的TACE相比侵入性较小:药物仅会被注射静脉内,并利用已经存在于血液中的天然红细胞作为栓塞颗粒。术语“肿瘤结合性”或“肿瘤归巢性”指这样的肽,其可结合肿瘤血管系统中的肿瘤细胞上的能够从血液区室接触到的组分。
[0094] 具体的肿瘤归巢性治疗剂的发现是癌症研究领域中已知的。肿瘤的生物活性靶向的范例依赖于结合肿瘤环境中特异性表达的蛋白质标志物。这些包括但不限于:RGD-定向整联蛋白(directed integrin)、氨肽酶-A和-N、内皮唾液酸蛋白、细胞表面核仁蛋白、细胞表面膜联蛋白-1、细胞表面p32/gC1q受体、细胞表面网蛋白-1、纤连蛋白EDA和EDB、白介素11受体α、生蛋白-C、内皮糖蛋白/CD105、BST-2、半乳凝素-1、VCAM-1、纤维蛋白、和组织因子受体。(Fonsatti,Nicolay等,2010;Dienst,Grunow等,2005;Ruoslahti,Bhatia等,2010;
Thijssen,Postel等,2006;Schliemann,Roesli等,2010;Brack,Silacci等,2006;Rybak,Roesli等,2007)。靶向任何这些分子的治疗剂可以是将红细胞结合性肽携带到肿瘤血管系统以引起特异性闭塞的载体。
[0095] 一个实施方案是特异性结合红细胞的第一配体,其与第二配体缀合,所述第二配体特异性结合癌性细胞或肿瘤血管系统或肿瘤血管系统的组分,诸如内皮下膜(其部分暴露于肿瘤中的血液)中的蛋白质或肿瘤内皮细胞表面上的蛋白质。所述配体可以是导入患者中,例如导入血流中的药学可接受组合物的一部分。所述配体结合红细胞,而肿瘤归巢性配体结合肿瘤或肿瘤血管系统处或附近的部位,或者结合癌性细胞。红细胞在靶定部位处聚集,并且阻断靶部位接触营养物,例如通过栓塞血管。鉴于栓塞是机械性的,由红细胞的物理尺寸决定,栓塞将是迅速的。
[0096] 实体瘤很大程度上依赖于其血管供应,已经开发出生物分子治疗剂及材料治疗剂(material therapetics)来阻断其血管供应的生长或阻断对其血管供应的流动。一个实施方案是生物分子配制剂或生物分子-纳米颗粒配制剂,其用于全身性注射以快速堵塞已知或未知位置处的原发性肿瘤或转移肿瘤中的实体瘤血管系统。
[0097] 已经以多种方式尝试解决肿瘤栓塞,包括使用基于颗粒和生物分子的方法。生物材料颗粒(包括那些由聚乙烯醇生成的)具有大于肿瘤微血管系统的直径,例如50-500微米的直径,并且已经开发了用于在经导管动脉栓塞,或TACE中临床使用的生物材料颗粒(Maluccio,Covey等,2008)。一种平行方法包括在颗粒内部加载化学治疗剂以便在经动脉化学栓塞(TACE)中缓慢释放,主要用于治疗肝细胞癌(Gadaleta和Ranieri,2010)。在这两种情况中,当颗粒被注射到动脉循环中时(通常由参与干预的放疗人员在射线照相的引导下进行),这些颗粒可以流入肿瘤血管系统中,并且堵塞它们,阻断血流(Maluccio,Covey等,2008)。利用这些局部方法仅治疗了通过放置导管直接靶向的肿瘤,而其它肿瘤,诸如已知或未知位置处的转移,未得到治疗,因为颗粒不容易在血管中靶向。新近,已经探索了生物分子办法,例如使用识别血栓形成因子和不存在于正常血管系统中的肿瘤血管内皮标志物两者的双特异性抗体进行。在特异性结合肿瘤血管系统后,抗体积累,并在肿瘤血管内启动血液凝块形成以阻断它们;此效应仅在抗体靶向肿瘤时被诱导(Huang,Molema等,1997)。则这些生物分子办法具有这样的益处:若可以鉴定特异性肿瘤血管标签,则通过静脉内输注靶向原发性和继发性肿瘤两者;但是它们的缺点是不提供对肿瘤的迅速机械阻塞。
[0098] 本发明的实施方案包括一种在患者中栓塞肿瘤的方法,包括对患者施用包含与靶向模块偶联的红细胞结合性模块的组合物,其中所述靶向模块是针对选自肿瘤和肿瘤微血管系统的靶物的抗体、抗体片段、或肽,且其中所述红细胞结合性模块包括特异性结合红细胞的肽、抗体、抗体片段、或适体。例如,肽可以是如本文中所列的序列。
[0099] 抗原特异性免疫学耐受性
[0100] 在改善治疗剂的药动学行为外,已经发现了红细胞亲和力可以在创建抗原特异性耐受性的方法中使用。实施例中列出了某些实施方案。
[0101] 实施例14详述了如何在预示人行为的小鼠动物模型中创建耐受性。简言之,发现了结合小鼠红细胞的肽ERY1。用测试抗原卵清蛋白(OVA)生成ERY1的分子融合物。融合物在体内特异性结合红细胞,并且不结合其它分子,包括那些在血液或血管系统中的。观察到长的循环半衰期。观察到ERY1-OVA的红细胞结合导致抗原呈递细胞(APC)高效地交叉呈递OVA MHC I免疫优势表位(SIINFEKL)及反应性T细胞的相应交叉初始化。ERY1-OVA比OVA诱导数目高得多的膜联蛋白-V+增殖性OT-I CD8+T细胞(图12d),这提示了最终会导致克隆删除的凋亡命运。使用建立的OT-I攻击-耐受性模型(Liu,Iyoda等,2002)(图14a),证明了ERY1-OVA即使在使用非常强的细菌衍生的佐剂的情况下也可防止随后对疫苗介导的抗原攻击的免疫应答。与在用LPS进行抗原攻击前施用未修饰的OVA的小鼠(图14c)相比,ERY1-OVA的静脉内施用导致引流淋巴结(图4;图14b中控)和脾中OT-I CD8+T细胞群的深度降低,这证明删除性耐受(deletional tolerance)。在施用ERY1-OVA的小鼠中展现的这种有效的克隆删除支持了早先OT-I CD8+T细胞交叉初始化增强的观察结果(图12),而且还显示了交叉初始化在没有共刺激分子的APC呈递的情况下发生,导致删除性耐受。与经OVA处理的小鼠相比,ERY1-OVA的静脉内施用在第一次抗原施用后19天使OVA特异性血清IgG水平降低39.8倍(图15)。为了进一步证实抗原特异性免疫耐受性的诱导,将OT-I攻击-耐受模型与表达OVA的肿瘤移植模型(图14)组合,得到了有利的结果。此实施例中详述的结果表明ERY1-OVA对红细胞结合的可诱导抗原特异性免疫耐受。这一点响应于强佐剂攻击及表达异种抗原(xeno-antigen)的植入的细胞移植物都得以表现。此外,耐受是经由与循环红细胞上存在的抗原的相互作用而导致反应性CD8+T细胞功能性失活和删除来实现的,不依赖于直接的CD4+T细胞调节。用ERY1,一种小鼠红细胞结合性肽进行的这些详细实验可以预示在人体中使用人红细胞结合性肽(其中几种在本文中教导)得到的相似结果。此外,在已经显示了肽配体有效的条件下,可以使用与其它红细胞结合性配体,例如抗体、抗体片段、或适体的缀合物产生相似的结果。
[0102] 比较而言,先前的报告已经叙述了通过将抗原附接于红细胞表面,由此生成疫苗来创建免疫排斥,并且其它报告已经使用包囊在红细胞内的抗原来创建疫苗。例如,当抗原包囊在红细胞内时,由此生成疫苗(Murray等,Vaccine 24:6129-6139(2006))。或者,与红细胞表面缀合的抗原是免疫原性的,并且被提议作为疫苗(Chiarantini等,Vaccine 15(3):276-280(1997))。这些参考文献显示了红细胞递送方法得到与用带佐剂的正常疫苗获得的一样好的免疫应答。其他人已经报告了诱导耐受需要红细胞内的放置,如专利申请WO2011/051346中,该专利申请还教导了几种改变红细胞表面以增强肝中被肝巨噬细胞清除的手段。该申请也教导了使抗体结合红细胞表面蛋白诸如血型糖蛋白A,但其目的是为了在红细胞上生成免疫复合物以增强其被肝巨噬细胞的清除。
[0103] 本文中所列的实施方案提供了一种产生免疫耐受的方法,该方法包括施用包含分子融合物的组合物,所述分子融合物包含致耐受性抗原和红细胞结合性模块,该红细胞结合性模块特异性结合患者中的红细胞,由此连接抗原与该红细胞,其中以对包含所述致耐受性抗原的物质有效产生免疫耐受的量施用所述分子融合物。红细胞和患者可以没有对红细胞引起其它变化的处理,并且没有红细胞交联、化学共价缀合、包被、和与肽的特异性结合之外的其它改变。分子融合物可以包含,或组成为,与抗原直接共价键合的红细胞结合性模块。分子融合物可以包含附接于颗粒的红细胞结合性模块,所述颗粒附接于抗原。颗粒可以包括微粒、纳米颗粒、脂质体、聚合物囊泡、或胶束。致耐受性抗原可以包含治疗性蛋白质,例如,对遭受血液因子生成缺乏的患者施用的该血液因子的一部分。实施方案包括如下的例子,其中:患者是人,而致耐受性抗原是该患者遗传缺陷的人蛋白质;其中患者是人,而致耐受性抗原包含非人蛋白质的一部分;其中患者是人,而致耐受性抗原包含工程化治疗性蛋白质的不天然存在于人中的一部分;其中患者是人,而致耐受性抗原包含含有非人糖基化的蛋白质的一部分;其中致耐受性抗原包含人自身免疫性疾病蛋白质的一部分;其中致耐受性抗原是同种异体移植物移植中的抗原;其中致耐受性抗原包含选自下组的物质的一部分:人食物;和/或其中红细胞结合性模块选自下组:肽、抗体、和抗体片段。实施方案包括耐受化材料和方法,其中红细胞结合性模块包含含有选自下组的序列的至少5个连续的氨基酸残基的肽:SEQ ID NO:11,SEQ ID NO:13,SEQ ID NO:14,SEQ ID NO:15,SEQ ID NO:16,SEQ ID NO:17,SEQ ID NO:1及它们的保守取代,其中所述序列特异性结合红细胞。
[0104] 可以选择分子融合物以在红细胞内部或外部上放置抗原。不限于具体的作用机制,提出了以下的理论。在人中,每天有约1%红细胞凋亡(红细胞凋亡(eryptotic))并且被清除,大量细胞及其蛋白质以如下的方式加工,使得维持对红细胞自身抗原的耐受性。经由使用ERY1肽或人红细胞结合性肽、红细胞结合单链抗体或抗体、红细胞结合适体、或另一种红细胞结合剂工程化改造为结合红细胞的抗原也可以引发相同的致耐受性应答。鉴于由Miller及同事(见上文)开发的现有技术方法是麻烦的,因为它需要将供体脾细胞收获并起反应以便重新施用,我们的非共价红细胞结合方法提供一种更简单的备选。由于在体内导入抗原缀合物或融合物后自发发生ERY1-红细胞或人红细胞结合性肽-红细胞或其它亲和性生物分子(例如单链抗体、抗体、或适体)相互作用,仅通过注射施用工程化抗原,就会原位发生结合。
[0105] 在一些情况下,致耐受性抗原源自期望耐受的治疗剂蛋白质。例子是患者由于该蛋白质缺陷而对其不建立中心耐受的野生型蛋白质药物,例如,人因子VIII或因子IX;或者在人体中使用的非人蛋白质药物。其它例子是由于制备而以非人形式糖基化的蛋白质药物,或工程化蛋白质药物,其例如具有可以引起不想要的免疫应答的非天然序列。属于非天然存在于人体中的工程化治疗性蛋白质的致耐受性抗原的例子包括具有工程化突变,例如,改善药理学特征的突变的人蛋白质。包含非人糖基化的致耐受性抗原的例子包括在酵母或昆虫细胞中生成的蛋白质。
[0106] 实施方案包括以某种频率X或剂量Y施用蛋白质以及还以更小的频率和/或剂量(例如,不超过0.2X的频率或不超过0.2Y的剂量)施用来自所述蛋白质的抗原;技术人员容易想到,明确规定的范围内的所有范围和数值都被考虑到了,例如,0.01或005X或其间的某个范围。
[0107] 实施方案包括从蛋白质缺陷的人施用的蛋白质选择致耐受性抗原。缺陷意指接受该蛋白质的患者不天然生成足够的该蛋白质。此外,蛋白质可以是该患者遗传缺陷的蛋白质。此类蛋白质包括例如抗凝血酶-III、蛋白C、因子VIII、因子IX、生长激素、生长素、胰岛素、醋酸普兰林肽、美卡舍明(mecasermin)(IGF-1)、β-葡糖脑苷脂酶、阿葡糖苷酶(alglucosidase)-α、Laronidase(α-L-艾杜糖苷酸酶)、Idursuphase(艾杜糖醛酸-2-硫酸酯酶)、Galsulphase、阿加糖酶(agalsidase)-β(α-半乳糖苷酶)、α-1蛋白酶抑制剂、和白蛋白。
[0108] 实施方案包括自非人的蛋白质选择致耐受性抗原。此类蛋白质的例子包括腺苷脱氨酶、胰脂肪酶、胰淀粉酶、乳糖酶、肉毒杆菌毒素A型、肉毒杆菌毒素B型、胶原酶、透明质酸酶、木瓜蛋白酶、L-天冬酰胺酶、拉布立酶、来匹卢定(lepirudin)、链激酶、阿尼普酶(anistreplase)(茴酰化血纤维蛋白溶酶原链激酶激活剂复合物)、抗胸腺细胞球蛋白、响尾蛇多价免疫Fab、地高辛免疫血清Fab、L-精氨酸酶、和L-甲硫氨酸酶。
[0109] 实施方案包括从人同种异体移植物移植抗原选择致耐受性抗原。这些抗原的例子是各种MHC I类和MHC II类单体型蛋白的亚基,以及次要血型抗原(minor blood group antigen),包括RhCE,Kell,Kidd,Duffy和Ss上的单氨基酸多态性。
[0110] 在一些情况中,致耐受性抗原是患者针对其已经形成自身免疫应答或者可能形成自身免疫应答的自身抗原。例子是胰岛素原(糖尿病)、胶原(类湿性关节炎)、髓鞘碱性蛋白(多发性硬化)。存在着许多作为人自身免疫性蛋白质(该术语指各种自身免疫性疾病,其中一种或多种引起疾病的蛋白质是已知的或者可以通过常规的测试建立)的蛋白质。实施方案包括测试患者以鉴定自身免疫性蛋白质,并创建在分子融合物中使用的抗原及创建对蛋白质的免疫耐受。实施方案包括下列一种或多种蛋白质的抗原,或者从下列一种或多种蛋白质选择抗原。在1型糖尿病中,已经鉴定出几种主要的抗原:胰岛素、胰岛素原、前胰岛素原、谷氨酸脱羧酶-65(GAD-65)、GAD-67、胰岛素瘤关联蛋白2(IA-2)、和胰岛素瘤关联蛋白2β(IA-2β);其它抗原包括ICA69、ICA12(SOX-13)、羧肽酶H、Imogen 38、GLIMA 38、嗜铬粒蛋白-A、HSP-60、羧肽酶E、外周蛋白、葡萄糖转运蛋白2、肝癌-肠-胰/胰腺关联蛋白、S100β、胶质细胞原纤维酸性蛋白、再生基因II、胰十二指肠同源框1、萎缩性肌强直病(dystrophia myotonica)激酶、胰岛特异性葡萄糖-6-磷酸酶催化亚基相关蛋白、和SST G蛋白偶联受体1-5。在自身免疫性甲状腺疾病(包括桥本甲状腺炎和格雷夫斯氏病)中,主要的抗原包括甲状腺球蛋白(TG)、甲状腺过氧化物酶(TPO)和促甲状腺激素受体(TSHR);其它抗原包括钠碘同向转运蛋白(symporter)(NIS)和巨蛋白。在甲状腺相关眼病和皮肤病中,除了甲状腺自身抗原(包括TSHR)外,抗原是胰岛素样生长因子1受体。在甲状旁腺功能减退中,主要的抗原是敏感性受体。在阿狄森(Addison)氏病中,主要的抗原包括21-羟化酶、17α-羟化酶、和P450侧链切割酶(P450scc);其它抗原包括ACTH受体、P450c21和P450c17。在卵巢功能早衰中,主要的抗原包括FSH受体和α-烯醇化酶。在自身免疫性下垂体炎,或垂体自身免疫性疾病中,主要的抗原包括垂体配体特异性蛋白质因子(PGSF)1a和2;另一种抗原是2型碘化甲腺氨酸脱碘酶。在多发性硬化中,主要的抗原包括髓鞘碱性蛋白、髓鞘少突胶质细胞糖蛋白和蛋白脂质蛋白。在类风湿性关节炎中,主要的抗原是胶原II。在免疫胃炎
(immunogastritis)中,主要的抗原是H+,K+-ATP酶。在恶性贫血(pernicious angemis)中,主要的抗原是内因子。在乳糜泻中,主要的抗原是组织转谷氨酰胺酶和麦醇溶蛋白。在白癜风中,主要的抗原是酪氨酸酶,和酪氨酸酶相关蛋白1和2。在重症肌无力中,主要的抗原是乙酰胆碱受体。在寻常型天疱疮和变型中,主要的抗原是桥粒芯蛋白(desmoglein)3、1和4;
其它抗原包括天疱膜联蛋白、桥粒胶蛋白(desmocollin)、斑珠蛋白(plakoglobin)、斑周蛋白(perplakin)、桥粒斑蛋白(desmoplakin)、和乙酰胆碱受体。在大疱性类天疱疮中,主要的抗原包括BP180和BP230;其它抗原包括网蛋白和层粘连蛋白5。在杜林疱疹样皮炎中,主要的抗原包括肌内膜和组织转谷氨酰胺酶。在获得性大疱性表皮松解(epidermolysis bullosa acquisita)中,主要的抗原是胶原VII。在系统性硬化病(systemic sclerosis)中,主要的抗原包括基质金属蛋白质酶1和3、胶原特异性分子伴侣热休克蛋白47、微纤维蛋白-1、和PDGF受体;其它抗原包括Scl-70、U1RNP、Th/To、Ku、Jo1、NAG-2、着丝粒蛋白、拓扑异构酶I、核仁蛋白、RNA聚合酶I、II和III、PM-Slc、纤维蛋白、和B23。在混合性结缔组织病中,主要的抗原是U1snRNP。在斯耶格伦(Sjogren)氏综合征中,主要的抗原是核抗原SS-A和SS-B;其它抗原包括胞衬蛋白、多聚(ADP-核糖)聚合酶和拓扑异构酶。在系统性红斑狼疮中,主要的抗原包括核蛋白,包括SS-A、高迁移率组框1(HMGB1)、核小体、组蛋白蛋白质和双链DNA。在古德帕斯丘综合征(Goodpasture’s syndrome)中,主要的抗原包括肾小球基膜蛋白,包括胶原IV。在风湿性心脏病中,主要的抗原是心脏肌球蛋白。自身免疫性多腺性综合征1型中揭示的其它自身抗原包括芳香族L-氨基酸脱羧酶、组氨酸脱羧酶、半胱氨酸亚磺酸脱羧酶、色氨酸羟化酶、酪氨酸羟化酶、苯丙氨酸羟化酶、肝P450细胞色素P4501A2和2A6、SOX-9、SOX-10、钙感测受体蛋白、和1型干扰素干扰素α、β和ω。
[0111] 在一些情况中,致耐受性抗原是患者已经针对其形成不想要的免疫应答的外来抗原。例子是食物抗原。实施方案包括测试患者以鉴定外来抗原,并创建包含抗原的分子融合物,并治疗患者以形成对抗原或食物的免疫耐受。提供了此类食物和/或抗原的例子。例子来自花生的:伴花生球蛋白(Ara h 1)、变应原II(Ara h 2)、花生凝集素、羽扇豆球蛋白(Ara h 6);来自苹果的:31kda主要变应原/疾病抗性蛋白同源物(Mal d 2)、脂质转运蛋白前体(Mal d 3)、主要变应原Mal d 1.03D(Mal d 1);来自乳的:α-乳清蛋白(ALA)、乳转蛋白;来自奇异果(kiwi)的:猕猴桃素(actinidin)(Act c 1,Act d 1)、植物半胱氨酸蛋白酶抑制剂(phytocystatin)、奇异果甜蛋白(thaumatin)样蛋白(Act d 2)、kiwellin(Act d 5);来自芥菜的:2S白蛋白(Sin a 1)、11S球蛋白(Sin a 2)、脂质转运蛋白(Sin a 3)、抑制蛋白(Sin a 4);来自芹菜的:抑制蛋白(Api g 4)、高分子量糖蛋白(Api g 5);来自虾的:
Pen a 1变应原(Pen a 1)、变应原Pen m 2(Pen m2)、原肌球蛋白快速同种型(fast isoform);来自小麦和/或其它谷物的:高分子量麦谷蛋白、低分子量麦谷蛋白、α和γ-麦醇溶蛋白、大麦醇溶蛋白、裸麦醇溶蛋白、燕麦蛋白;来自草莓的:主要草莓变态反应Fra a 1-E(Fra a 1),来自香蕉:抑制蛋白(Mus xp 1)。
[0112] 在人和兽医医学中使用的许多蛋白质药物诱导免疫应答,对患者产生风险,而且限制药物的效力。这对于已经工程化改造的人蛋白质、先天性蛋白质生成缺陷的患者中使用的所述人蛋白质、以及非人蛋白质均可能发生。在初始施用前使接受者耐受这些蛋白质药物可能是有利的,并且在初始施用及形成免疫应答后使接受者耐受这些蛋白质药物可能是有利的。在自身免疫患者中,自身免疫形成所针对的自身抗原是已知的。在这些情况中,在形成自身免疫之前使有风险的受试者耐受可能是有利的,并且在初始自身免疫的生物分子指征形成之时或之后使受试者耐受可能是有利的。例如,在1型糖尿病中,在胰腺中β细胞的广泛破坏及葡萄糖稳态的临床病情发作前自身免疫的免疫学指征。在临床病情发作前在检测出这些免疫学指征后使受试者耐受可能是有利的。
[0113] 由Miller及同事负责的新近工作已经显示了离体共价缀合的抗原与同种异体脾细胞在施用到小鼠静脉内时产生抗原特异性免疫耐受(Godsel,Wang等,2001;Luo,Pothoven等,2008)。该方法涉及收获供体脾抗原呈递细胞,并在胺-羧酸交联反应程序中使它们起化学反应。已经证明该技术可有效对多发性硬化(Godsel,Wang等,2001)、新发作的糖尿病1型(Fife,Guleria等,2006)、和同种异型胰岛移植物(Luo,Pothoven等,2008)的小鼠模型诱导抗原特异性耐受。虽然负责致耐受应答的确切机制是未知的,但有人提出,一个主要的条件涉及在凋亡抗原偶联细胞上不表达共刺激分子的情况下的抗原呈递(Miller,Turley等,2007)。还已经考虑在红细胞影内包囊抗原,离体加工红细胞,并再注射它们,如在WO2011/051346中的。
[0114] 施用
[0115] 本文中所列的本发明的许多实施方案描述了可以对人或其它动物患者施用的组合物。本发明的实施方案包括例如识别红细胞或肿瘤或肿瘤血管系统上的抗原的分子融合物、融合蛋白、肽配体、抗体、scFv及其组合。这些组合物可以以药学可接受组合物且与合适的药学可接受担载体或赋形剂一起制备。
[0116] 结合红细胞的组合物结合红细胞可以是特异性的。此特异性为组合物与红细胞的体内结合,以及作为备选的离体过程提供可能。因而,可以将组合物直接注射入患者的血管系统中。一种备选是注射到组织(例如肌肉)中、皮肤、或皮下,以供随后由红细胞接触和摄取。
[0117] 可以使用药学可接受担载体或赋形剂来递送如本文中所描述的实施方案。赋形剂指一种作为治疗剂的稀释剂或媒介物使用的惰性物质。药学可接受担载体一般与化合物一起使用,从而使化合物可用于治疗或作为产品。一般地,对于任何物质,药学可接受担载体是与要递送给动物的物质组合的材料。常规的药用载体、水性、粉末或油性基质、增稠剂等可以是必需的或期望的。在某些情况中,担载体对于递送而言是必需的,例如用来溶解不溶性化合物以进行液体递送;缓冲液以控制物质的pH从而保持其活性;或稀释剂以防止贮存容器中的物质损失。然而,在其它情况中,担载体是为了方便,例如,用于更方便施用的液体。本文中所描述的化合物的药学可接受盐可以依照本领域技术人员已知的方法合成。因此,药学可接受组合物是高度纯化的,从而不含污染物,是生物相容的且无毒的,而且进一步包含适合于对患者施用的担载体、盐、或赋形剂。在水作为担载体的情况中,将水进行高度纯化,并处理成不含污染物,例如内毒素。
[0118] 通常,本文中所描述的化合物要与根据意图施用形式适当选择且与符合常规药学实践的合适药用稀释剂、赋形剂、增量剂或载体(在本文中称为药学可接受担载体,或担载体)掺混起来施用。如此,可递送的化合物可以制备为以适合于口服、直肠、表面、静脉内注射、动脉内注射、或胃肠外施用的形式。担载体包括固体或液体,并且基于使用的施用类型而选择担载体的类型。可以包括合适的粘合剂润滑剂、崩解剂、着色剂、芳香剂、流动诱导剂(flow-inducing agent)、和熔化剂(melting agent)作为担载体,例如用于丸剂。例如,活性组分可以与口服、无毒性、药学可接受的、惰性载体诸如乳糖、明胶、琼脂、淀粉、蔗糖、葡萄糖、甲基纤维素硬脂酸镁、磷酸二钙、硫酸钙、甘露醇、山梨糖醇,等等组合。化合物可以以固体剂型,诸如胶囊、片剂、和粉末,或者以液体剂型,诸如酏剂、糖浆剂、和悬浮液口服施用。活性化合物也可以以无菌液体剂型胃肠外施用。也可以使用缓冲剂来实现生物学pH或渗量。实施例
[0119] 实施例1:用小鼠红细胞筛选红细胞结合性肽
[0120] 在选择中使用可购自New England Biolabs(NEB)的PhD幼稚的12个氨基酸的肽噬菌体文库。在每轮筛选中,将1011个输入噬菌体在具有50mg/mL BSA的PBS(PBSA-50)中与小鼠红细胞一起温育。于37C在1小时后,通过在PERCOLL(GE Life Sciences)中以1500g离心15分钟除去未结合的噬菌体。在PBSA-50中实施随后的解离步骤以除去低亲和力结合噬菌体。在后来的筛选轮次中提高解离持续时间和温度以提高选择过程的严格性。在第1轮中,噬菌体结合之后进行室温的2分钟解离步骤,之后清洗和洗脱。在第2轮中,噬菌体结合之后进行37℃的10分钟解离。在第3轮和第4轮中,于37℃进行两个分开的且顺序的解离步骤:在第3轮中先后为10分钟和15分钟,而在第4轮中先后为10分钟和30分钟。用0.2M甘氨酸pH 
2.2洗脱红细胞结合噬菌体10分钟,并用0.15个体积的1M Tris,pH 9.1中和溶液。针对全部红细胞应用4轮选择后实质性富集了文库中的高亲和力噬菌体克隆,如通过流式细胞术显示的。感染性或噬菌体形成单位通过标准滴定(titering)技术来计算。将噬菌体样品连续稀释到新鲜的LB培养基中,并将10μL噬菌体稀释液添加到200μL对数早期ER2738大肠杆菌(E.coli)(NEB)。在于室温温育3分钟后,将溶液添加到3mL顶部琼脂,混合,并倒入含有IPTG和XGal的LB板上。在于37℃温育过夜后,将蓝色菌落作为噬菌体形成单位(pfu)计数。
[0121] 实施例2:表征对小鼠红细胞的结合
[0122] 结果:显微术确认ERY1噬菌体结合红细胞细胞表面,而不改变细胞形态且没有胞质移位。荧光和相差图像再次显示了ERY1噬菌体相对于未经选择的文库的红细胞结合能力。高分辨率共焦成像揭示了ERY1噬菌体遍及细胞表面分布(与在单个位置处群集形成对比),而且优先结合细胞表面的赤道外周,并且结合在红细胞之间是均匀的(图1)。
[0123] 方法:对于所有样品,将1011个输入噬菌体在PBS-50中与小鼠红细胞一起温育。37℃1小时后,通过以200g离心3分钟除去未结合的噬菌体。对于规则的荧光显微术样品,将细胞于室温与PBSA-5中以1:20稀释的抗M13外壳蛋白-PE抗体(Santa Cruz Biotechnology)一起温育1小时。将细胞以200g旋转3分钟,在10μL硬固(Hard-set)封固剂(VECTASHIELD)中重悬,涂到显微镜载玻片上,用盖玻片覆盖,并显现。对于共焦显微镜样品,将细胞与兔抗fd噬菌体(Sigma)和抗兔ALEXAFLUOR缀合物(Invitrogen)一起温育。
[0124] 实施例3:表征结合小鼠红细胞的分子靶物
[0125] 结果:为了搜索ERY1肽的分子靶物,采用使用生物素化的可溶性肽的亲和力下拉(pull-down)技术;此方法揭示了血型糖蛋白-A(GYPA)为红细胞膜上的ERY1配体。在将完整红细胞与用生物素功能化的ERY1肽和可光活化的交联剂一起温育时,通过链霉亲合素Western印迹检出一个28kDa蛋白质与该肽-生物素复合物缀合(图2A)。将反应裂解物充分清洗,并使用链霉亲合素磁珠纯化以确保没有残留来自红细胞裂解物的未标记的蛋白质。如预期的,错配肽不能与任何红细胞蛋白质缀合。错配肽PLLTVGMDLWPW(SEQ ID NO:2)设计为含有与ERY1相同的氨基酸残基,并且与其疏水性分布状况一致。相互作用的蛋白质的表观大小的证据提示了几个较小的、单次跨膜蛋白质为可能的配体,即血型糖蛋白。来自交联反应的相同的纯化样品的抗GYPA Western印迹确认候选生物素化的蛋白质确实是GYPA(图
2B)。
[0126] 通过高分辨率共焦显微术分析ERY1噬菌体与GYPA的共定位。GYPA是天然表达的,并且作为由几种膜和细胞骨架蛋白构成的复合物的一部分呈现(Mohandas和Gallagher,2008)。这一点在GYPA染色中是直观明显的,在细胞赤道外周看到不一致的标记。用ERY1噬菌体标记产生极其相似的染色分布情况。共定位分析中高达0.97的重叠系数佐证了如下的结论,即ERY1噬菌体和抗GYPA结合相同的蛋白质。在用文库噬菌体标记的红细胞中还见到GYPA群集,但是没有噬菌体结合,因而也没有明显的共定位。
[0127] 方法:在TGR树脂上使用标准的固相f-moc化学合成ERY1(H2N-WMVLPWLPGTLDGGSGCRG-CONH2)(SEQ ID NO:19)和错配(H2N-PLLTVGMDLWPWGGSGCRG-CONH2)(SEQ ID NO:20)肽。将肽在95%三氟乙酸、2.5%乙二硫醇、2.5%水中自树脂切割下来,并在冷的乙醚中沉淀。使用C18反相柱在Waters制备用HPLC-MS上进行纯化。
[0128] 将ERY1和错配肽与Mts-Atf-生物素(Thermo Scientific)缀合,如由制造商建议的。简言之,将肽在PBS/DMF中溶解,并于4C与1.05当量的Mts-atf-生物素起反应过夜。在通过离心使反应澄清后,将生物素化的肽于37C在PBSA-50中与红细胞一起温育1小时,将细胞在新鲜的PBS中清洗两次,并于室温于365nm进行UV照射8分钟。通过超声处理裂解细胞,并使用经链霉亲合素包被的磁珠(Invitrogen)纯化裂解物。将洗脱物在SDS-PAGE上运行,并转移到PVDF膜,并用链霉亲合素-HRP(R&D Systems)或抗小鼠GYPA免疫印迹。
[0129] 实施例4:表征ERY1对其它小鼠细胞及来自其它物种的红细胞的结合或结合缺乏。
[0130] 结果:对一组物种间细胞系的流式细胞术筛选表明ERY1噬菌体对小鼠和大鼠红细胞是特异性的,对小鼠白细胞或人细胞没有可测量的结合(图3)。这些数据提示了充当ERY1配体的特异性膜蛋白仅存在于红系细胞中,而不存在于髓样或淋巴样细胞谱系中。此外,这验证了使用除了离心外几乎没有预先纯化的新鲜分离的血液作为目标的筛选方法。
[0131] 方法:为了测定噬菌体结合,于37C使用约1010个噬菌体颗粒来标记PBSA-50中的5x105个细胞1小时。在以200g离心4分钟后,将细胞在PBSA-5中重悬,并于室温以1:20的稀释添加抗噬菌体-PE历时1小时。在最终的旋转/清洗循环后,将细胞在PBSA-5中重悬,并在流式细胞仪上分析。
[0132] 实施例5:用模型蛋白质表征静脉内药动学
[0133] 结果:为了表征ERY1肽对蛋白质药动学的影响,我们表达模型蛋白质麦芽糖结合蛋白(MBP)作为与ERY1肽的N端融合物(ERY1-MBP)。在静脉内施用后,相对于野生型蛋白质,ERY1-MBP变体展现出延长的循环(图4)。注射后立即采集的时间点的血液样品确认了初始浓度在这两种配制剂中是相同的,因而剂量也是如此。在静脉内注射后4小时开始,ERY1-MBP以比非结合性的野生型MBP统计学显著更慢的速率从循环清除。
[0134] 与野生型MBP相比,ERY1-MBP证明血清半衰期延长3.28倍(对于单一区室模型)至6.39倍(对于两区室模型)倍,且清除降低2.14倍。使用标准的一区室药动学模型分析浓度对野生型和ERY1变体分别得到0.92小时和3.02小时的半衰期。还将数据精确拟合到两区室模型(R2≥0.98),对野生型和ERY1变体分别得出α和β半衰期为0.41小时和1.11小时,以及
2.62小时和3.17小时。因而,可以预期用如本文中教导的人红细胞结合性肽和其它红细胞结合性配体得到半衰期延长。
[0135] 方法:使用标准的质粒分离试剂盒提取克隆复制形式M13KE DNA。将所得的质粒用Acc651和EagI消化以获得gIII融合基因,然后连接到pMAL-pIII中的相同位点中,产生本文中称作pMAL-ERY1的质粒。在BL21大肠杆菌中表达经序列验证的克隆。简言之,于37C用终浓度0.3mM的IPTG诱导对数中期BL21培养物达3小时。用20mM Tris、20%蔗糖、2mM EDTA渗透休克处理10分钟,接着在5mM MgSO4中于4℃第二次处理15分钟,这容许周质表达的MBP融合物与细胞碎片分离。在直链淀粉SEPHAROSE上进行融合蛋白的纯化,并通过SDS-PAGE分析纯度。
[0136] 瑞士沃州兽医局(Swiss Vaud Veterinary Office)先前批准了所有动物规程。在用氯胺/甲苯噻嗪麻醉下,将小鼠尾部在42℃水中保温,并将150μg蛋白质在100μL体积中直接注射入尾静脉中。注意确保小鼠在麻醉下保持于37℃。通过在尾根部小手术刀切口抽出血液,并在PBSA-5,10mM EDTA中稀释10倍,并于-20C贮存,直至进一步分析。通过夹心式ELISA对血液样品分析MBP浓度。简言之,使用单克隆小鼠抗MBP作为捕捉抗体,多克隆兔抗MBP作为一抗,而山羊抗兔HRP作为二抗。使用公式1和公式2使用标准的药动学区室分析在PRISM4中分析数据。
[0137] 公式1:标准一区室模型
[0138] A=A0e-Kt
[0139] 其中A是时间t时体内的游离药物量,而A0是时间0时药物初始量。
[0140] 公式2:标准两区室模型
[0141] A=ae-αt+be-βt
[0142] 其中A是时间t时中心区室中游离药物的量。
[0143] 实施例6:用模型蛋白质表征皮下药动学
[0144] 结果:在血管外施用后,ERY1-MBP变体相对于野生型蛋白质展现出延长的循环(图5)。注射后立即采集的时间点的血液样品确认初始浓度在这两种配制剂中是相同的,因而剂量也是如此。在皮下注射后,可见ERY1-MBP的血液浓度升高的相似趋势持续贯穿整个实验期间。分析血液浓度揭示了与野生型MBP相比,ERY1-MBP变体显示的生物利用度增加
1.67。因而,半衰期延长在如本文中教导的人红细胞结合性肽和其它红细胞结合性配体的情况下是有可能的。
[0145] 方法:使用标准的质粒分离试剂盒提取克隆复制形式M13KE DNA。将所得的质粒用Acc651和EagI消化以获得gIII融合基因,然后连接到pMAL-pIII中的相同位点中,产生本文中称作pMAL-ERY1的质粒。在BL21大肠杆菌中表达经序列验证的克隆。简言之,于37C用终浓度0.3mM的IPTG诱导对数中期BL21培养物达3小时。用20mM Tris、20%蔗糖、2mM EDTA渗透休克处理10分钟,接着在5mM MgSO4中于4℃第二次处理15分钟,这容许周质表达的MBP融合物与细胞碎片分离。在直链淀粉Sepharose上进行融合蛋白的纯化,并通过SDS-PAGE分析纯度。
[0146] 瑞士沃州兽医局先前批准了所有动物规程。在用异氟烷麻醉下,将150μg蛋白质在100μL体积中直接注射入小鼠的背部皮肤中。注意确保小鼠在麻醉下保持于37C。通过在尾根部小手术刀切口抽出血液,并在PBSA-5,10mM EDTA中稀释10倍,并于-20C贮存,直至进一步分析。通过夹心式ELISA对血液样品分析MBP浓度。简言之,使用单克隆小鼠抗MBP作为捕捉抗体,多克隆兔抗MBP作为一抗,而山羊抗兔HRP作为二抗。在Prism4中分析数据,使用标准的药动学区室分析,使用公式3。
[0147] 公式3:生物利用度
[0148]
[0149] 其中AUC是血浆浓度对时间曲线图下的面积,s.c.是皮下,而i.v.是静脉内。
[0150] 实施例7:工程化改造scFv抗体的接头域
[0151] 方法:自DNA 2.0(Menlo Park,CA,USA)订制合成编码针对纤连蛋白的胞外域(extra domain)A的scFv片段的基因:
[0152] 5’ATGGCAAGCATGACCGGTGGCCAACAAATGGGTACGGAAGTGCAACTGCTGGAGTCTGGCGGTGGCCTGGTTCAGCCGGGTGGCAGCTTGCGCCTGAGCTGTGCGGCGTCTGGCTTCACCTTTAGCGTCATGAAAATGAGCTGGGTTCGCCAGGCACCAGGTAAAGGCCTGGAGTGGGTGTCGGCAATCAGCGGTTCCGGTGGTAGCACCTATTACGCTGACAGCGTGAAAGGCCGTTTTACGATTTCGCGTGATAACAGCAAGAACACGCTGTACTTGCAAATGAATAGCCTGCGTGCAGAGGACACGGCAGTGTACTATTGTGCGAAGAGCACTCACCTGTACTTGTTTGATTACTGGGGTCAAGGCACCCTGGTTACCGTTAGCAGCGGCGGTGGTGGCTCCGGTGGTGGTGGTAGCGGTGGCGGTGGTTCTGGTGGTGGCGGCTCTGAAATTGTCCTGACTCAGAGCCCTGGCACGCTGAGCCTGAGCCCGGGTGAGCGCGCGACGCTGAGCTGCCGTGCGAGCCAGTCCGTTAGCAACGCGTTCCTGGCTTGGTATCAACAGAAACCGGGTCAGGCCCCTCGCCTGCTGATTTACGGTGCCAGCTCCCGTGCGACGGGCATCCCGGACCGTTTTTCCGGCTCCGGTAGCGGCACCGACTTCACCCTGACCATCAGCCGCCTGGAGCCGGAGGATTTCGCGGTGTATTACTGCCAGCAAATGCGTGGCCGTCCGCCGACCTTCGGTCAGGGTACCAAGGTCGAGATTAAGGCTGCGGCCGAACAGAAACTGATCAGCGAAGAAGATTTGAATGGTGCCGCG-3’(SEQ ID NO:21)。为了构建含有野生型scFv的表达质粒,使用引物SK01和SK02来PCR扩增基因,并添加HindIII(5’端)和XhoI(3’端)限制性位点,及3’端的两个终止密码子。为了构建在scFv的接头区中含有ERY1肽的REP突变体scFv,使用重叠延伸PCR。使用引物SK01和SK03,通过PCR创建了包含scFv的5’一半及后随的ERY1基因片段的基因片段。使用引物SK02和SK04,通过PCR创建了包含ERY1基因片段(与前述片段互补)的及后随的scFv的3’一半的基因片段。在琼脂糖电泳后使用标准试剂盒(Zymo Research,Orange,CA,USA)纯化基因片段,并使用PCR融合两个片段。使用SK01和SK02引物进行最终的扩增PCR以创建正确的限制性位点和终止密码子。以与REP突变体完全相同的方式进行INS突变体scFv的构建,只是使用引物SK05替换SK03,并使用SK06替换SK04。将每个最终完成的scFv基因产物用HindIII和XhoI(NEB,Ipswich,MA,USA)消化,并连接到pSecTagA哺乳动物表达质粒(Invitrogen,Carlsbad,CA,USA)上的相同位点中。
[0153]
[0154]
[0155] 扩增经序列验证的克隆,并纯化其质粒DNA以在人胚肾(HEK)293T细胞中表达。表达质粒含有N端信号序列,用于将感兴趣的重组蛋白分泌到培养基中。在表达7天后,将细胞离心沉降,收获培养基,并在SUPERDEX 75柱(GE Life Sciences,Piscataway,NJ,USA)上使用大小排阻层析纯化scFv。
[0156] 使用琥珀酰亚胺基-4-(N-马来酰亚胺甲基)环己烷-1-羧酸盐(SMCC,CAS#64987-85-5,Thermo Scientific)作为交联剂将含有C端半胱氨酸的ERY1肽与野生型scFv缀合。将SMCC在二甲基甲酰胺中溶解,并以30倍摩尔过量添加到磷酸盐缓冲盐水(PBS)中的scFv。于
4C在2小时后,将反应体系在ZEBASPIN脱盐柱(Thermo Scientific)上脱盐,并将产物与ERY1肽(肽5摩尔过量)反应。于4C在2小时后,将反应体系在10kDa MWCO透析管中4C下针对PBS透析2天。通过SDS-PAGE、Western印迹、和MALDI分析缀合的scFv。
[0157] 实施例8:用人红细胞筛选红细胞结合性肽
[0158] 结果:为了选择结合人红细胞的7种新颖的肽,采用大肠杆菌表面展示文库。在经清洗的全血中在高浓度的血清白蛋白(50mg/mL)中4C实施筛选过程,以降低对白细胞的非特异性结合。首先,通过与血液温育,接着通过大量清洗和密度梯度离心小心地分开有细菌结合的红细胞与其它细胞,来将肽文库富集3轮。随后,将编码选择的肽的细菌质粒转化到表达绿色荧光蛋白变体的细菌中。这容许与红细胞结合的绿色细菌通过高通量FACS得到分选,并且使用细胞计量术对回收的细菌克隆个体测定对红细胞的结合。鉴定出7种独特的红细胞结合性肽,如表1中显示的。这些肽不含共有基序,使用UniProt中的BLAST算法针对已知蛋白质进行分析时也没有找到相关的蛋白质序列同源性。
[0159] 方法:大肠杆菌表面展示由超过十亿个不同细菌构成,每个细菌在支架蛋白eCPX(一种外膜蛋白X的循环排列变体(circularly permuted variant))的N端上展示约1000个拷贝的随机15聚体肽(Rice和Daugherty,2008)。对于前三个选择循环,使用共沉降,后随一轮FACS来选择细菌对人红细胞的结合(Dane,Chan等,2006)。将冷冻等份的1011个含有eCPX表面展示文库的细胞融化,并在补充有34μg/mL氯霉素(Cm)和0.2%D-(+)-葡萄糖的Luria Bertani(LB)培养基中于37℃培养过夜。将细菌在补充有Cm的LB中以1:50传代培养3小时,并用0.02%L-(+)-阿拉伯糖诱导1小时。将来自健康供体的人血液(B型)用PBS中5%HSA,2%FBS(HFS)清洗两次,在锥形管中重悬,并与1011个细菌细胞在颠倒摇瓶上于4℃共温育1小时。将细胞悬浮液以500g离心5分钟,并除去上清液中的非结合细菌。将红细胞在50mL HFS中清洗三次,并在LB中重悬以过夜培养结合细菌。通过在补充有Cm的LB琼脂板上铺板来计数回收的细菌克隆。对于第二和第三轮,分别添加108和5x107个细菌,并如上文清洗一次,使用70%Percoll(GE Life Sciences)梯度以1000g 10分钟分离红细胞。对于流式细胞术分选,使用Zyppy微量制备试剂盒从细菌细胞提取选择的eCPX文库群体的质粒。随后,将这些质粒转化到大肠杆菌MC1061/pLAC22Grn1中以进行诱导型GFP表达。用1mM IPTG诱导GFP表达2小时,接着用0.02%L-(+)-阿拉伯糖诱导肽表面表达1小时,两者都于37C进行。使用与上文所描述相似的技术实施FACS的样品制备,并使用FACSAria(BD Biosciences)分选结合红细胞的荧光第三轮群体。
[0160] 实施例9:表征对人红细胞的结合
[0161] 结果:为了表征所选择的结合人红细胞的肽,对展示每个肽的细菌用多种细胞类型进行结合测定。七种肽中的六种(ERY19,ERY59,ERY64,ERY123,ERY141和ERY162)与针对人上皮293T细胞和人内皮HUVEC的结合相比特异性结合人红细胞(图7A)。另外,肽结合人A和B型血,但是不结合小鼠血液(图7B),指示这些肽对人血液是特异性的,但是不依赖于普通的血型抗原。使用标准的固相f-moc化学来合成肽,与纳米颗粒缀合,并分析其对各细胞类型的结合,如上文。使用显微术和流式细胞术两者研究对红细胞表面的结合。
[0162] 方法:为了表征特异性,使用流式细胞术对个别测序的克隆分析针对人红细胞(A6
和B型)、小鼠红细胞、HEK293T细胞和HUVEC的结合。对于结合测定法,将10个哺乳动物细胞在4C与5×107个细菌共温育1小时,接着在HFS(PBS中的5%HSA,2%FBS)中清洗三次后在AccuriA6上扫描。使用FLOWJO软件计算结合有绿色细菌的细胞的百分比。
[0163] 实施例10:工程化改造scFv抗体的接头域
[0164] 针对肿瘤血管标志物纤连蛋白EDA(EDA)的工程化scFv可以制备为与特异性结合人红细胞的肽的融合物的形式。要将来自实施例8的多个或每个肽插入(GGGGS)4(SEQ ID NO:18)接头区,或相当的区域(与设计的两个含有ERY1的突变体相似)中;因而,添加肽ERY19,ERY50,ERY59,ERY64,ERY123,ERY141,ERY162替换REP和INS突变体序列中的ERY1(图6A)。由于发现人ERY肽拴系于支架蛋白eCPX的N端,插入接头区中的这些构建体可能影响红细胞结合。为了解决这点,通过与合成的人ERY肽(与ERY1相似)化学缀合来创建scFv变体(图6C)。这会容许最佳数目的ERY肽以单独或组合的方式添加到svFv以刺激红细胞结合。
[0165] 实施例11:表征聚合纳米颗粒和胶束的药动学和生物分布
[0166] 发明实验室先前已经开发出许多基于聚合物的纳米颗粒和胶束以用于药物递送和免疫调控。此技术是稳健的,因为它容许含有硫醇的分子与纳米颗粒以可定量的方式容易地进行位点特异性缀合(van der Vlies,O’Neil等,2010)。此实验室还已经开发出在单一胶束上展示多个化学基团的胶束配制剂,和能够受控递送疏水性药物的配制剂(O’Neil,van der Vlies等,2009;Velluto,Demurtas等,2008)。此实验室还已经探索其纳米颗粒技术作为免疫应答调控剂的用途,因为它们靶向淋巴结中的抗原呈递细胞(Reddy,Rehor等,2006;Reddy,van der Vlies等,2007)。与本文中的材料和方法组合的胶束和颗粒技术包括US 2008/0031899,US 2010/0055189,和US 2010/0003338,在此通过提及并入本文。
[0167] 对这些纳米颗粒和胶束平台添加ERY1肽或人红细胞结合性肽改善其药动学行为,由此增强其作为循环药物载体的性能。可以通过多个反应方案实施与任何纳米颗粒或胶束变体的ERY1或人红细胞结合性肽缀合,并可以使用正交化学实现检测分子与终产物的缀合。由于ERY1或人红细胞结合性肽组的存在,结合红细胞的纳米颗粒或胶束的确认可以通过流式细胞术和显微术验证,并且通过体内表征的进一步确认可以通过在小鼠中施用后的不同时间点时定量检测分子来实施。
[0168] 实施例12:工程化改造聚合物纳米颗粒和胶束以阻塞肿瘤血管系统
[0169] 可以设计并制备针对红细胞和肿瘤血管标志物两者的双重特异性工程化聚合物纳米颗粒和胶束,其可引起肿瘤血管床中红细胞的聚集事件,并且特异性阻塞其血供。可以评估并利用几种肿瘤靶向标志物,包括经修饰的在接头区中包含半胱氨酸的针对纤连蛋白EDA的scFv、含有GPRP肽基序的血纤蛋白原结合肽、和截短的组织因子融合蛋白,它们分别具有工程化的半胱氨酸或生物素以容许附接于颗粒。这些肿瘤靶向配体可以以最佳比率与纳米颗粒和胶束上的红细胞结合性肽或血型糖蛋白A scFv组合以实现双重靶向;可以经由二硫化物连接或亲合素-生物素相互作用将多个配体附接于颗粒。为了确认,可以采用标准的小鼠实体瘤模型,将小鼠肿瘤细胞注射入小鼠的背部皮肤中,并且容许生长预定的时段,在该点给小鼠施用纳米颗粒或胶束。可以在表征治疗剂的药动学后确定剂量和治疗方案。为了进一步确认,在处理后的不同时间点时,可以在处理组间比较肿瘤体积以评估治疗剂阻断肿瘤块进一步生长的潜力。红细胞介导的对肿瘤血管系统的阻断的进一步确认可以通过在活的荷瘤小鼠中的灌注实验来评估。会观察到治疗剂对红细胞的亲和力与肿瘤血管阻塞之间的正相关。
[0170] 实施例13:工程化改造scFv抗体以阻塞肿瘤血管系统
[0171] 对肿瘤血管标志物EDA及对红细胞特异性的工程化scFv可以引起肿瘤血管床中红细胞的聚集事件,并且特异性阻塞其供血。针对EDA的经修饰的scFv包括作为接头区中的融合物或作为与scFv的缀合物的人ERY结合肽。可以采用标准的小鼠实体瘤模型,将小鼠肿瘤细胞注射入小鼠的背部皮肤中,并且容许生长预定的时段,在该点给小鼠施用纳米颗粒或胶束。可以在表征治疗剂的药动学后确定剂量和治疗方案。在处理后的不同时间点,可以在处理组间比较肿瘤体积以评估治疗剂阻断肿瘤块进一步生长的潜力。红细胞介导的对肿瘤血管系统的阻断的确认可以通过在活的荷瘤小鼠中的灌注实验来评估。治疗剂对红细胞的亲和力会与肿瘤血管阻塞相关联。
[0172] 实施例14:经由红细胞与缀合有ERY1肽的抗原或缀合有人红细胞结合性肽的抗原的非共价结合诱导抗原特异性免疫学耐受性
[0173] 为了获得抗原对红细胞的强烈且特异性的生物物理结合,我们使用了一种合成的12个氨基酸的肽(ERY1),我们通过噬菌体展示发现该肽特异性结合小鼠血型糖蛋白-A (Kontos和Hubbell,2010)。在此调查中,将模型抗原OVA与转基因小鼠品系(OT-I)一起使用,所述转基因小鼠品系(OT-I)的CD8+T细胞群表达对MHC I OVA免疫优势肽SIINFEKL(SEQ ID NO:3)特异性的T细胞受体。将ERY1肽与OVA化学缀合以创建OVA变体(ERY1-OVA),其以高亲和力和特异性结合小鼠红细胞(图8a)。高分辨率共焦显微术确认了早先关于ERY1结合的观察结果(Kontos和Hubbell,2010),即定位于细胞膜赤道外周,没有缀合有ERY1的蛋白质的胞内移位。ERY1介导的对血型糖蛋白-A的结合是序列特异性的,因为与错配肽(其含有与ERY1相同的氨基酸,但是在一级序列上是乱序的)缀合的OVA变体(MIS-OVA)展示的结合可以忽略(图8b)。仅与用于缀合肽的交联分子缀合的OVA针对红细胞没有展示任何可测量的亲和力,这确认了ERY1-OVA结合是ERY1肽与红细胞表面上的血型糖蛋白-A之间的非共价相互作用的结果。此外,ERY1-OVA以高亲和力特异性红细胞,展现出6.2±1.3nM的抗体样解离常数(Kd),如通过平衡结合测量测定的(图8c)。
[0174] 在小鼠中静脉内施用后确认ERY1-OVA体内对循环红细胞的结合。在注射150μg OVA或ERY1-OVA后30分钟采集的全血样品确认了ERY1-OVA的特异性红细胞结合能力,即使在血液和血管系统的复杂异质环境中(图9a)。与血型糖蛋白-A结合一致,ERY1-OVA结合红细胞(CD45-),但不结合白细胞(CD45+)。ERY1-OVA结合就红细胞的凋亡状态而言没有偏好,对膜联蛋白-V+群体和膜联蛋白-V-CD45-群体两者均强烈结合(图9b)。OVA缀合物的药动学研究证明ERY1-OVA红细胞结合在体内是长久的,展现出17.2小时的细胞表面半衰期(图9c)。ERY1-OVA在施用后长达72小时仍然结合红细胞;在此时限期间,约13%的红细胞在小鼠中被清除(Khandelwal和Saxena,2006)。在体内定量红细胞结合的ERY1-OVA显示每106个红细胞0.174±0.005ng OVA的相对高负荷。
[0175] 为了排除OVA加载对红细胞功能的任何潜在生理学影响,在静脉内施用ERY1-OVA或OVA后的不同时间点时表征血液学参数。与施用OVA相比,ERY1-OVA的红细胞结合没有引发血细胞比容、血球体积(corpuscular volume)、或血细胞血红蛋白含量的可检测差异(图10)。这些结果表明血型糖蛋白-A介导的红细胞与抗原的结合没有改变其血液学参数。
[0176] 为了揭示施用后红细胞结合的抗原的细胞靶物,给小鼠静脉内注射与ERY1(ERY1-别藻蓝蛋白)或MIS肽(MIS-别藻蓝蛋白)缀合的高度荧光别藻蓝蛋白蛋白质。施用后12和36小时对脾DC群体的流式细胞术分析显示与MIS-别藻蓝蛋白相比MHCII+CD11b-CD11c+DC对ERY1-别藻蓝蛋白的摄取增强9.4倍,但MHCII+CD11b+CD11c+DC对ERY1-别藻蓝蛋白和MIS-别藻蓝蛋白的摄取类似(图11a)。另外,发现MHCII+CD8α+CD11c+CD205+脾DC以比MIS-别藻蓝蛋白大3.0倍的程度摄取ERY1-别藻蓝蛋白,尽管绝对量显著低于脾中的其它DC群。抗原对未活化的和CD8α+CD205+脾DC的此类靶向可能加强红细胞结合的致耐受性潜力,因为这些群体已经广泛牵涉凋亡细胞驱动的致耐受性(Ferguson,Choi等,2011;Yamazaki,Dudziak等,2008)。在肝中,与MIS-别藻蓝蛋白相比,ERY1-别藻蓝蛋白也极大地增强肝细胞(CD45-MHCII-CD1d-;78.4倍)和肝星形细胞(CD45-MHCII+CD1d+;60.6倍)的摄取(图11b);已经报告了这两种群体为触发CD8+T细胞删除耐受性的抗原呈递细胞(Holz,Warren等,2010;
+
Ichikawa,Mucida等,2011;Thomson和Knolle,2010)。令人感兴趣的是,在肝DC(CD45CD11c+)或肝巨噬细胞(CD45+MHCII+F4/80+)(其充当帮助清除红细胞和补体包被的颗粒的网状内皮系统的成员)中没有看到此类摄取。致耐受性脾DC和肝细胞群对红细胞结合的抗原的摄取增加提示了通过非淋巴样肝细胞和经典脾细胞对话驱动的抗原特异性T细胞删除的复杂互连机制的潜在可能。
[0177] 观察到ERY1-OVA的红细胞结合导致APC对OVA MHC I免疫优势表位(SIINFEKL)(SEQ ID NO:3)的高效交叉呈递和相应的反应性T细胞交叉初始化。将经CFSE标记的OT-I CD8+T细胞(CD45.2+)过继性转移入CD45.1+小鼠中。在静脉内施用10μg OVA、10μg ERY1-OVA、或10μg无关红细胞结合抗原ERY1-谷胱甘肽-S-转移酶(ERY1-GST)后5天期间内对OT-I CD8+T细胞的增殖进行测量。与OVA相比,OT-I CD8+T细胞增殖(如通过流式细胞术测量的,通过稀释fluor CFSE测定(图12a))在施用ERY1-OVA的小鼠中明显增强(图12b),表明与可溶性抗原相比,红细胞结合提高抗原特异性CD8+T细胞交叉初始化。通过施用低10倍的抗原剂量1μg也获得相似的结果,表明由红细胞结合的抗原诱导的OT-I CD8+T细胞增殖效力的动力学范围宽。关于交叉呈递和交叉初始化的结果与其它关于吞噬来自凋亡细胞的抗原的APC在MHC I上的致耐受性抗原呈递的研究相符(Albert,Pearce等,1998;Green,Ferguson等,2009)。
[0178] 为了区别扩增成为功能性效应物表型的T细胞与那些被扩增并删除的T细胞,分析了增殖性OT-I CD8+T细胞的膜联蛋白-V作为凋亡且因此作为删除的标志(图12c)。ERY1-OVA比OVA诱导数目高得多的膜联蛋白-V+增殖OT-I CD8+T细胞(图12d),提示了最终会导致克隆删除的凋亡命运。通过ERY1-OVA施用诱导的相同的增殖性OT-I CD8+T细胞在1和10μg剂量下都展现出有抗原经历的表型,展示上调的CD44和下调的CD62L(图13)。增殖性CD8+T细胞的此表型与其它报告的OT-I过继转移模型相符,其中由APC实现的调节的抗原特异性T细胞受体衔接不能诱导炎性应答(Bursch,Rich等,2009)。
[0179] 使用一种确立的OT-I攻击-耐受性模型(Liu,Iyoda等,2002)(图14a),证明了ERY1-OVA即使在使用非常强的细菌衍生的佐剂的情况下亦可阻止随后对疫苗介导的抗原+ + +攻击的免疫应答。为了致耐受,我们在将OT-I CD8 (CD45.2)T细胞过继转移至CD45.1 小鼠后1和6天静脉内施用10μg OVA或ERY1-OVA。再经过9天以容许转移的T细胞的可能的删除后,然后我们用以脂多糖(LPS)为佐剂的OVA通过皮内注射攻击受体小鼠。我们在攻击后第4天时表征引流淋巴结和脾细胞及其炎症应答以确定删除是否实际上发生。
[0180] 与在用LPS进行抗原攻击前被施用了未修饰的OVA的小鼠(图14c)相比,ERY1-OVA的静脉内施用导致引流淋巴结(图4;图14b中门控)和脾中OT-I CD8+T细胞群的深度降低,这证明删除性耐受。来自经ERY1-OVA处理的小鼠的引流淋巴结含有比经OVA处理的小鼠少超过11倍的OT-I CD8+T细胞,及比没有接受抗原的静脉内注射的攻击对照小鼠少39倍;脾细胞中的应答是相似的。在施用ERY1-OVA的小鼠中展现的这种有效的克隆删除支持了先前关于OT-I CD8+T细胞交叉初始化增强的观察结果(图12),而且显示了交叉初始化在没有共刺激分子的APC呈现的情况下发生,导致删除性耐受。
[0181] 为了进一步评估抗原攻击后的免疫应答,借助OT-I CD8+T细胞的干扰素-γ(IFNγ)表达来表征驻留的淋巴结和脾细胞的炎性性质(图14d)。在用OVA和LPS攻击后,先前用ERY1-OVA处理的小鼠的淋巴结含有与攻击对照小鼠(先前没有接受抗原)相比少53倍的IFNγ表达细胞,及与先前用等同剂量的OVA处理的小鼠相比少超过19倍的IFNγ表达细胞(图14e),证明红细胞结合在对攻击的致耐受性保护中的重要性;在脾细胞中的应答是类似的。
此外,在先前用ERY1-OVA处理的小鼠的淋巴结和脾中存在的小OT-I CD8+T细胞群中,表达IFNγ的百分比更低,提示了克隆失活(clonal inactivation)。此外,在先前用ERY1-OVA处理的小鼠中,SIINFEKL再刺激后自引流淋巴结分离的细胞生成的总IFNγ水平的大小实质性降低(图14f),红细胞结合将IFNγ水平降低16倍(与OVA施用相比)和超过115倍(与攻击对照相比)。值得注意的是,抑制性现象也与下调的白介素-10(IL-10)表达相关联,因为来自先前用ERY1-OVA处理的小鼠的淋巴结细胞与先前经OVA处理的小鼠和攻击对照小鼠相比分别表达少38%和50%的IL-10(图14g)。IL-10通常被认为是一种在APC-T细胞通信的背景下由调节性CD4+T细胞表达以抑制Th1应答的细胞因子(Darrah,Hegde等,2010;Lee和Kim,
2007),IL-10表达对于对攻击的脱敏是不必要的。类似地,已经有人提出IL-10下调与CD8+T细胞介导的致耐受性有关(Fife,Guleria等,2006;Arnaboldi,Roth-Walter等,2009;
Saint-Lu,Tourdot等,2009)。红细胞结合也实质性减弱针对抗原的体液免疫应答,因为用ERY1-OVA处理的小鼠与用可溶性OVA处理的小鼠相比展现出低100倍的抗原特异性血清IgG效价(图14h)。在非过继转移的C57BL/6(CD45.2+)小鼠中看到由于红细胞结合所致的OVA特异性IgG效价降低的类似降低。相隔7天两次静脉内施用1μg OVA或ERY1-OVA后,经ERY1-OVA处理的小鼠在第一次抗原施用后19天展现出低39.8倍的OVA特异性血清IgG水平(图15)。这种在抗原的红细胞连接后B细胞活化的表观降低佐证了当前关于耐受性诱导期间非炎性抗原呈递的假设(Miller,Turley等,2007;Green,Ferguson等,2009;Mueller,2010)。
[0182] 为了进一步确证抗原特异性免疫耐受性的诱导,将OT-I攻击-耐受模型与表达OVA的肿瘤移植物模型组合(图14i)。与先前的实验设计相似,通过在过继转移OT-I CD8+T细胞后两次静脉内施用10μg ERY1-OVA或10μg OVA使小鼠耐受。在第一次抗原施用后5天检出明显的T细胞删除,因为经ERY1-OVA注射的小鼠在血液中含有少2.9倍的非增殖(第0代)OT-I CD8+T细胞(图14j)。为了在没有外源施用的强佐剂的情况下测定增殖性OT-I CD8+T细胞的功能响应性,在过继转移后9天将表达OVA的EL-4胸腺瘤细胞(E.G7-OVA)皮内注射入小鼠的背部皮肤中。为了评估结合了红细胞的抗原的致耐受效力,在肿瘤移植后6天用加有LPS佐剂的OVA攻击携带肿瘤的小鼠,所用的剂量和日程表与攻击-耐受模型类似。与经OVA处理的或幼稚的对照小鼠相比,在经ERY1-OVA处理的小鼠中连续观察到稳健的肿瘤生长,直到肿瘤移植后8天(图14k),确认ERY1-OVA驱动的OT-I CD8+T细胞增殖诱导对OVA的功能性免疫非响应性。肿瘤大小在移植后8天停滞于稳态可能提示尚未经历ERY1-OVA驱动的删除性耐受的OT-I CD8+T细胞的残留。
[0183] 动物
[0184] 瑞士兽医当局先前批准了所有动物规程。使用8-12周龄雌性C57BL/6小鼠(Charles River)进行体内结合研究并作为E.G7-OVA肿瘤宿主。将C57BL/6-Tg(TcraTcrb)
1100Mjb(OT-I)小鼠(Jackson Labs)在EPFL动物房繁殖,并在6-12周龄时使用雌性进行脾细胞分离。使用8-12周龄雌性B6.SJL-PtprcaPepcb/Boy(CD45.1)小鼠(Charles River)作为接受宿主来进行OT-I CD8+T细胞过继转移和耐受性诱导研究。
[0185] 肽设计和合成
[0186] 在自动化液相处理器(CHEMSPEED)上使用TGR树脂(Nova Biochem)使用标准的固相f-moc化学合成ERY1(H2N-WMVLPWLPGTLDGGSGCRG-CONH2)(SEQ ID NO:19)和错配(H2N-PLLTVGMDLWPWGGSGCRG-CONH2)(SEQ ID NO:20)肽。加下划线的序列是ERY1 12聚体序列,我们先前通过噬菌体展示发现其为小鼠血型糖蛋白-A结合物(Kontos和Hubbell,2010)。GGSG区充当与用于缀合的半胱氨酸残基的接头;侧翼精氨酸残基用来降低pKa,从而提高半胱氨酸残基的反应性(Lutolf,Tirelli等,2001)。将肽在95%三氟乙酸、2.5%乙二硫醇、2.5%水中历时3小时自树脂切割下来,并在冰冷的乙醚中沉淀。使用C18反相柱(PerSpective Biosystems)在制备用HPLC-MS(Waters)上进行纯化。
[0187] ERY1-抗原缀合
[0188] 将二甲基酰胺中溶解的10摩尔当量琥珀酰亚胺基-4-(N-马来酰亚胺甲基)环己烷-1-羧酸盐(SMCC,CAS#64987-85-5,Thermo Scientific)于室温与PBS中的5mg/mL无内毒素(<1EU/mg)OVA(Hyglos GmbH)起反应1小时。在2mL Zeba脱盐旋转柱(Thermo Scientific)上脱盐后,添加3M盐酸胍中溶解的10当量ERY1或MIS肽,并容许于室温反应2小时。使用2mL Zeba脱盐旋转柱使缀合物脱盐,进行0.2μm无菌过滤,分配成工作等份,并于-
20C贮存。通过BCA测定法(Thermo Scientific)测定蛋白质浓度。该方案导致肽上的半胱氨酸侧链与抗原上的赖氨酸侧链的缀合。在BL21大肠杆菌中表达谷胱甘肽-S-转移酶(GST),并使用标准的谷胱甘肽亲和层析纯化。通过充分的Triton-X114(Sigma Aldrich)清洗来实施柱上内毒素去除,并使用THP-1X Blue细胞(InvivoGen)确认内毒素去除。使用相同反应规程来缀合ERY1与GST。将马来酰亚胺活化的别藻蓝蛋白(Innova Biosciences)在PBS中溶解,并与ERY1或MIS缀合,如上文所描述的。
[0189] 对红细胞结合的显微术
[0190] 将5x105个新鲜分离的小鼠红细胞于37C暴露于含有10mg/mL BSA的PBS中的100nM ERY1-OVA或OVA达1小时。在离心和清洗后,在冰上用1:200稀释的山羊抗小鼠血型糖蛋白-A(Santa Cruz)和兔抗OVA(AbD SEROTEC)标记细胞20分钟。在离心和清洗后,在冰上用1:200ALEXAFLUOR488抗山羊IgG(Invitrogen)和AlexaFluor546抗兔IgG(Invitrogen)标记细胞20分钟。在最终的旋转/清洗循环后,将细胞进行硬固(Hard set)封固,并在具有63x油浸物镜的Zeiss LSM700倒置共焦显微镜上成像。在IMAGEJ(NIH)中进行图像分析,对这两幅图像进行相同加工。
[0191] 体内结合和生物分布
[0192] 将100μL体积0.9%盐水(B.Braun)中的150μg ERY1-OVA或OVA在异氟烷麻醉下静脉内注射入8-12周龄雌性C57BL/6小鼠的尾中。注意确保小鼠在实验期间用加热垫保持于37C。在预定的时间点,在尾部上从小的切口采集5μL血液,以100倍稀释到含10mM EDTA的PBS中,用含10mg/mL BSA的PBS清洗三次,并通过流式细胞术和ELISA分析OVA含量。通过夹心式ELISA定量OVA,其中使用小鼠单克隆抗OVA抗体(Sigma)进行捕捉,多克隆兔抗OVA抗体(AbD SEROTEC)进行检测,山羊抗兔IgG-HRP抗体(BioRad)进行最终的检测,接着是TMB底物(GE Life Sciences)。在ADVIVA 2120血液学系统(Siemens)上实施血液学表征。通过将经标记的细胞与山羊抗GST(GE  Healthcare  Life  Sciences)一起温育,接着与
AlexaFluor488驴抗山羊(Invitrogen)一起温育来检测红细胞结合的ERY1-GST,并通过流式细胞术分析。对于生物分布研究,将20μg ERY1-APC或MIS-APC静脉内注射入8-12周龄雌性C57BL/6小鼠的尾静脉中,如上文所描述的。将小鼠于预定的时间点处死,并取出脾、血液和肝。用胶原酶D(Roche)消化每种器官,并均质化以获得单细胞悬浮液以进行流式细胞术染色。
[0193] T细胞过继转移
[0194] 使用CD8磁珠负选择试剂盒(Miltenyi Biotec)按照制造商的用法说明书分离来+ + +自OT-I(CD45.2)小鼠脾的CD8T细胞。将新鲜分离的CD8 OT-I细胞在PBS中重悬,并于室温用1μM羧基荧光素琥珀酰亚胺基酯(CFSE,Invitrogen)标记6分钟,并用等体积的具有10%FBS的IMDM(Gibco)将反应淬灭1分钟。将细胞清洗,计数,并在纯的IMDM中重悬,之后注射。
将3x106个经CFSE标记的CD8+OT-I细胞静脉内注射入受体CD45.1+小鼠的尾静脉中。对于短期增殖研究,在过继转移后24小时注射100μL体积中的10μg ERY1-OVA或OVA。在抗原施用后
5天收获脾细胞,并染色以通过流式细胞术分析。
[0195] OT-I耐受性和攻击模型
[0196] 将3x105个经CFSE标记的OT-I CD8+T细胞注射入CD45.1+接受小鼠中,如上文所描述的。在过继转移后1和6天,给小鼠对尾静脉静脉内施用100μL盐水中的10μg ERY1-OVA或OVA。过继转移后15天,用25μL中的5μg OVA和25ng超纯大肠杆菌LPS(InvivoGen)对每个后腿足垫皮内攻击小鼠(Hock方法,总剂量10μg OVA和50ng LPS)。在攻击后第4天时处死小鼠,并分离脾和引流淋巴结细胞供再刺激。对于对胞内细胞因子的流式细胞术分析,在存在1mg/mL OVA或1μg/mL SIINFEKL(SEQ ID NO:3)肽(Genscript)的条件下再刺激细胞3小时。
添加布雷菲德菌素(Brefeldin)-A(Sigma,5μg/mL),并继续再刺激3小时,之后染色和流式细胞术分析。对于所分泌因子的ELISA测量,在存在100μg/mL OVA或1μg/mL SIINFEKL(SEQ ID NO:3)肽的条件下将细胞再刺激4天。将细胞旋转,并收集培养基以使用IFNγ和IL-
10Ready-Set-Go试剂盒(eBiosciences)按照制造商的用法说明书进行ELISA分析。通过在经OVA包被的板上温育不同稀释的小鼠血液,接着最终与山羊抗小鼠IgG-HRP(Southern Biotech)一起温育来检测OVA特异性血清IgG。
[0197] OT-I E.G7-OVA耐受模型
[0198] 如上文所描述的那样将1x106个经CFSE标记的OT-I CD8+T细胞注射入8-12周龄雌性C57BL/6小鼠中。过继转移后1和6天,给小鼠尾静脉静脉内施用100μL盐水中的10μg ERY1-OVA或10μg OVA。在过继转移后5天采集血液以通过流式细胞术表征OT-I CD8+T细胞增殖。按照ATCC指南培养表达OVA的EL-4胸腺瘤细胞(E.G7-OVA,ATCC CRL-2113)。简言之,在补充有10%胎血清、10mM HEPES、1mM丙酮酸钠、0.05mMβ-巯基乙醇、1%嘌呤霉素/链霉素(Invitrogen Gibco)、和0.4mg/mL G418(PAA Laboratories)的RPMI 1640培养基中培养细胞。在即将注射前,将细胞在没有G418的培养基中扩增,并在收获后在HBSS(Gibco)中重悬。过继转移后9天,用异氟烷麻醉小鼠,剔去背区的毛,并在肩胛骨间皮内注射1x106个E.G7-OVA细胞。E.G7-OVA移植后4天,用数字测径器每24小时测量肿瘤尺寸,并且肿瘤体积以椭圆体(V=(π/6)l·w·h)计算,其中V是肿瘤的体积,l是长度,w是宽度,而h是高度)。过继转移后15天,用25μL中的5μg OVA和25ng超纯大肠杆菌LPS(InvivoGen)在每个前腿足垫处皮内攻击小鼠(总剂量10μg OVA和50ng LPS)。
[0199] 抗体和流式细胞术
[0200] 流式细胞术使用下列抗小鼠抗体:CD1d Pacific Blue,CD3εPerCP-Cy5.5,CD8αPE-Cy7,CD11b PE-Cy7,CD11c Pacific Blue,生物素化的CD45,CD45.2Pacific Blue,CD45Pacific Blue,IFNγ-APC,CD8αAPC-eF780,CD44 PE-Cy5.5,CD62L PE,CD205PE-Cy7,F4/80PE,I-A/I-E  MHCII FITC(均来自eBioscience),以及可固定的活/死染料(Invitrogen)、膜联蛋白-V-Cy5标记试剂盒(BioVision)、链霉亲合素Pacific Orange(Invitrogen)、和抗OVA-FITC(Abcam)外。在CyAn ADP流式细胞仪(Beckman Coulter)上分析样品。首先用PBS清洗细胞,在冰上用活/死染料染色20分钟,在冰上用24G2杂交瘤培养基封闭20分钟,在冰上表面染色20分钟,在冰上在2%低聚甲醛中固定20分钟,在0.5%皂苷存在下在冰上胞内染色45分钟,接着进行最终的清洗,之后分析。对于凋亡染色,添加膜联蛋白-V-Cy5,5分钟,然后分析。对于CD45染色,用链霉亲合素Pacific Orange在冰上染色细胞
20分钟,清洗,并分析。
[0201] 用颗粒实现
[0202] ERY1肽也已经以纳米颗粒形式实现以形成耐受,所述纳米颗粒同时与ERY1肽和致耐受性抗原缀合。
[0203] 为了形成ERY1与聚合物纳米颗粒(其还与肽或蛋白质抗原缀合)的缀合物,可以连续添加化学计量学量的每种组分以控制缀合转化。为了形成与OVA和ERY1或错配肽两者缀合的纳米颗粒,首先将肽在3M盐酸胍水溶液中溶解,并将0.5当量添加至含有硫醇反应性吡啶基二硫化物基团的纳米颗粒。在343nm处进行吸光度测量以监测反应转化,因为反应产生在此波长处具有高吸光度的非反应性嘧啶-2-硫酮种类。室温下2小时后,343nm的吸光度已经稳定,将OVA在3M盐酸胍水溶液中溶解,并以2倍摩尔过量添加至纳米颗粒溶液。室温2小时后,343nm的吸光度已经再一次稳定至较高的数值,并且计算溶液中的肽和OVA两者的浓度。通过在Sepharose CL6B填充柱上的凝胶过滤从未反应的组分纯化双功能性纳米颗粒。借助荧光胺对每个0.5mL级分分析蛋白质和/或肽的存在,并通过动态光散射(DLS)评估纳米颗粒大小。
[0204] 如果抗原不含有任何游离的硫醇基团来进行该反应,可以通过重组DNA技术引入它们来创建突变体,然后可以重组表达并纯化该突变体。或者,可以使用1-乙基-3-(3-二甲基氨丙基)碳二亚胺(EDC)在纳米颗粒和抗原之间进行胺-羧酸交联。
[0205] 为了形成ERY1与聚合物胶束(其也与肽或蛋白质抗原缀合)的缀合物,可使用与就聚合纳米颗粒所描述的反应类似的反应。可以形成含有对合适的缀合方案而言理想的官能团的胶束。鉴于我们的纳米颗粒和胶束可以合成为含有许多不同化学基团官能化,有许多缀合方案可能性可供创建纳米颗粒/胶束-抗原-ERY1复合物时采用。
[0206] 实施例15:开发结合小鼠和/或人红细胞的抗体和抗体片段
[0207] 作为另一种非共价结合红细胞的方法,也可以使用红细胞结合性抗体来诱导抗原特异性免疫学耐受。可以使用现有技术的展示平台,包括但不限于噬菌体展示、酵母和大肠杆菌表面展示,通过筛选抗体文库来分离对红细胞表面蛋白质展示高亲和力的抗体。在发现新的红细胞结合性抗体后,可以如对ERY1肽所实施的那样评估类似的对结合的生物化学表征。为了创建具有改善的结合特征的更高亲和力的突变体,对从初始文库筛选中发现为结合红细胞的抗体片段进行亲和力成熟。使用标准的重组DNA技术,诸如易错PCR和定点诱变,从亲本结合序列创建新的文库。然后,使用如上文所描述的现有技术展示平台展示亲和力成熟文库,以得到与亲本结合序列相比对红细胞具有增强的亲和力的其它抗体片段。
[0208] 也对结合小鼠红细胞或人红细胞的现有抗体实施亲和力成熟。大鼠单克隆TER-119克隆抗体(Kina等,Br J Haematol,2000)结合小鼠红细胞的位点尚有待完全测定,但是由于其特异性它已通常用于从异质细胞群体中移除红细胞。对TER-119抗体(作为全长抗体或作为抗体片段诸如scFv)实施亲和力成熟,以发现对小鼠红细胞具有更高亲和力的新抗体。小鼠单克隆10F7克隆抗体(Langlois等,J Immunol 1984)在人红细胞细胞表面上结合人血型糖蛋白-A。对10F7抗体(作为全长抗体或作为抗体片段诸如scFv)实施亲和力成熟,以发现对人红细胞具有更高亲和力的新抗体。
[0209] 为了测定TER-119抗体的一级序列,我们将来自TER-119杂交瘤的抗体特异性分离的cDNA克隆入质粒中,所述质粒容许基因片段的简便测序。使用一组特异性引物以进行容许扩增基因区段的多个可变域的抗体片段PCR扩增过程(Krebber等,1997;Reddy等,2010)。抗体域的DNA序列容许我们确定TER-119IgG抗体的重链和轻链的可变区。为了构建TER-
119IgG的scFv型式,我们使用装配PCR(assembly PCR)来创建如下的基因,其构成为:TER-
119的可变重链,接着是(Gly-Gly-Gly-Gly-Ser)4(SEQ ID NO:18)接头,接着是TER-119的可变轻链。
[0210] 使用Superscript III第一链合成系统(Invitrogen)对来自TER-119杂交瘤克隆的mRNA实施标准逆转录酶PCR(RT-PCR)以制备该克隆的互补DNA(cDNA)。然后,使用下组引物进行PCR以特异性扩增抗体的可变重链(VH)和可变轻链(VL)区的DNA序列:
[0211]
[0212]
[0213]
[0214]
[0215] 然后,用限制性内切核酸酶(对于VL为NcoI和NotI,对于VH为NdeI和HindIII)消化扩增出的VH和VL基因,在琼脂糖电泳后使用标准试剂盒(Zymo Research,Orange,CA,USA)纯化基因片段,并连接到克隆质粒pMAZ360中。对含有VH或VL基因的质粒测序,并使用装配PCR构建新基因以创建TER-119scFv序列:
[0216] 5’-GAGGTGAAGCTGCAGGAGTCTGGAGGAGGCTTGGTGCAACCTGGGGGGTCTCTGAAACTCTCCTGTGTAGCCTCAGGATTCACTTTCAGGGACCACTGGATGAATTGGGTCCGGCAGGCTCCCGGAAAGACCATGGAGTGGATTGGAGATATTAGACCTGATGGCAGTGACACAAACTATGCACCATCTGTGAGGAATAGATTCACAATCTCCAGAGACAATGCCAGGAGCATCCTGTACCTGCAGATGAGCAATATGAGATCTGATTACACAGCCACTTATTACTGTGTTAGAGACTCACCTACCCGGGCTGGGCTTATGGATGCCTGGGGTCAAGGAACCTCAGTCACTGTCTCCTCAGCCGGTGGTGGTGGTTCTGGTGGTGGTGGTTCTGGCGGCGGCGGCTCCGGTGGTGGTGGATCCGACATTCAGATGACGCAGTCTCCTTCAGTCCTGTCTGCATCTGTGGGAGACAGAGTCACTCTCAACTGCAAAGCAAGTCAGAATATTAACAAGTACTTAAACTGGTATCAGCAAAAGCTTGGAGAAGCTCCCAAAGTCCTGATATATAATACAAACAATTTGCAAACGGGCATCCCATCAAGGTTCAGTGGCAGTGGATCTGGTACAGATTTCACACTCACCATCAGTAGCCTGCAGCCTGAAGATTTTGCCACATATTTCTGCTTTCAGCATTATACTTGGCCCACGTTTGGAGGTGGGACCAAGCTGGAAATCAAACGTACT-3’(SEQ ID NO:76),其编码位于翻译蛋白N端的TER-119克隆VH区,接着是(Gly-Gly-Gly-Gly-Ser)4(SEQ ID NO:18)接头域,接着是位于翻译蛋白C端的TER-119克隆VL区。用引物SK07和SK08(对VH区特异性)及SK09和SK10(对VL区特异性)扩增TER-119cDNA以构建TER-119scFv基因:
[0217]
[0218]
[0219] 将每个最终完成的scFv基因产物用SfiI和XhoI(NEB,Ipswich,MA,USA)消化,并连接入pSecTagA哺乳动物表达质粒(Invitrogen,Carlsbad,CA,USA)上的相同位点中。
[0220] 为了亲和力成熟结合人血型糖蛋白-A的10F7scFv,自DNA2.0(Menlo Park,CA,USA)商业合成并获得该基因,序列如下:
[0221] 5’-GTTATTACTCGCGGCCCAGCCGGCCATGGCGGCGCAGGTGAAACTGCAGCAGAGCGGCGCGGAACTGGTGAAACCGGGCGCGAGCGTGAAACTGAGCTGCAAAGCGAGCGGCTATACCTTTAACAGCTATTTTATGCATTGGATGAAACAGCGCCCGGTGCAGGGCCTGGAATGGATTGGCATGATTCGCCCGAACGGCGGCACCACCGATTATAACGAAAAATTTAAAAACAAAGCGACCCTGACCGTGGATAAAAGCAGCAACACCGCGTATATGCAGCTGAACAGCCTGACCAGCGGCGATAGCGCGGTGTATTATTGCGCGCGCTGGGAAGGCAGCTATTATGCGCTGGATTATTGGGGCCAGGGCACCACCGTGACCGTGAGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGATATTGAACTGACCCAGAGCCCGGCGATTATGAGCGCGACCCTGGGCGAAAAAGTGACCATGACCTGCCGCGCGAGCAGCAACGTGAAATATATGTATTGGTATCAGCAGAAAAGCGGCGCGAGCCCGAAACTGTGGATTTATTATACCAGCAACCTGGCGAGCGGCGTGCCGGGCCGCTTTAGCGGCAGCGGCAGCGGCACCAGCTATAGCCTGACCATTAGCAGCGTGGAAGCGGAAGATGCGGCGACCTATTATTGCCAGCAGTTTACCAGCAGCCCGTATACCTTTGGCGGCGGCACCAAACTGGAAATTAAACGCGCGGCGGCGGCCTCGGGGGCCGAGGGCGGCGGTTCT-3’(SEQ ID NO:81)。
[0222] 对10F7基因实施使用上文对TER-119描述的重组DNA技术的相似亲和力成熟以获得突变体文库,为筛选对人红细胞的增强结合提供条件。
[0223] 实施例16:经由红细胞与偶联有抗体的抗原的非共价结合诱导抗原特异性免疫学耐受性。
[0224] 可以使用标准的交联反应来缀合抗体与抗原,如本文中实施例14和别处提及的。纯化的抗体-抗原缀合物会对1型糖尿病、多发性硬化、胰岛移植的标准小鼠模型中的抗原,及OVA模型抗原展现出耐受的诱导。
[0225] 为了证明对OVA的耐受的诱导,可以给小鼠静脉内或血管外施用OVA-抗体缀合物或OVA-纳米颗粒-抗体缀合物。在施用后预定的天数,处死小鼠,并收获淋巴结、脾、和血液以进行分析。将脾细胞和淋巴结衍生的细胞铺板,并用OVA和/或SIINFEKL肽离体再刺激3天,并通过ELISA测量其IFNγ、IL-17a、IL-2、和IL-4表达的下调,以及TGF-β1上调,这些都是确立的耐受证据。在用OVA和/或SIINFEKL肽离体再刺激6小时后对脾细胞和淋巴结衍生的细胞使用流式细胞术实施IFNγ,IL-17a,IL-2和IL-4的胞内染色。此外,使用流式细胞术来表征CD4、CD8、和来自淋巴结的调节T细胞、脾、和血液衍生的细胞的表达谱。另外,在不同时间点从小鼠采集血液样品以测量针对OVA抗原的体液抗体应答。实施离体再刺激的变型实验以确定系统耐受是否已经建立。给小鼠施用OVA-抗体缀合物或OVA-抗体-纳米颗粒缀合物,如上文所描述的,9天后在有佐剂(脂多糖、完全弗氏佐剂、明矾,等等)的条件下再施用OVA,并通过ELISA和/或流式细胞术评估脾细胞对OVA抗原的响应性,如上文所描述的。OVA-抗体缀合物和/或OVA-抗体-纳米颗粒配制剂会使脾细胞对用OVA和佐剂的第二次攻击不响应,这是一种证明系统耐受性的有效建立的方法。在初次施用OVA-抗体缀合物和/或OVA-抗体-纳米颗粒配制剂后,可以用转基因细胞系进行类似的体内攻击实验作为耐受性的进一步证明,诸如用OT-I T细胞的过继转移,这与实施例14中详细描述的研究相似。为了展现治疗性分子在自身免疫或脱免疫的小鼠模型中的免疫耐受,可以对相关抗原生成类似的抗体缀合物,如本文中就OVA所描述的。
[0226] 实施例17:经由红细胞与单链抗体融合的抗原的非共价结合诱导抗原特异性免疫学耐受
[0227] 可以使用单链抗体片段(scFv)作为红细胞的非共价结合剂。可以使用现有技术展示平台通过筛选scFv文库分离对红细胞表面蛋白展示高亲和力的scFv,如实施例13中讨论的。在发现新的红细胞结合抗体片段后,评估类似的对结合的生物化学表征,如用ERY1肽实施的。由于scFv具有一条多肽链,使用标准的重组DNA技术以位点特异性重组方式将其与抗原融合。根据抗原融合配偶的性质,将scFv与抗原的N或C端融合以创建双功能性蛋白质种类。在主要组织相容性复合体(MHC)肽识别序列对于抗原已知的情况下,也将肽插入scFv的接头域中,如此创建新的双功能性抗体/抗原构建体,其含有scFv的天然末端。
[0228] 为了证明对OVA的耐受诱导,可以给小鼠静脉内或血管外施用OVA-scFv或OVA-纳米颗粒-scFv缀合物。在施用后的预定天数时,处死小鼠,并收获淋巴结、脾、和血液以进行分析。将脾细胞和淋巴结衍生的细胞铺板,用OVA和/或SIINFEKL肽(SEQ ID NO:3)离体再刺激3天,并例如用通过ELISA测量其IFNγ、IL-17a、IL-2、和IL-4表达的下调,以及TGF-β1的上调,这些都是确立的耐受证据。用OVA和/或SIINFEKL肽(SEQ ID NO:3)离体再刺激6小时后,使用流式细胞术对脾细胞和淋巴结衍生的细胞实施IFNγ,IL-17a,IL-2和IL-4的胞内染色。此外,可以使用流式细胞术来表征CD4、CD8、和来自淋巴结的调节T细胞、脾、和血液衍生的细胞的表达谱。另外,在不同时间点从小鼠采集血液样品以测量针对OVA抗原的体液抗体应答。实施离体再刺激的变型实验以确定系统耐受是否已经建立。给小鼠施用OVA-scFv或OVA-纳米颗粒-scFv,如上文所描述的,9天后在有佐剂(脂多糖、完全弗氏佐剂、明矾,等等)的条件下再施用OVA,并通过ELISA和/或流式细胞术评估脾细胞对OVA抗原的响应性,如上文所描述的。OVA-scFv和/或OVA-scFv-纳米颗粒配制剂会使脾细胞对用OVA和佐剂的第二次攻击不响应,由此显示系统耐受的有效建立。在初次施用OVA-scFv和/或OVA-scFv-纳米颗粒配制剂后,可以用转基因细胞系进行类似的体内攻击实验以证明耐受性,诸如用OT-I T细胞的过继转移,这与实施例14中详细描述的研究相似。为了证明治疗性分子在自身免疫或脱免疫的小鼠模型中的免疫耐受性,可以对相关抗原生成类似的scFv融合物,如本文中就OVA所描述的。
[0229] 使用标准的重组DNA技术创建了抗体构建体,其既结合小鼠红细胞又展示OVA(SGLEQLESIINFEKL)(SEQ ID NO:82)的MHC-I免疫优势表位。使用重叠延伸PCR,我们首先创建了DNA片段,其编码末端3’域(包含SGLEQLESIINFEKL(SEQ ID NO:82)肽)及与TER119序列的3’端互补的重叠5’域。在标准的PCR中使用此DNA片段作为反向引物,以及互补的正向5’引物以创建编码TER119-SGLEQLESIINFEKL(SEQ ID NO:82)的整个DNA片段:
[0230] 5’-GAGGTGAAGCTGCAGGAGTCTGGAGGAGGCTTGGTGCAACCTGGGGGGTCTCTGAAACTCTCCTGTGTAGCCTCAGGATTCACTTTCAGGGACCACTGGATGAATTGGGTCCGGCAGGCTCCCGGAAAGACCATGGAGTGGATTGGAGATATTAGACCTGATGGCAGTGACACAAACTATGCACCATCTGTGAGGAATAGATTCACAATCTCCAGAGACAATGCCAGGAGCATCCTGTACCTGCAGATGAGCAATATGAGATCTGATTACACAGCCACTTATTACTGTGTTAGAGACTCACCTACCCGGGCTGGGCTTATGGATGCCTGGGGTCAAGGAACCTCAGTCACTGTCTCCTCAGCCGGTGGTGGTGGTTCTGGTGGTGGTGGTTCTGGCGGCGGCGGCTCCGGTGGTGGTGGATCCGACATTCAGATGACGCAGTCTCCTTCAGTCCTGTCTGCATCTGTGGGAGACAGAGTCACTCTCAACTGCAAAGCAAGTCAGAATATTAACAAGTACTTAAACTGGTATCAGCAAAAGCTTGGAGAAGCTCCCAAAGTCCTGATATATAATACAAACAATTTGCAAACGGGCATCCCATCAAGGTTCAGTGGCAGTGGATCTGGTACAGATTTCACACTCACCATCAGTAGCCTGCAGCCTGAAGATTTTGCCACATATTTCTGCTTTCAGCATTATACTTGGCCCACGTTTGGAGGTGGGACCAAGCTGGAAATCAAACGTACTCATCATCACCATCATCACGGTGGCGGTTCTGGCCTGGAGCAGCTGGAGTCTATTATTAATTTCGAAAAACTG-3’(SEQ ID NO:83)。加下划线的序列表示编码SGLEQLESIINFEKL的基因区段。将该DNA片段插入哺乳动物和原核表达载体中以重组表达。
[0231] 使用标准的重组DNA技术来创建既结合小鼠红细胞又展示嗜铬粒蛋白-A模拟表位1040-p31(YVRPLWVRME)(SEQ ID NO:84)的抗体构建体。使用重叠延伸PCR创建了这样的DNA片段,其编码末端3’域,包含YVRPLWVRME(SEQ ID NO:84)肽,及与TER119序列的3’端互补的重叠5’域。在标准PCR中使用此DNA片段作为引物,以及互补的正向5’引物,以创建编码TER119-YVRPLWVRME的整个DNA片段:
[0232] 5’-GAGGTGAAGCTGCAGGAGTCAGGAGGAGGCTTGGTGCAACCTGGGGGGTCTCTGAAACTCTCCTGTGTAGCCTCAGGATTCACTTTCAGGGACCACTGGATGAATTGGGTCCGGCAGGCTCCCGGAAAGACCATGGAGTGGATTGGGGATATTAGACCTGATGGCAGTGACACAAACTATGCACCATCTGTGAGGAATAGATTCACAATCTCCAGAGACAATACCAGGAGCATCCTGTACCTGCAGATGGGCAATATGAGATCTGATTACACAGCCACTTATTACTGTGTTAGAGACTCACCTACCCGGGCTGGGCTTATGGATGCCTGGGGTCAAGGAACCTCAGTCACTGTCTCCTCAGCCGGTGGTGGTGGTTCTGGTGGTGGTGGTTCTGGCGGCGGCGGCTCCGGTGGTGGTGGATCCGACATTCAGATGACGCAGTCTCCTTCAGTCCTGTCTGCATCTGTGGGAGACAGAGTCACTCTCAACTGCAAAGCAAGTCAGAATATTAACAAGTACTTAAACCGGTATCAGCAAAAGCTTGGAGAAGCTCCCAAAGTCCTGGTATATAATACAAACAATTTGCAAACGGGCATCCCATCAAGGTTCAGTGGCAGTGGATCTGGCACAGATTTCACACTCACCATCAGTAGCCTGCAGCCTGAAGATTTTGCCACATATTTCTGCTTTCAGCATTATACTTGGCCCACGTTTGGAGGTGTGACCAAGCTGGAAATCAAACGTACTCATCATCACCATCATCACGGTGGCGGTTATGTCAGACCTCTGTGGGTCAGAATGGAA-3’(SEQ ID NO:85)。加下划线的序列表示编码嗜铬粒蛋白-A(1040-p31)模拟表位(YVRPLWVRME)(SEQ ID NO:84)的基因区段。将该DNA片段插入哺乳动物和原核表达载体中以重组表达。
[0233] 使用标准的重组DNA技术来创建抗体构建体,其既结合小鼠红细胞又展示小鼠胰岛素原——一种在NOD小鼠中的主要糖尿病自身抗原。使用重叠延伸PCR,我们首先创建了一个DNA片段,其编码末端3’域(包含整个胰岛素原蛋白质),及与TER119序列的3’端互补的重叠5’域。在标准的PCR中使用此DNA片段作为引物,以及互补的正向5’引物以创建编码TER119-胰岛素原的整个DNA片段:
[0234] 5’-GAGGTGAAGCTGCAGGAGTCAGGAGGAGGCTTGGTGCAACCTGGGGGGTCTCTGAAACTCTCCTGTGTAGCCTCAGGATTCACTTTCAGGGACCACTGGATGAATTGGGTCCGGCAGGCTCCCGGAAAGACCATGGAGTGGATTGGAGATATTAGACCTGATGGCAGTGACACAAACTATGCACCATCTGTGAGGAATAGATTCACAATCTCCAGAGACAATGCCAGGAGCATCCTGTACCTGCAGATGAGCAATATGAGATCTGATTACACAGCCACTTATTACTGTGTTAGAGACTCACCTACCCGGGCTGGGCTTATGGATGCCTGGGGTCAAGGAACCTCAGTCACTGTCTCCTCAGCCGGTGGTGGTGGTTCTGGTGGTGGTGGTTCTGGCGGCGGCGGCTCCGGTGGTGGTGGATCCGACATTCAGATGACGCAGTCTCCTTCAGTCCTGTCTGCATCTGTGGGAGACAGAGTCACTCTCAACTGCAAAGCAAGTCAGAATATTAACAAGTACTTAAACTGGTATCAGCAAAAGCTTGGAGAAGCTCCCAAAGTCCTGATATATAATACAAACAATTTGCAAACGGGCATCCCATCAAGGTTCAGTGGCAGTGGATCTGGTACAGATTTCACACTCACCATCAGTAGCCTGCAGCCTGAAGATTTTGCCACATATTTCTGCTCTCAGCATTATACTTGGCCCACGTTTGATGGTGGGACCAAGCTGGAAATCAAACGTACTCATCATCACCATCATCACGGTGGCGGTTTTGTGAAACAGCATCTGTGCGGTCCGCATCTGGTGGAAGCGCTGTATCTGGTGTGCGGCGAACGTGGCTTTTTTTATACCCCGAAAAGCCGTCGTGAAGTGGAAGATCCGCAGGTGGAACAGCTGGAACTGGGCGGCAGCCCGGGTGATCTGCAGACCCTGGCCCTGGAAGTGGCGCGTCAGAAACGTGGCATTGTGGATCAGTGCTGCACCAGCATTTGCAGCCTGTATCAGCTGGAAAACTATTACAAC-3’(SEQ ID NO:86)。加下划线的序列表示该构建体的胰岛素原基因区段。将该DNA片段插入哺乳动物和原核表达载体中以重组表达。
[0235] 实施例18:包含红细胞结合性配体和其它功能的分支聚合物的合成
[0236] 为了合成8臂PEG-硫代乙酸盐,将8臂PEG-OH(Nektar)在甲苯中溶解,并在氩气下于室温与10当量的三乙胺(Sigma Aldrich,CAS#121-44-8)和10当量的甲磺酰氯(Sigma Aldrich,CAS#124-63-0)反应18小时。滤去残留物,在减压下浓缩滤液,在二甲基甲酰胺(DMF)中溶解,并添加10当量的硫代乙酸(Sigma Aldrich,CAS#10387-40-3)。室温18小时后,滤去残留物,在减压下浓缩滤液,并在乙醚中沉淀。将沉淀物过滤,并在减压下干燥以获得最终的产物。
[0237] 为了合成8臂PEG-吡啶基二硫化物,将8臂PEG-硫代乙酸盐在二甲基甲酰胺(DMF)中溶解,并于室温在氩气下在Schlenk管中用1.05当量的甲醇钠盐(Sigma Aldrich,CAS#124-41-4)脱保护1小时。为了将脱保护的硫醇还原成硫醇盐,将2当量的三(2-羧基乙基)膦盐酸盐(TCEP,Thermo Scientific,CAS#51805-45-9)和2当量的蒸馏水添加至溶液。室温2小时后,添加12当量的2,2’-二硫二吡啶(Aldrithiol-2,Sigma Aldrich,CAS#2127-03-9),并于室温搅拌溶液24小时。然后,将反应混合物在MWCO 3,500Da透析管中对5L蒸馏水透析
48小时,期间更换蒸馏水4次。通过在100mM HEPES,pH 8.0中的25mM TCEP中还原来定量加载到8臂PEG上的吡啶基二硫化物,并于343nm测量紫外-可见光谱以监测嘧啶-2-硫酮离去基团的存在。
[0238] 为了合成8臂PEG-吡啶基二硫化物-ALEXAFLUOR647,将8臂PEG-硫代乙酸盐在DMF中溶解,并于室温在氩气下在Schlenk管中用1.05当量的甲醇钠(Sigma Aldrich,CAS#124-41-4)脱保护1小时。为了将脱保护的硫醇还原成硫醇盐,将2当量的三(2-羧基乙基)膦盐酸盐(TCEP,Thermo Scientific,CAS#51805-45-9)和等体积的100mM HEPES pH 8.0添加至溶液。于室温在2小时后,将0.125当量(相当于8条中的1条臂)的AlexaFluor647-C2-马来酰亚胺(Invitrogen)添加到溶液。室温2小时后,添加12当量的2,2’-二硫二吡啶(Aldrithiol-
2,Sigma Aldrich,CAS#2127-03-9),并于室温搅拌溶液24小时。然后,将反应混合物在MWCO 
3,500Da透析管中对5L蒸馏水透析48小时,期间更换蒸馏水4次。通过在100mM HEPES,pH 
8.0中的25mM TCEP中还原来定量加载到8臂PEG上的吡啶基二硫化物,并于343nm测量紫外-可见光谱以监测嘧啶-2-硫酮离去基团的存在。
[0239] 在室温下,通过将溶于3M盐酸胍(Sigma Aldrich,CAS#50-01-10)水溶液中的化学计量学量的肽添加到8臂PEG-吡啶基二硫化物的水溶液中,来将含有硫醇的肽与8臂PEG-吡啶基二硫化物缀合。通过测量343nm的紫外-可见光谱定量嘧啶-2-硫酮离去基团的存在,来监测反应转化。若要将超过一个分子与8臂PEG-吡啶基二硫化物缀合,则在同一个罐中用该新分子重复反应过程。一旦完成缀合,将反应混合物在ZEBASPIN脱盐柱(Thermo Scientific)上脱盐,并将纯化的产物在合适的无菌条件下贮存。
[0240] 对于8臂PEG-ERY1/MIS-SIINFEKL缀合物(SIINFEKL:SEQ ID NO:3),可以通过将其静脉内或血管外施用于小鼠来演示针对OVA的耐受的诱导。使用人特异性配体时,此测试还会指示人体中耐受的诱导。在此类演示中,施用后的预定天数,将小鼠处死,并收获淋巴结、脾、和血液以进行分析。将脾细胞和淋巴结衍生的细胞铺板,并用OVA和/或SIINFEKL(SEQ ID NO:3)肽离体再刺激3天,并通过ELISA测量其IFNγ、IL-17a、IL-2、和IL-4表达的下调,以及TGF-β1的上调,这是确立的耐受性证据。在用OVA和/或SIINFEKL(SEQ ID NO:3)肽离体再刺激6小时后对脾细胞和淋巴结衍生的细胞使用流式细胞术实施IFNγ,IL-17a,IL-2和IL-4的胞内染色。此外,使用流式细胞术来表征CD4、CD8、和来自淋巴结的调节T细胞、脾、和血液衍生的细胞的表达谱。另外,在不同时间点时从小鼠采集血液样品以测量针对OVA抗原的体液抗体应答。实施离体再刺激的变型实验以确定系统耐受是否已经建立。给小鼠施用8臂PEG-ERY1/MIS-SIINFEKL缀合物(SIINFEKL:SEQ ID NO:3),如上文所描述的,9天后在有佐剂(脂多糖、完全弗氏佐剂、明矾,等等)的情况中再施用OVA,并通过ELISA和/或流式细胞术评估脾细胞对OVA抗原的响应性,如上文所描述的。8臂PEG-ERY1/MIS-SIINFEKL缀合物(SIINFEKL:SEQ ID NO:3)配制剂会使脾细胞对用OVA和佐剂的第二次攻击不响应,这是一种证明系统耐受的有效建立的方法。在初次施用8臂PEG-ERY1/MIS-SIINFEKL缀合物配制剂(SIINFEKL:SEQ ID NO:3)后,可以用转基因细胞系进行类似的体内攻击实验以进一步证明耐受性,诸如用OT-I T细胞的过继转移,这与实施例14中详细描述的研究相似。为了证明治疗性分子在自身免疫或脱免疫的小鼠模型中的免疫耐受性,可以对相关抗原生成类似的8臂PEG构建体,如本文就SIINFEKL(SEQ ID NO:3)所描述的。
[0241] 实施例19:经由红细胞与缀合有适体的抗原的非共价结合诱导抗原特异性免疫学耐受
[0242] 可以使用其它非抗体生物亲和试剂实施方法,来以测量它们通过非共价红细胞结合诱导免疫学耐受的能力。针对其它基于蛋白质的亲和性模块,诸如设计的锚蛋白重复蛋白(DARPins)(Steiner,Forrer等,2008)、设计的犰狳(armadillo)重复蛋白(Parmeggiani,Pellarin等,2008)、纤连蛋白域(Hackel,Kapila等,2008)、和半胱氨酸-结(knottin)亲和支架(Silverman,Levin等,2009)筛选对红细胞展示结合亲和力者。
[0243] 使用完善建立的指数富集的配体系统进化(SELEX)方法(Archemix,Cambridge,MA,USA)(Sampson,2003)进行文库筛选以发现对红细胞高亲和力的DNA/RNA适体。在发现以高亲和力结合红细胞的新DNA/RNA序列后,化学合成它们以在其3’或5’端包含额外的化学反应性基团,用于与抗原和/或聚合物胶束/纳米颗粒缀合。例如,化学合成的适体确实含有反应性NH2基团,其经由EDC/NHS缀合化学与纳米颗粒或抗原或纳米颗粒-抗原复合物上存在的COOH基团缀合,以创建由红细胞结合适体和抗原或抗原-纳米颗粒构成的单一生物缀合物。通过对适体、抗原和/或抗原-纳米颗粒两者改变正交反应基团和缀合方案尝试各种化学缀合技术。
[0244] 为了证明针对OVA的耐受性诱导,给小鼠静脉内或血管外施用OVA-适体或OVA-纳米颗粒-适体缀合物。在施用后的预定天数时,将小鼠处死,并收获淋巴结、脾、和血液以进行分析。将脾细胞和淋巴结衍生的细胞铺板,并用OVA和/或SIINFEKL肽(SEQ ID NO:3)离体再刺激3天,并通过ELISA测量其IFNγ、IL-17a、IL-2、和IL-4表达的下调,以及TGF-β1的上调,这些是确立的耐受证据。在用OVA和/或SIINFEKL(SEQ ID NO:3)肽离体再刺激6小时后对脾细胞和淋巴结衍生的细胞使用流式细胞术实施IFNγ,IL-17a,IL-2和IL-4的胞内染色。此外,使用流式细胞术来表征CD4、CD8、和来自淋巴结的调节T细胞、脾、和血液衍生的细胞的表达谱。另外,在不同时间点从小鼠采集血液样品以测量针对OVA抗原的体液抗体应答。实施离体再刺激的变型实验以确定系统耐受是否已经建立。给小鼠施用OVA-抗体或OVA-抗体-纳米颗粒缀合物,如上文所描述的,9天后在有佐剂(脂多糖、完全弗氏佐剂、明矾,等等)的条件下再施用OVA,并通过ELISA和/或流式细胞术评估脾细胞对OVA抗原的响应性,如上文所描述的。我们预期我们的OVA-抗体和/或OVA-抗体-纳米颗粒配制剂会使脾细胞对用OVA和佐剂的第二次攻击不响应,由此证明系统耐受性的有效建立。在初次施用我们的OVA-适体和/或OVA-适体-纳米颗粒配制剂后,用转基因细胞系进行类似的体内攻击实验以展示耐受,诸如用OT-I T细胞的过继转移,这与实施例14中详细描述的研究相似。为了证明治疗性分子在自身免疫或脱免疫的小鼠模型中的免疫耐受性,可以对相关抗原生成类似的适体构建体,如本文就OVA所描述的。
[0245] 进一步的公开内容
[0246] 描述了本发明的多个实施方案。一个实施方案是包含选自下组的序列的至少5个连续的氨基酸残基的分离的肽:SEQ ID NO:11,SEQ ID NO:13,SEQ ID NO:14,SEQ ID NO:15,SEQ ID NO:16,SEQ ID NO:17,SEQ ID NO:1,及它们的保守取代,其中所述序列特异性结合红细胞。一个实施方案是在选自下组的序列中具有一个或多个具有D至L取代的残基或者具有至少一个且不超过两个氨基酸的保守取代的肽:SEQ ID NO:11,SEQ ID NO:13,SEQ ID NO:14,SEQ ID NO:15,SEQ ID NO:16,SEQ ID NO:17和SEQ ID NO:1。一个实施方案是具有选自下组的序列的至少5个连续的氨基酸残基的肽:SEQ ID NO:11,SEQ ID NO:13,SEQ ID NO:14,SEQ ID NO:15,SEQ ID NO:16,SEQ ID NO:17,SEQ ID NO:1及它们的保守取代,其中所述序列特异性结合红细胞。例如,所述肽可以具有约10-约80的残基数目。肽可以进一步包含治疗剂,例如其选自下组:胰岛素、醋酸普兰林肽、生长激素、胰岛素样生长因子-
1、红细胞生成素、1型α干扰素、干扰素α2a、干扰素α2b、干扰素β1a、干扰素β1b、干扰素γ1b、β-葡糖脑苷脂酶、腺苷脱氨酶、粒细胞集落刺激因子、粒细胞巨噬细胞集落刺激因子、白介素1、白介素2、白介素11、因子VIIa、因子VIII、因子IX、艾塞那肽、L-天冬酰胺酶、拉布立酶、肿瘤坏死因子受体、和恩夫韦地。肽可以进一步包含下组的成员:抗体、抗体片段、和单链抗原结合域(ScFv)。肽可以进一步包含致耐受性抗原,例如,其选自下组:遗传疾病缺陷的蛋白质、具有非人糖基化的蛋白质、非人蛋白质、不天然存在于人的合成蛋白质、人食物抗原、人移植抗原、和人自身免疫抗原。肽可以具有一个或多个特异性结合红细胞的序列,序列可以是相同序列的重复或实施所述结合的各种序列的混合物。
[0247] 一个实施方案是一种产生免疫耐受的方法,该方法包括施用包含分子融合物的组合物,所述分子融合物包含致耐受性抗原和红细胞结合性模块,该红细胞结合性模块特异性结合所述患者中的红细胞,并且由此连接所述抗原与所述红细胞,其中以对包含所述致耐受性抗原的物质有效产生免疫耐受的量施用所述分子融合物。一个实施方案是所述方法,其中所述分子融合物由与抗原直接共价键合的至少一个红细胞结合性模块构成:例如包含模块和抗原的融合蛋白。一个实施方案是所述方法,其中分子融合物包含至少一个附接于颗粒的红细胞结合性模块,所述颗粒附接于抗原或含有抗原,例如,其中所述颗粒选自下组:微粒、纳米颗粒、脂质体、聚合物囊泡、和胶束。一个实施方案是如下的情况,其中致耐受性抗原包含治疗性蛋白质的一部分,例如,蛋白质包含因子VIII或因子IX。一个实施方案是如下的情况,其中致耐受性抗原包含非人蛋白质的一部分。一个实施方案是如下的情况,其中蛋白质包含腺苷脱氨酶、L-天冬酰胺酶、拉布立酶、抗胸腺细胞球蛋白、L-精氨酸酶、和L-甲硫氨酸酶。一个实施方案是所述方法,其中所述患者是人,而致耐受性抗原包含不存在于自然界中的蛋白质的一部分。一个实施方案是如下的情况,其中患者是人,而致耐受性抗原包含含有非人糖基化的蛋白质的聚糖。一个实施方案是如下的情况,其中致耐受性抗原至少包含人移植抗原的一部分。一个实施方案是如下的情况,其中致耐受性抗原包含人自身免疫性疾病蛋白质的一部分,所述人自身免疫性疾病蛋白质例如选自下组:前胰岛素原、胰岛素原、胰岛素、GAD65、GAD67、IA-2、IA-2β、甲状腺球蛋白、甲状腺过氧化物酶、促甲状腺激素受体、髓鞘碱性蛋白、髓鞘少突胶质细胞糖蛋白、蛋白脂质蛋白、胶原II、胶原IV、乙酰胆碱受体、基质金属蛋白质1和3、分子伴侣热休克蛋白47、微纤维蛋白-1、PDGF受体α、PDGF受体β、和核蛋白SS-A。一个实施方案是如下的情况,其中致耐受性抗原包含人食物的一部分,所述人食物例如选自下组:伴花生球蛋白(Ara h 1)、变应原II(Ara h 2)、花生凝集素(Ara h 6)、α-乳清蛋白(ALA)、乳转铁蛋白、谷蛋白、低分子量谷蛋白、α和γ-麦醇溶蛋白、大麦醇溶蛋白、裸麦醇溶蛋白、和燕麦蛋白。一个实施方案是如下的情况,其中红细胞结合性模块选自下组:肽配体、抗体、抗体片段、和单链抗原结合域(ScFv)。一个实施方案是如下的情况,其中scFv包含某些或整个10F7,例如,10F7的轻链和/或10F7的重链和/或10F7轻链和/或10F7重链的较高亲和力变体中的一种或多种。一个实施方案是所述方法,其中红细胞结合性模块包含如下的肽配体,所述肽配体包含选自下组的序列的至少5个连续的氨基酸残基:SEQ ID NO:11,SEQ ID NO:13,SEQ ID NO:14,SEQ ID NO:15,SEQ ID NO:16,SEQ ID NO:17,SEQ ID NO:1及它们的保守取代,其中所述序列特异性结合红细胞。
[0248] 一个实施方案是包含分子融合物的组合物,所述分子融合物包含致耐受性抗原和红细胞结合性模块,该红细胞结合性模块特异性结合所述患者中的红细胞,并且由此连接所述抗原与所述红细胞。一个例子是如下的情况,其中红细胞结合性模块与抗原共价键合。另一个例子是如下的情况,其中分子融合物包含附接于颗粒的红细胞结合性模块,所述颗粒附接于抗原,例如微粒、纳米颗粒、脂质体、聚合物囊泡、或胶束。致耐受性抗原的例子是:
治疗性蛋白质的一部分、非人蛋白质的一部分、不天然存在于人的蛋白质的一部分(包括完整部分,即整个)、包含非人糖基化的蛋白质的聚糖、人自身免疫抗原的一部分、人食物的一部分。一个实施方案是组合物,其中红细胞结合性模块选自下组:肽配体、抗体、抗体片段、和单链抗原结合域(ScFv),例如,整个或部分的10F7。红细胞结合性模块可以包含如下的肽配体,所述肽配体包含选自下组的序列的至少5个连续的氨基酸残基:SEQ ID NO:11,SEQ ID NO:13,SEQ ID NO:14,SEQ ID NO:15,SEQ ID NO:16,SEQ ID NO:17,SEQ ID NO:1及它们的保守取代,其中所述序列特异性结合红细胞。红细胞结合性模块可以是包含肽配体的,所述肽配体具有约10μM-0.1nM的解离常数,如通过所述肽和红细胞之间的平衡结合测量所测定的。
[0249] 另一个例子是包含与实体连接的红细胞结合性模块的组合物,所述红细胞结合性模块特异性结合红细胞,所述实体选自下组:合成聚合物、分支的合成聚合物、和颗粒。例如,颗粒可以是微粒、纳米颗粒、脂质体、聚合物囊泡、和胶束。组合物可以进一步包含致耐受性抗原、治疗剂、或肿瘤归巢性配体。
[0250] 实施方案包括一种在患者中栓塞肿瘤的方法,包括:对患者施用包含红细胞结合性模块和肿瘤归巢性配体的分子融合物的组合物或包含该组合物的药物,其中所述肿瘤归巢性配体是目标为特异性结合选自肿瘤和肿瘤血管系统的靶物的抗体、抗体片段、单链抗原结合域(ScFv),或肽配体,且其中所述红细胞结合性模块包括特异性结合红细胞的肽配体、抗体、抗体片段、scFv、或适体。肿瘤归巢性配体的例子是氨肽酶-A、氨肽酶-N、内皮唾液酸蛋白、细胞表面核仁蛋白、细胞表面膜联蛋白-1、细胞表面p32/gC1q受体、细胞表面网蛋白-1、纤连蛋白EDA、纤连蛋白EDB、白介素11受体α、生腱蛋白-C、内皮糖蛋白/CD105、BST-2、半乳凝素-1、VCAM-1、纤维蛋白和组织因子受体。例如,红细胞模块可以包含肽配体、scFv、或抗体或片段。
[0251] 一个实施方案是单链抗原结合域(scFv),其包含特异性结合红细胞的肽配体。肽可以附接于scFv或布置在接头部分中。可以包含一个或多个肽配体。
[0252] ***
[0253] 出于所有目的,本文中提及的所有专利申请、专利、和出版物在此通过提及并入本文;在冲突的情况中,以本说明书为准。
[0254] 参考文献
[0255] 1Pasut G&Veronese FM(2009)"PEG conjugates in clinical development or use as anticancer agents:an overview."Adv Drug Deliv Rev 61(13):1177-1188.2Fishburn CS(2008)"The pharmacology of PEGylation:balancing PD with PK to generate novel therapeutics."J Pharm Sci 97(10):4167-4183.
[0256] 3Gao W,Liu W,Mackay JA,Zalutsky MR,Toone EJ,&Chilkoti A(2009)"In situ growth of a stoichiometric PEG-like conjugate at a protein's N-terminus with significantly improved pharmacokinetics."Proc Natl Acad Sci USA 106(36):15231-15236.
[0257] 4 Huang L,Gough PC,&Defelippis MR(2009)"Characterization of poly(ethylene glycol)and PEGylated products by LC/MS with postcolumn addition of amines."Anal Chem 81(2):567-577.
[0258] 5 Bailon P,Palleroni A,Schaffer CA,Spence CL,Fung WJ,Porter JE,Ehrlich GK,Pan W,Xu ZX,Modi MW,Farid A,Berthold W,&Graves M(2001)"Rational design of a potent,long-lasting form of interferon:a 40 kDa branched 
polyethylene glycol-conjugated interferon alpha-2a for the treatment of hepatitis C."Bioconjug Chem 12(2):195-202.
[0259] 6 Dhalluin C,Ross A,Leuthold LA,Foser S,Gsell B,Müller F,&Senn H(2005)"Structural and biophysical characterization of the 40 kDa PEG-interferon-alpha2a and its individual positional isomers."Bioconjug Chem 16(3):504-517.
[0260] 7 Dennis M(2002)"Albumin Binding as a General Strategy for Improving the Pharmacokinetics of Proteins."Journal of Biological Chemistry 277(38):35035-35043.
[0261] 8 Walker A,Dunlevy G,Rycroft D,Topley P,Holt LJ,Herbert T,Davies M,Cook F,Holmes S,Jespers L,&Herring C(2010)"Anti-serum albumin domain antibodies in the development of highly potent,efficacious and long-acting interferon."Protein Engineering Design and Selection.
[0262] 9 Hall SS,Mitragotri S,&Daugherty PS(2007)"Identification of peptide ligands facilitating nanoparticle attachment to erythrocytes."Biotechnol Prog 23(3):749-754.
[0263] 10 Godsel LM,Wang K,Schodin BA,Leon JS,Miller SD,&Engman DM(2001)"Prevention of autoimmune myocarditis through the induction of antigen-specific peripheral immune tolerance."Circulation 103(12):1709-1714.
[0264] 11 Luo X,Pothoven KL,McCarthy D,DeGutes M,Martin A,Getts DR,Xia G,He J,Zhang X,Kaufman DB,&Miller SD(2008)"ECDI-fixed allogeneic splenocytes induce donor-specific tolerance for long-term survival of islet transplants via two distinct mechanisms."Proc Natl Acad Sci USA 105(38):14527-14532.[0265] 12 Fife BT,Guleria I,Gubbels Bupp M,Eagar TN,Tang Q,Bour-Jordan H,Yagita H,Azuma M,Sayegh MH,&Bluestone JA (2006)"Insulin-induced remission in new-onset NOD mice is maintained by the PD-1-PD-L1 pathway."J Exp Med 203(12):2737-2747.
[0266] 13 Miller SD,Turley DM,&Podojil JR(2007)"Antigen-specific tolerance strategies for the prevention and treatment of autoimmune disease."Nat Rev Immunol 7(9):665-677.
[0267] 14 Maluccio MA,Covey AM,Porat LB,Schubert J,Brody LA,Sofocleous CT,Getrajdman GI,Jarnagin W,Dematteo R,Blumgart LH,Fong Y,&Brown KT(2008)"Transcatheter arterial embolization with only particles for the treatment of unresectable hepatocellular carcinoma."J Vasc Interv Radiol 19(6):862-869.[0268] 15 Gadaleta CD&Ranieri G(2010)"Trans-arterial chemoembolization as a therapy for liver tumours:New clinical developments and suggestions for combination with angiogenesis inhibitors."Crit Rev Oncol Hematol.
[0269] 16 Huang X,Molema G,King S,Watkins L,Edgington TS,&Thorpe PE(1997)"Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor vasculature."Science 275(5299):547-550.
[0270] 17 Sheridan C(2010)"Fresh from the biologic pipeline-2009."Nat Biotechnol 28(4):307-310.
[0271] 18 Maynard J&Georgiou G(2000)"Antibody engineering."Annual review of biomedical engineering 2:339-376.
[0272] 19 Weisser NE&Hall JC(2009)"Applications of single-chain variable fragment antibodies in therapeutics and diagnostics."Biotechnol Adv 27(4):502-520.
[0273] 20 Moghimi SM&Szebeni J(2003)"Stealth liposomes and long circulating nanoparticles:critical issues in pharmacokinetics,opsonization and protein-binding properties."Prog Lipid Res 42(6):463-478.
[0274] 21 Vogl TJ,Naguib NN,Nour-Eldin NE,Rao P,Emami AH,Zangos S,Nabil M,&Abdelkader A(2009)"Review on transarterial chemoembolization in hepatocellular carcinoma:palliative,combined,neoadjuvant,bridging,and 
symptomatic indications."Eur J Radiol 72(3):505-516.
[0275] 22 Fonsatti E,Nicolay HJ,Altomonte M,Covre A,&Maio M(2010)"Targeting cancer vasculature via endoglin/CD105:a novel antibody-based diagnostic and therapeutic strategy in solid tumours."Cardiovasc Res 86(1):12-19.
[0276] 23 Dienst A,Grunow A,Unruh M,Rabausch B,  JE,Fries JW,&Gottstein C(2005)"Specific occlusion of murine and human tumor vasculature by VCAM-1-targeted recombinant fusion proteins."CancerSpectrum Knowledge Environment 97(10):733-747.
[0277] 24 Ruoslahti E,Bhatia SN,&Sailor MJ(2010)"Targeting of drugs and nanoparticles to tumors."J Cell Biol 188(6):759-768.
[0278] 25 Thijssen VL,Postel R,Brandwijk RJ,Dings RP,Nesmelova I,Satijn S,Verhofstad N,Nakabeppu Y,Baum LG,Bakkers J,Mayo KH,Poirier F,&Griffioen AW(2006)"Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy."Proc Natl Acad Sci USA 103(43):15975-15980.
[0279] 26 Schliemann C,Roesli C,Kamada H,Borgia B,Fugmann T,Klapper W,&Neri D(2010)"In vivo biotinylation of the vasculature in B-cell lymphoma identifies BST-2 as a target for antibody-based therapy."Blood 115(3):736-
744.
[0280] 27 Brack SS,Silacci M,Birchler M,&Neri D(2006)"Tumor-targeting properties of novel antibodies specific to the large isoform of tenascin-C."Clin Cancer Res 12(10):3200-3208.
[0281] 28 Rybak J,Roesli C,Kaspar M,Villa A,&Neri D(2007)"The extra-domain A of fibronectin is a vascular marker of solid tumors and metastases."Cancer Res 67(22):10948-10957.
[0282] 29 Mohandas N&Gallagher PG(2008)"Red cell membrane:past,present,and future."Blood 112(10):3939-3948.
[0283] 30 Rice JJ&Daugherty PS(2008)"Directed evolution of a biterminal bacterial display scaffold enhances the display of diverse peptides."Protein Eng Des Sel 21(7):435-442.
[0284] 31 Dane KY,Chan LA,Rice JJ,&Daugherty PS(2006)"Isolation of cell specific peptide ligands using fluorescent bacterial display libraries."J Immunol Methods 309(1-2):120-129.
[0285] 32 van der Vlies AJ,O'Neil CP,Hasegawa U,Hammond N,&Hubbell JA(2010)"Synthesis of pyridyl disulfide-functionalized nanoparticles for conjugating thiol-containing small molecules,peptides,and proteins."Bioconjug Chem 21(4):653-662.
[0286] 33 O'Neil CP,van der Vlies AJ,Velluto D,Wandrey C,Demurtas D,Dubochet J,&Hubbell JA(2009)"Extracellular matrix binding mixed micelles for drug delivery applications."J Control Release 137(2):146-151.
[0287] 34 Velluto D,Demurtas D,&Hubbell JA(2008)"PEG-b-PPS diblock copolymer aggregates for hydrophobic drug solubilization and release:cyclosporin A as an example."Mol Pharm 5(4):632-642.
[0288] 35 Reddy ST,Rehor A,Schmoekel HG,Hubbell JA,&Swartz MA(2006)"In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide)nanoparticles."J Control Release 112(1):26-34.
[0289] 36 Reddy ST,van der Vlies AJ,Simeoni E,Angeli V,Randolph GJ,O'Neil CP,Lee LK,Swartz MA,&Hubbell JA(2007)"Exploiting lymphatic transport and complement activation in nanoparticle vaccines."Nat Biotechnol 25(10):1159-1164.
[0290] 37 Kontos S&Hubbell JA(2010)"Improving protein pharmacokinetics by engineering erythrocyte affinity."Mol.Pharmaceutics 7(6):2141-2147.
[0291] 38 Khandelwal S&Saxena RK(2006)"Assessment of survival of aging erythrocyte in circulation and attendant changes in size and CD147 expression by a novel two step biotinylation method."Exp Gerontol 41(9):855-861.
[0292] 39 Ferguson TA,Choi J,&Green DR(2011)"Armed response:how dying cells influence T-cell functions."Immunol Rev 241(1):77-88.
[0293] 40 Yamazaki S,Dudziak D,Heidkamp GF,Fiorese C,Bonito AJ,Inaba K,Nussenzweig MC,&Steinman RM(2008)"CD8+CD205+splenic dendritic cells are specialized to induce Foxp3+regulatory T cells."Journal of immunology(Baltimore,Md:1950)181(10):6923-6933.
[0294] 41 Holz LE,Warren A,Le Couteur DG,Bowen DG,&Bertolino P(2010)"CD8+T cell tolerance following antigen recognition on hepatocytes."Journal of Autoimmunity 34(1):15-22.
[0295] 42 Ichikawa S,Mucida D,Tyznik AJ,Kronenberg M,&Cheroutre H(2011)"Hepatic stellate cells function as regulatory bystanders."Journal of immunology(Baltimore,Md:1950)186(10):5549-5555.
[0296] 43 Thomson AW&Knolle PA(2010)"Antigen-presenting cell function in the tolerogenic liver environment."Nat Rev Immunol 10(11):753-766.
[0297] 44 Albert ML,Pearce SF,Francisco LM,Sauter B,Roy P,Silverstein RL,&Bhardwaj N(1998)"Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36,and cross-present antigens to cytotoxic T lymphocytes."J Exp Med 188(7):1359-1368.
[0298] 45 Green DR,Ferguson T,Zitvogel L,&Kroemer G(2009)"Immunogenic and tolerogenic cell death."Nat Rev Immunol 9(5):353-363.
[0299] 46 Bursch LS,Rich BE,&Hogquist KA(2009)"Langerhans cells are not required for the CD8 T cell response to epidermal self-antigens."J Immunol 182(8):4657-4664.
[0300] 47 Liu K,Iyoda T,Saternus M,Kimura Y,Inaba K,&Steinman RM(2002)"Immune tolerance after delivery of dying cells to dendritic cells in situ."J Exp Med 196(8):1091-1097.
[0301] 48 Darrah PA,Hegde ST,Patel DT,Lindsay RWB,Chen L,Roederer M,&Seder RA(2010)"IL-10 production differentially influences the magnitude,quality,and protective capacity of Th1 responses depending on the vaccine platform."J Exp Med 207(7):1421-1433.
[0302] 49 Lee MS&Kim Y-J(2007)"Signaling pathways downstream of pattern-recognition receptors and their cross talk."Annu.Rev.Biochem.76:447-480.[0303] 50 Arnaboldi PM,Roth-Walter F,&Mayer L(2009)"Suppression of Th1 and Th17,but not Th2,responses in a CD8(+)T cell-mediated model of oral tolerance."Mucosal Immunol 2(5):427-438.
[0304] 51 Saint-Lu N,Tourdot S,Razafindratsita A,Mascarell L,Berjont N,Chabre H,Louise A,Van Overtvelt L,&Moingeon P(2009)"Targeting the allergen to oral dendritic cells with mucoadhesive chitosan particles enhances tolerance induction."Allergy 64(7):1003-1013.
[0305] 52Mueller DL(2010)"Mechanisms maintaining peripheral tolerance."Nat Immunol 11(1):21-27.
[0306] 53Lutolf MP,Tirelli N,Cerritelli S,Cavalli L,&Hubbell JA(2001)"Systematic modulation of Michael-type reactivity of thiols through the use of charged amino acids."Bioconjug Chem 12(6):1051-1056.
[0307] 54Steiner D,Forrer P,&Plückthun A(2008)"Efficient selection of DARPins with sub-nanomolar affinities using SRP phage display."Journal of Molecular Biology 382(5):1211-1227.
[0308] 55Parmeggiani F,Pellarin R,Larsen AP,Varadamsetty G,Stumpp M,Zerbe O,Caflisch A,&Plückthun A(2008)"Designed armadillo repeat proteins as general peptide-binding scaffolds:consensus design and computational optimization of the hydrophobic core."Journal of Molecular Biology 376(5):1282-1304.
[0309] 56Hackel BJ,Kapila A,&Wittrup KD(2008)"Picomolar affinity fibronectin domains engineered utilizing loop length diversity,recursive mutagenesis,and loop shuffling."J Mol Biol 381(5):1238-1252.
[0310] 57Silverman AP,Levin AM,Lahti JL,&Cochran JR(2009)"Engineered cystine-knot peptides that bind alpha(v)beta(3)integrin with antibody-like affinities."Journal of Molecular Biology 385(4):1064-1075.
[0311] 58Keefe AD,Pai S,&Ellington A(2010)"Aptamers as therapeutics."Nat Rev Drug Discov 9(7):537-550.
[0312] 59Rockey WM,Huang L,Kloepping KC,Baumhover NJ,Giangrande PH,&Schultz MK(2011)"Synthesis and radiolabeling of chelator-RNA aptamer bioconjugates with copper-64for targeted molecular imaging."Bioorg Med Chem 19(13):4080-4090.
[0313] 60Savla R,Taratula O,Garbuzenko O,&Minko T(2011)"Tumor targeted quantum dot-mucin 1aptamer-doxorubicin conjugate for imaging and treatment of cancer."J Control Release 153(1):16-22.
[0314] 61Sampson T(2003)"Aptamers and SELEX:the technology."World Patent Information(25):123-129.
[0315] 具体地,本发明涉及以下方面:
[0316] 1.一种分离的肽,其包含选自下组的序列的至少5个连续的氨基酸残基:SEQ ID NO:11,SEQ ID NO:13,SEQ ID NO:14,SEQ ID NO:15,SEQ ID NO:16,SEQ ID NO:17,SEQ ID NO:1及它们的保守取代,其中所述序列特异性结合红细胞。
[0317] 2.项1的肽,其中所述序列在选自下组的序列中具有一个或多个具有D-L取代的残基或者具有至少一个且不超过两个氨基酸的保守取代:SEQ ID NO:11,SEQ ID NO:13,SEQ ID NO:14,SEQ ID NO:15,SEQ ID NO:16,SEQ ID NO:17,和SEQ ID NO:1。
[0318] 3.项1的肽,其基本上由选自下组的序列组成:SEQ ID NO:11,SEQ ID NO:13,SEQ ID NO:14,SEQ ID NO:15,SEQ ID NO:16,SEQ ID NO:17,和SEQ ID NO:1。
[0319] 4.项1的肽,其进一步还包含下述的至少一组:
[0320] 选自下组的序列的至少5个连续的氨基酸残基:SEQ ID NO:11,SEQ ID NO:13,SEQ ID NO:14,SEQ ID NO:15,SEQ ID NO:16,SEQ ID NO:17,SEQ ID NO:1及它们的保守取代,其中所述序列特异性结合红细胞。
[0321] 5.项1的肽,其残基数目为约10-约80个。
[0322] 6.项1的肽,其进一步包含治疗剂。
[0323] 7.项6的肽,其中所述治疗剂选自下组:胰岛素、醋酸普兰林肽(pramlintide acetate)、生长激素、胰岛素样生长因子-1、红细胞生成素、1型α干扰素、干扰素α2a、干扰素α2b、干扰素β1a、干扰素β1b、干扰素γ1b、β-葡糖脑苷脂酶、腺苷脱氨酶、粒细胞集落刺激因子、粒细胞巨噬细胞集落刺激因子、白介素1、白介素2、白介素11、因子VIIa、因子VIII、因子IX、艾塞那肽(exenatide)、L-天冬酰胺酶、拉布立酶(rasburicase)、肿瘤坏死因子受体、和恩夫韦地(enfuvirtide)。
[0324] 8.项1的肽,其进一步包含下组的成员:抗体、抗体片段、和单链抗原结合域(ScFv)。
[0325] 9.项1的肽,其进一步包含致耐受性抗原。
[0326] 10.项9的肽,其中所述致耐受性抗原选自下组:因遗传疾病缺陷的蛋白质、具有非人糖基化的蛋白质、非人蛋白质、不天然存在于人中的合成蛋白质、人食物抗原、人移植抗原、和人自身免疫抗原。
[0327] 11.项10的肽,其包含多个特异性结合红细胞的序列。
[0328] 12.一种产生免疫耐受的方法,该方法包括施用包含分子融合物的组合物,所述分子融合物包含致耐受性抗原和红细胞结合性模块,该红细胞结合性模块特异性结合所述患者中的红细胞并由此连接所述抗原与所述红细胞,其中以对包含所述致耐受性抗原的物质有效产生免疫耐受的量施用所述分子融合物。
[0329] 13.项12的方法,其中所述分子融合物由至少一个与所述抗原直接共价键合的红细胞结合性模块组成。
[0330] 14.项12的方法,其中所述分子融合物包含至少一个附接于颗粒的红细胞结合性模块,所述颗粒附接于所述抗原或含有所述抗原。
[0331] 15.项14的方法,其中所述颗粒选自下组:微粒、纳米颗粒、脂质体、聚合物囊泡、和胶束。
[0332] 16.项12的方法,其中所述致耐受性抗原包含治疗性蛋白质的一部分。
[0333] 17.项16的方法,其中所述蛋白质包括因子VIII或因子IX。
[0334] 18.项12的方法,其中所述患者是人,且所述致耐受性抗原包含非人蛋白质的一部分。
[0335] 19.项18的方法,其中所述蛋白质包括腺苷脱氨酶、L-天冬酰胺酶、拉布立酶、抗胸腺细胞球蛋白、L-精氨酸酶、和L-甲硫氨酸酶。
[0336] 20.项12的方法,其中所述患者是人,且所述致耐受性抗原包含不存在于自然界的蛋白质的一部分。
[0337] 21.项12的方法,其中所述患者是人,且所述致耐受性抗原包含含有非人糖基化的蛋白质的聚糖。
[0338] 22.项12的方法,其中所述致耐受性抗原包含人移植抗原的至少一部分。
[0339] 23.项12的方法,其中所述致耐受性抗原包含人自身免疫性疾病蛋白质的一部分。
[0340] 24.项23的方法,其中所述人自身免疫性疾病蛋白质选自下组:前胰岛素原、胰岛素原、胰岛素、GAD65、GAD67、IA-2、IA-2β、甲状腺球蛋白、甲状腺过氧化物酶、促甲状腺激素受体、髓鞘碱性蛋白、髓鞘少突胶质细胞糖蛋白、蛋白脂质蛋白、胶原II、胶原IV、乙酰胆碱受体、基质金属蛋白质1和3、分子伴侣热休克蛋白47、微纤维蛋白-1、PDGF受体α、PDGF受体β、和核蛋白SS-A。
[0341] 25.项12的方法,其中所述致耐受性抗原包含人食物的一部分。
[0342] 26.项25的方法,其中所述人食物的一部分选自下组:伴花生球蛋白(Ara h 1)、变应原II(Ara h 2)、花生凝集素(Ara h 6)、α-乳清蛋白(ALA)、乳转铁蛋白、谷蛋白、低分子量谷蛋白、α-和γ-麦醇溶蛋白、大麦醇溶蛋白、裸麦醇溶蛋白、和燕麦蛋白。
[0343] 27.项12的方法,其中所述红细胞结合性模块选自下组:肽配体、抗体、抗体片段、和单链抗原结合域(ScFv)。
[0344] 28.项27的方法,其中所述红细胞结合性模块包含scFv。
[0345] 29.项28的方法,其中所述scFv包含10F7的轻链或10F7轻链的更高亲和力变体。
[0346] 30.项12的方法,其中所述红细胞结合性模块包含肽配体,该肽配体包含选自下组的序列的至少5个连续的氨基酸残基:SEQ ID NO:11,SEQ ID NO:13,SEQ ID NO:14,SEQ ID NO:15,SEQ ID NO:16,SEQ ID NO:17,SEQ ID NO:1及它们的保守取代,其中所述序列特异性结合红细胞。
[0347] 31.一种组合物,其包含:
[0348] 分子融合物,该分子融合物包含致耐受性抗原和红细胞结合性模块,所述红细胞结合性模块特异性结合所述患者中的红细胞,并且由此连接所述抗原与所述红细胞。
[0349] 32.项31的组合物,其中所述红细胞结合性模块与所述抗原共价键合。
[0350] 33.项31的组合物,其中所述分子融合物包含附接于颗粒的所述红细胞结合性模块,所述颗粒附接于所述抗原。
[0351] 34.项33的组合物,其中所述颗粒包含微粒、纳米颗粒、脂质体、聚合物囊泡、或胶束。
[0352] 35.项31的组合物,其中所述致耐受性抗原包含治疗性蛋白质的一部分。
[0353] 36.项31的组合物,其中所述患者是人,且所述致耐受性抗原包含非人蛋白质的一部分。
[0354] 37.项31的组合物,其中所述患者是人,且所述致耐受性抗原包含不存在于人的蛋白质的一部分。
[0355] 38.项31的组合物,其中所述患者是人,且所述致耐受性抗原包含含有非人糖基化的蛋白质的聚糖。
[0356] 39.项31的组合物,其中所述致耐受性抗原包含人自身免疫抗原的一部分。
[0357] 40.项31的组合物,其中所述致耐受性抗原包含人食物的一部分。
[0358] 41.项31的组合物,其中所述红细胞结合性模块选自下组:肽配体、抗体、抗体片段、和单链抗原结合域(ScFv)。
[0359] 42.项41的组合物,其中所述红细胞结合性模块包含scFv。
[0360] 43.项42的组合物,其中所述scFv包含10F7的轻链或10F7轻链的更高亲和力变体。
[0361] 44.项31的组合物,其中所述红细胞结合性模块包含肽配体,该肽配体包含选自下组的序列的至少5个连续的氨基酸残基:SEQ ID NO:11,SEQ ID NO:13,SEQ ID NO:14,SEQ ID NO:15,SEQ ID NO:16,SEQ ID NO:17,SEQ ID NO:1及它们的保守取代,其中所述序列特异性结合红细胞。
[0362] 45.项31的组合物,其中所述红细胞结合性模块包含具有约10μM-0.1nM的解离常数的肽配体,如通过所述肽和红细胞之间的平衡结合测量所测定的。
[0363] 46.一种组合物,其包含:
[0364] 红细胞结合性模块,该红细胞结合性模块特异性结合与选自下组的实体连接的红细胞:合成聚合物、分支的合成聚合物、和颗粒。
[0365] 47.项46的组合物,其中所述颗粒选自下组:微粒、纳米颗粒、脂质体、聚合物囊泡、和胶束。
[0366] 48.项46的组合物,其进一步包含致耐受性抗原。
[0367] 49.项46的组合物,其中所述红细胞结合性模块包含肽配体,该肽配体包含选自下组的序列的至少5个连续的氨基酸残基:SEQ ID NO:11,SEQ ID NO:13,SEQ ID NO:14,SEQ ID NO:15,SEQ ID NO:16,SEQ ID NO:17,SEQ ID NO:1及它们的保守取代,其中所述序列特异性结合红细胞。
[0368] 50.项46的组合物,其进一步包含治疗剂。
[0369] 51.项50的组合物,其中所述治疗剂选自下组:抗体、抗体片段、单链抗原结合域(ScFv)、小分子药物、和肽。
[0370] 52.项46的组合物,其进一步包含与所述实体连接的肿瘤归巢性配体。
[0371] 53.一种在患者中栓塞肿瘤的方法,包括:
[0372] 对患者施用包含红细胞结合性模块和肿瘤归巢性配体的分子融合物的组合物,[0373] 其中所述肿瘤归巢性配体是目标为特异性结合选自肿瘤和肿瘤血管系统的靶物的抗体、抗体片段、单链抗原结合域(ScFv),或肽配体,且
[0374] 其中所述红细胞结合性模块包括特异性结合红细胞的肽配体、抗体、抗体片段、scFv、或适体。
[0375] 54.项53的方法,其中所述肿瘤归巢性配体选自下组:氨肽酶-A、氨肽酶-N、内皮唾液酸蛋白、细胞表面核仁蛋白、细胞表面膜联蛋白-1、细胞表面p32/gC1q受体、细胞表面网蛋白-1、纤连蛋白EDA、纤连蛋白EDB、白介素11受体α、生腱蛋白-C、内皮糖蛋白/CD105、BST-2、半乳凝素-1、VCAM-1、纤维蛋白和组织因子受体。
[0376] 55.项53的方法,其中所述红细胞结合性模块包含肽配体,该肽配体包含选自下组的序列的至少5个连续的氨基酸残基:SEQ ID NO:11,SEQ ID NO:13,SEQ ID NO:14,SEQ ID NO:15,SEQ ID NO:16,SEQ ID NO:17,SEQ ID NO:1及它们的保守取代,其中所述序列特异性结合红细胞。
[0377] 56.项53的方法,其中所述红细胞结合性模块包含scFv。
[0378] 57.项53的方法,其中所述红细胞结合性模块包含抗体或抗体片段。
[0379] 58.项53的方法,包括将所述组合物注射入所述患者的血管系统中。
[0380] 59.项53的方法,其中所述分子融合物包含选自下组的实体:颗粒、肽、和合成聚合物,其中所述实体连接所述红细胞结合性模块和所述肿瘤归巢性配体。
[0381] 60.一种用于在患者中栓塞肿瘤的药物,其包含:
[0382] 包含红细胞结合性模块和肿瘤归巢性配体的分子融合物的组合物,
[0383] 其中所述肿瘤归巢性配体是目标为特异性结合选自肿瘤和肿瘤微血管系统的靶物的抗体、抗体片段、单链抗原结合域(ScFv)、或肽配体,且
[0384] 其中所述红细胞结合性模块包含特异性结合红细胞的肽配体、抗体、抗体片段、ScFv、或适体。
[0385] 61.项60的药物,其中所述肿瘤归巢性配体选自下组:氨肽酶-A、氨肽酶-N、内皮唾液酸蛋白、细胞表面核仁蛋白、细胞表面膜联蛋白-1、细胞表面p32/gC1q受体、细胞表面网蛋白-1、纤连蛋白EDA、纤连蛋白EDB、白介素11受体α、生腱蛋白-C、内皮糖蛋白/CD105、BST-2、半乳凝素-1、VCAM-1、纤维蛋白和组织因子受体。
[0386] 62.项60的药物,其中所述红细胞结合性模块包含肽配体,该肽配体包含选自下组的序列的至少5个连续的氨基酸残基:SEQ ID NO:11,SEQ ID NO:13,SEQ ID NO:14,SEQ ID NO:15,SEQ ID NO:16,SEQ ID NO:17,SEQ ID NO:1及它们的保守取代,其中所述序列特异性结合红细胞。
[0387] 63.项60的药物,其中所述红细胞结合性模块包含scFv。
[0388] 64.项60的药物,其中所述红细胞结合性模块包含抗体或抗体片段。
[0389] 65.项60的药物,其中所述分子融合物包含选自下组的实体:颗粒、肽、和合成聚合物,其中所述实体连接所述红细胞结合性模块与所述肿瘤归巢性配体。
[0390] 66.一种单链抗原结合域(scFv),其包含特异性结合红细胞的肽配体。
[0391] 67.项66的scFv,其中所述肽配体布置在所述scFv的接头部分中。
[0392] 68.项66的scFv,其包含多个特异性结合红细胞的肽配体。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈