首页 / 专利库 / 保护装置和系统 / 锚点 / 一种变地基系数下锁脚锚管的受力分析方法

一种变地基系数下脚锚管的受分析方法

阅读:88发布:2024-02-21

专利汇可以提供一种变地基系数下脚锚管的受分析方法专利检索,专利查询,专利分析的服务。并且本 发明 涉及隧道工程领域,具体涉及一种变地基系数下 锁 脚锚管的受 力 分析方法。本发明包括以下步骤:1)建立变地基系数下锁脚锚管的力学分析模型;2)建立变地基系数下锁脚锚管的挠曲线微分方程;3)利用幂级数法以及锁脚锚管的边界条件,求得锁脚锚管任意截面的挠度、转 角 、弯矩、剪力和地基反力表达式;4)得到锁脚锚管端部的挠度和转角表达式;5)得到锁脚锚管与 钢 架整体求解中所需的钢架拱脚处的各单位变位和载变位;6)采用力法求解得到钢架拱顶的多余未知力;7)确定作用于锁脚锚管端部的剪力值和弯矩值;8)利用利用步骤3得到的地基反力表达式,最终得到变地基系数下锁脚锚管任意截面的挠度、转角、弯矩、剪力和地基反力值。,下面是一种变地基系数下脚锚管的受分析方法专利的具体信息内容。

1.一种变地基系数下脚锚管的受分析方法,其特征在于,所述的方法步骤为:
步骤1):建立变地基系数下锁脚锚管的力学分析模型;
步骤2):根据步骤1)建立的力学分析模型,建立变地基系数下锁脚锚管的挠曲线微分方程;
步骤3):根据步骤2)建立的变地基系数下锁脚锚管的挠曲线微分方程,采用幂级数法对其进行求解,并利用锁脚锚管的边界条件求得锁脚锚管任意截面的挠度、转、弯矩、剪力和地基反力表达式;
步骤4):根据步骤3)所得锁脚锚管任意截面的挠度和转角表达式,进一步得到锁脚锚管近端的挠度和转角表达式;
步骤5):根据步骤4)所得锁脚锚管近端的挠度和转角表达式,进一步得到锁脚锚管与架整体求解中所需的钢架拱脚处的各单位变位和载变位;
步骤6):根据步骤5)所得钢架拱脚处的各单位变位和载变位,并采用力法求解得到钢架拱顶的多余未知力;
步骤7):利用步骤6)得到的钢架拱顶的多余未知力,确定作用于锁脚锚管近端的剪力值和弯矩值;
步骤8):利用步骤7)得到的锁脚锚管端部(近端)的剪力值和弯矩值以及步骤3)得到的锁脚锚管任意截面的挠度、转角、弯矩、剪力和地基反力表达式,得到锁脚锚管任意截面的挠度、转角、弯矩、剪力和地基反力值,最终完成变地基系数下锁脚锚管的受力分析。
2.根据权利要求1所述的一种变地基系数下锁脚锚管的受力分析方法,其特征在于:所述步骤1)建立的变地基系数下锁脚锚管的力学分析模型应该满足以下条件:
A:锁脚锚管端部与钢架拱脚牢固焊接,且对称分布于钢架两侧;
B:锁脚锚管为弹性地基上的直梁,端部受到钢架拱脚传递的剪力和弯矩;
C:锁脚锚管下伏地基为弹性介质,地基系数在锁脚锚管端部为零,然后随深度线性增加;
D:在端部剪力和弯矩作用下,锁脚锚管表面上任意点所受的地基反力与该点的横向位移成正比;
E:取锁脚锚管受力的最不利工况进行受力分析,即不考虑台阶下部开挖前拱脚地基对钢架的竖向支承作用,由锁脚锚管支承钢架拱脚传递的全部荷载。

说明书全文

一种变地基系数下脚锚管的受分析方法

一、技术领域:

[0001] 本发明涉及隧道工程领域,具体涉及一种变地基系数下锁脚锚管的受力分析方法。二、背景技术:
[0002] 作为隧道初期支护架的锁脚措施,锁脚锚管主要为钢架拱脚提供沿自身横向的支承反力。相应地,锁脚锚管主要依靠自身的抗弯和抗剪能力即横向承载力,以抑制钢架拱脚的沉降变形。显然,锁脚锚管的工作性状类似于横向受荷桩。然而由于锁脚锚管的端部与钢架拱脚牢固焊接,二者作为整体结构、共同抵抗围岩荷载,受力分析时须考虑两者连接处的荷载传递和变形的协调性。因此,锁脚锚管的受力和变形计算较一般的横向受荷桩复杂。目前锁脚锚管现有的弹性地基反力法受力分析中,锁脚锚管均被简单地视为地基反力系数(简称地基系数)沿深度方向不变的Winkler地基梁来考虑,数学处理上最为简单,但主要适用于较完整的岩层和密实土层。而对于一般土质地层以及岩层破碎和密实程度随深度变化的情况,考虑地基系数沿深度的变化则更为符合实际。若无论锁脚锚管下伏地层情况如何,均假定地基系数沿深度方向为常数而进行锁脚锚管的受力分析,显然是不合适的,而目前正缺乏一种变地基系数下锁脚锚管的受力分析方法。
三、发明内容
[0003] 本发明的提供一种变地基系数下锁脚锚管的受力分析方法。
[0004] 为实现上述目的,本发明采用的技术方案为:一种变地基系数下锁脚锚管的受力分析方法,其特征在于,所述的方法步骤为:
[0005] 步骤1):建立变地基系数下锁脚锚管的力学分析模型;
[0006] 步骤2):根据步骤1)建立的力学分析模型,建立变地基系数下锁脚锚管的挠曲线微分方程;
[0007] 步骤3):根据步骤2)建立的变地基系数下锁脚锚管的挠曲线微分方程,采用幂级数法对其进行求解,并利用锁脚锚管的边界条件求得锁脚锚管任意截面的挠度、转、弯矩、剪力和地基反力表达式;
[0008] 步骤4):根据步骤3)所得锁脚锚管任意截面的挠度和转角表达式,进一步得到锁脚锚管近端的挠度和转角表达式;
[0009] 步骤5):根据步骤4)所得锁脚锚管近端的挠度和转角表达式,进一步得到锁脚锚管与钢架整体求解中所需的钢架拱脚处的各单位变位和载变位;
[0010] 步骤6):根据步骤5)所得钢架拱脚处的各单位变位和载变位,并采用力法求解得到钢架拱顶的多余未知力;
[0011] 步骤7):利用步骤6)得到的钢架拱顶的多余未知力,确定作用于锁脚锚管近端的剪力值和弯矩值;
[0012] 步骤8):利用步骤7)得到的锁脚锚管端部(近端)的剪力值和弯矩值以及步骤3)得到的锁脚锚管任意截面的挠度、转角、弯矩、剪力和地基反力表达式,得到锁脚锚管任意截面的挠度、转角、弯矩、剪力和地基反力值,最终完成变地基系数下锁脚锚管的受力分析。
[0013] 所述步骤1)建立的变地基系数下锁脚锚管的力学分析模型应该满足以下条件:
[0014] A:锁脚锚管端部与钢架拱脚牢固焊接,且对称分布于钢架两侧;
[0015] B:锁脚锚管为弹性地基上的直梁,端部受到钢架拱脚传递的剪力和弯矩;
[0016] C:锁脚锚管下伏地基为弹性介质,地基系数在锁脚锚管端部为零,然后随深度线性增加;
[0017] D:在端部剪力和弯矩作用下,锁脚锚管表面上任意点所受的地基反力与该点的横向位移成正比;
[0018] E:取锁脚锚管受力的最不利工况进行受力分析,即不考虑台阶下部开挖前拱脚地基对钢架的竖向支承作用,由锁脚锚管支承钢架拱脚传递的全部荷载。与现有技术相比,本发明具有如下优点和效果:
[0019] 本发明可以对地基系数沿深度变化时锁脚锚管的力学行为进行分析和评价,适用于一般土质地层以及岩层破碎和密实程度随深度变化的情况。
[0020] 本发明可使用于地基系数沿深度变化的各种情况。四、附图说明:
[0021] 图1为一种变地基系数下锁脚锚管的受力分析方法的流程图
[0022] 图2为变地基系数下锁脚锚管的力学分析模型示意图;
[0023] 图3为隧道钢架的计算模型示意图;五、具体实施方式
[0024] 下面结合具体的实施方式来对本发明的技术方案做进一步的详细说明:
[0025] 一种变地基系数下锁脚锚管的受力分析方法,所述的方法步骤为:
[0026] 步骤1):建立变地基系数下锁脚锚管的力学分析模型;
[0027] 建立的变地基系数下锁脚锚管的力学分析模型应该满足以下条件:
[0028] A:锁脚锚管近端与钢架拱脚牢固焊接,且对称分布于钢架两侧;
[0029] B:锁脚锚管为弹性地基上的直梁,近端受到钢架拱脚传递的剪力和弯矩;
[0030] C:锁脚锚管下伏地基为弹性介质,地基系数在锁脚锚管近端为零,然后随深度线性增加;
[0031] D:在近端剪力和弯矩作用下,锁脚锚管表面上任意点所受的地基反力与该点的横向位移成正比;
[0032] E:取锁脚锚管受力的最不利工况进行受力分析,即不考虑台阶下部开挖前拱脚地基对钢架的竖向支承作用,由锁脚锚管支承钢架拱脚传递的全部荷载。
[0033] 步骤2):根据步骤1)建立的力学分析模型,建立变地基系数下锁脚锚管的挠曲线微分方程;
[0034] 步骤3):根据步骤2)建立的变地基系数下锁脚锚管的挠曲线微分方程,采用幂级数法对其进行求解,并利用锁脚锚管的边界条件求得锁脚锚管任意截面的挠度、转角、弯矩、剪力和地基反力表达式;
[0035] 步骤4):根据步骤3)所得锁脚锚管任意截面的挠度和转角表达式,进一步得到锁脚锚管近端的挠度和转角表达式;
[0036] 步骤5):根据步骤4)所得锁脚锚管近端的挠度和转角表达式,进一步得到锁脚锚管与钢架整体求解中所需的钢架拱脚处的各单位变位和载变位;
[0037] 步骤6):根据步骤5)所得钢架拱脚处的各单位变位和载变位,并采用力法求解得到钢架拱顶的多余未知力;
[0038] 步骤7):利用步骤6)得到的钢架拱顶的多余未知力,确定作用于锁脚锚管近端的剪力值和弯矩值;
[0039] 步骤8):利用步骤7)得到的锁脚锚管近端的剪力值和弯矩值以及步骤3)得到的锁脚锚管任意截面的挠度、转角、弯矩、剪力和地基反力表达式,得到锁脚锚管任意截面的挠度、转角、弯矩、剪力和地基反力值,最终完成变地基系数下锁脚锚管的受力分析。
[0040] 如图1所示,所述分析方法,首先建立变地基系数下锁脚锚管的力学分析模型,如图2所示,并满足以下条件:
[0041] (1)锁脚锚管近端与钢架拱脚牢固焊接,且对称分布于钢架两侧;
[0042] (2)锁脚锚管为弹性地基上的直梁,近端受到钢架拱脚传递的剪力和弯矩;
[0043] (3)锁脚锚管下伏地基为弹性介质,地基系数在锁脚锚管近端为零,然后随深度线性增加;
[0044] (4)在近端剪力和弯矩作用下,锁脚锚管表面上任意点所受的地基反力与该点的横向位移成正比;
[0045] (5)取锁脚锚管受力的最不利工况进行受力分析,即不考虑台阶下部开挖前拱脚地基对钢架的竖向支承作用,由锁脚锚管支承钢架拱脚传递的全部荷载。
[0046] 根据变地基系数下锁脚锚管的力学分析模型(见图2),建立变地基系数下锁脚锚管的挠曲线微分方程:
[0047]
[0048] 所述 为锁脚锚管的变形系数;m为地基反力系数随深度变化的比例系数,单位为N/m4;D为锁脚锚管的直径,单位为m;EDIz为锁脚锚管的等效抗弯刚度,单位为N·m2。
[0049] 式(1)的解可展开成x的幂级数:
[0050]
[0051] 式(2)各阶导数可依次表示为:
[0052]
[0053] 将y和y(4)表达式代入式(1),可得:
[0054]
[0055] 即
[0056]
[0057] 根据式(4)两边恒等,即可确定待定系数a0、a1、a2、······,an,然后将各系数表达式代入式(2),整理得:
[0058]
[0059] 其中k=1,2,3·····。
[0060] 引入记号: 则式(5)可化简归纳为:
[0061]
[0062] 令
[0063]
[0064]
[0065]
[0066]
[0067] 则式(6)可进一步表示为:
[0068] y=a0f0(x)+a1f1(x)+a2f2(x)+a3f3(x)  (11)
[0069] 上式即为微分方程幂级数解的表达式,式中a0、a1、a2和a3可由边界条件确定。
[0070] 对式(11)求各阶导数如下:
[0071] y′=a0f′0(x)+a1f′1(x)+a2f′2(x)+a3f′3(x)  (12)
[0072] 其中
[0073]
[0074]
[0075] y″=a0f″0(x)+a1f″1(x)+a2f″2(x)+a3f″3(x)  (13)
[0076] 其中
[0077]
[0078]
[0079] y″′=a0f0″′(x)+a1f1″′(x)+a2f2″′(x)+a3f3″′(x)  (14)
[0080] 其中
[0081]
[0082]
[0083] 利用锁脚锚管近端作用有剪力Q0和弯矩M0,且远端为自由支承的边界条件,可建立以下四个关系式:
[0084] (1)近端弯矩为M0,规定逆时针为正:有-EDIzy″|x=0=-M0,得 即可得
[0085]
[0086] (2)近端弯矩为Q0,规定向上为正:有-EDIzy″′|x=0=-Q0,得
[0087] 即 可得
[0088]
[0089] (3)远端弯矩为零,即M|x=L=-EDIzy″x=L=0,得
[0090] a0f0″(L)+a1f″1(L)+a2f″2(L)+a3f″3(L)=0  (17)
[0091] (4)远端剪力为零,即Q|x=L=-EDIzy″′x=L=0,得
[0092] a0f″′0(L)+a1f″′1(L)+a2f″′2(L)+a3f″′3(L)=0  (18)
[0093] 联立求解式(17)和(18),可得a0和a1分别为
[0094]
[0095]
[0096] 将求得的系数a0、a1、a2和a3表达式代入式(11),即可求得锁脚锚管任意截面的挠度表达式为:
[0097] y=a0f0(x)+a1f1(x)+a2f2(x)+a3f3(x)  (21)
[0098] 利用式(21),可进一步求得锁脚锚管任意截面的转角、弯矩、剪力和地基反力表达式为:
[0099]
[0100]
[0101]
[0102] p=mDx[a0f0(x)+a1f1(x)+a2f2(x)+a3f3(x)]  (25)
[0103] 作用于锁脚锚管近端的剪力Q0和弯矩M0,来自于钢架拱脚处的荷载传递。由于锁脚锚管与钢架作为整体结构,二者共同承载,协调变形,剪力Q0和弯矩M0需通过锁脚锚管-钢架的整体求解才能确定。首先,需要求得钢架拱顶的多余未知力,然后才能确定作用于锁脚锚管近端的剪力Q0和弯矩M0。钢架可视为支座(实为锁脚锚管近端)可移动的超静定无铰拱结构,如图3所示,采用力法对拱顶处的多余未知力进行求解,所需的钢架拱脚处的各单位变位和载变位主要取决于锁脚锚管近端剪力Q0和弯矩M0的挠度和转角。
[0104] 由式(21)和(22)式,可得到锁脚锚管近端的挠度和转角表达式为:
[0105]
[0106]
[0107] 利用式(26)和式(27)可确定锁脚锚管与钢架整体求解中所需的钢架拱脚处的各单位变位和载变位为:
[0108]
[0109]
[0110]
[0111]
[0112]
[0113]
[0114] 其中对于深埋隧道有
[0115]
[0116] 所述q0为隧道总的竖向围岩荷载,单位N/m;η为作用于钢架上的围岩荷载比例;γ为围岩容重,单位为N/m3;所述S为深埋隧道围岩级别;l为上台阶开挖跨度,单位为m;f为上台阶开挖高度,单位为m;所述i为隧道宽度每增减1m时的围岩压力增减率,当隧道宽度小于5m时,取i=0.2;当隧道宽度大于5m时,取i=0.1;λ为侧压力系数; 为围岩计算摩擦角,单位为°;θp为锁脚锚管的打设角度,即与平线的夹角,单位为°。
[0117] 对于浅埋无偏压隧道有
[0118]
[0119] 所述H为浅埋隧道埋深,单位为m;θ为岩(土)柱两侧的摩擦角,单位为°;β为破裂面与水平面的夹角,单位为°。
[0120] 利用钢架拱脚处的各单位变位和载变位(式(28)~(33)),并采用力法可求得钢架拱顶的多余未知力(见图3)为:
[0121]
[0122] 式中
[0123] a11=δ11+β1a12=a21=δ12+β2+fβ1
[0124] a22=δ22+u2+2fβ2+f2β1
[0125] a10=Δ1p+βp a20=Δ2p+fβp+up
[0126]
[0127]
[0128] 其中对于深埋隧道有
[0129]
[0130]对于浅埋无偏压隧道有
[0131]
[0132]所述多余未知力X1为钢架拱顶截面的弯矩,单位为N·m;所述多余未知力X2为钢架拱顶截面的轴力,单位为N;所述R为隧道拱部半径,单位为m;EsIs为钢架的抗弯刚度,单位为N·m2;所述δ11、δ12、δ21和δ22为拱脚刚性固定时,X1、X2作用下拱顶截面处分别沿X1、X2方向产生的单位位移;所述Δ1p、Δ2p分别为拱脚刚性固定时,在围岩荷载作用下拱顶截面处分别沿X1、X2方向产生的位移。
[0133] 在求得钢架拱顶的多余未知力X1、X2后,即可确定作用于锁脚锚管近端的剪力和弯矩分别为:
[0134] Q0=-Vj cosθp+Hj sinθp,M0=Mj  (37)
[0135] 其中对于深埋隧道有
[0136]
[0137]
[0138] 对于浅埋无偏压隧道有
[0139]
[0140]
[0141] 利用上述过程求得的锁脚锚管近端的剪力值、弯矩值(式(37))以及锁脚锚管任意截面的挠度、转角、弯矩、剪力和地基反力表达式(式(21)~(25)),得到锁脚锚管任意截面的挠度、转角、弯矩、剪力和地基反力值,最终完成变地基系数下锁脚锚管的受力分析。
高效检索全球专利

专利汇是专利免费检索,专利查询,专利分析-国家发明专利查询检索分析平台,是提供专利分析,专利查询,专利检索等数据服务功能的知识产权数据服务商。

我们的产品包含105个国家的1.26亿组数据,免费查、免费专利分析。

申请试用

分析报告

专利汇分析报告产品可以对行业情报数据进行梳理分析,涉及维度包括行业专利基本状况分析、地域分析、技术分析、发明人分析、申请人分析、专利权人分析、失效分析、核心专利分析、法律分析、研发重点分析、企业专利处境分析、技术处境分析、专利寿命分析、企业定位分析、引证分析等超过60个分析角度,系统通过AI智能系统对图表进行解读,只需1分钟,一键生成行业专利分析报告。

申请试用

QQ群二维码
意见反馈